Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 474: 134823, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852254

RESUMEN

Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-ß1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.


Asunto(s)
Cardiotoxicidad , Poliestirenos , Proteínas Serina-Treonina Quinasas , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Proteína p53 Supresora de Tumor , Regulación hacia Arriba , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Cardiotoxicidad/etiología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Poliestirenos/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Nanopartículas/toxicidad , Miocardio/metabolismo , Miocardio/patología
2.
Eur J Med Res ; 29(1): 298, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802976

RESUMEN

Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-ß1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-ß1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.


Asunto(s)
Contractura , Subunidad alfa del Factor 1 Inducible por Hipoxia , Articulación de la Rodilla , Piroptosis , Ratas Sprague-Dawley , Animales , Contractura/metabolismo , Contractura/fisiopatología , Contractura/patología , Piroptosis/fisiología , Ratas , Masculino , Articulación de la Rodilla/patología , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hipoxia/metabolismo , Hipoxia/fisiopatología , Modelos Animales de Enfermedad , Factor de Crecimiento Transformador beta1/metabolismo , Cápsula Articular/metabolismo , Cápsula Articular/patología , Cápsula Articular/fisiopatología , Rango del Movimiento Articular , Proteína smad3/metabolismo
3.
Gynecol Endocrinol ; 40(1): 2353733, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38818662

RESUMEN

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a prevalent metabolic and endocrine condition in females of reproductive age. This work was to discover the underlying role of Dickkopf 1 (DKK1) and its putative regulating mechanism in P COS. METHODS: Mice recieved dehydroepiandrosterone (DHEA) injection to establish the in vivo P COS model.Hematoxylin and eosin (H&E) staining was performed for histological analysis. RT-qP CR and Western blotting were used to detect gene and protein expression. CCK-8 and flow cytometry assays were applied to detect cell viability and apoptosis. Co-immunoprecipitation (Co-IP) and immunoprecipitation (IP) were applied to assess association between DKK1 and SIRT2. RESULTS: In this work, DKK1 is downregulated in P COS rats. It was revealed that DKK1 knockdown induced apoptosis and suppressed proliferation in KGN cells, whereas DKK1 overexpression had exactly the opposite effects. In addition, DKK1 deactivates the T GF-ß1/SMad3 signaling pathway, thereby controlling KGN cell proliferation and apoptosis. Besides, SIRT2 inhibition reversed the impact of DKK1 overexpression on KGN cell proliferation and apoptosis. Furthermore, SIRT2 downregulated DKK1 expression by deacetylating DKK1 in KGN cells. DISCUSSION: Altogether, we concluded that SIRT2-induced deacetylation of DKK1 triggers T GF-ß1/Smad3 hyperactivation, thereby inhibiting proliferation and promoting apoptosis of KGN cells. The above results indicated that DKK1 might function as a latent target for P COS treatment.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Síndrome del Ovario Poliquístico , Transducción de Señal , Sirtuina 2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/genética , Femenino , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Ratones , Sirtuina 2/metabolismo , Sirtuina 2/genética , Ratas , Apoptosis , Acetilación , Proliferación Celular , Modelos Animales de Enfermedad , Humanos
4.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730387

RESUMEN

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Asunto(s)
Morfinanos , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Células A549 , Bleomicina , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Morfinanos/farmacología , Morfinanos/uso terapéutico , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
5.
J Endocrinol Invest ; 47(7): 1763-1776, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38512446

RESUMEN

PURPOSE: To investigate how sleeve gastrectomy (SG), a typical operation of bariatric surgery, attenuated symptom, and progression of diabetic kidney disease (DKD). METHODS: DKD model was induced by high-fat diet (HFD) combined with streptozocin in Wistar rats. SG was performed, and the group subjected to sham surgery served as control. The animals were euthanized 12 weeks after surgery, followed by sample collection for the subsequent experiment. The HK-2, a renal proximal tubular epithelial cell line derived from human, was utilized to investigate the potential mechanisms. RESULTS: SG improved metabolic parameters and glucose homeostasis, and could alleviate DKD in terms of renal function indices as well as histological and morphological structures in DM rats, accompanied with a significant reduction in renal tubular injury. Compared with sham group, SG reduced the renal tubular ferroptosis. To further clarify the mechanism involved, in vitro experiments were performed. In the presence of high glucose, renal tubular TGF-ß1 secretion was significantly increased in HK-2 cell line, which led to activation of ferroptosis through TGF-ß1/Smad3 signaling pathway. Inhibition of TGF-ß1 receptor and phosphorylation of Smad3 significantly ameliorated TGF-ß1-mediated ferroptosis. In vivo experiments also found that SG improved the hyperglycemic environment, reduced renal TGF-ß1 concentrations, and down-regulated the TGF-ß1/Smad3 signaling pathway. CONCLUSIONS: With the capacity to lower the glucose, SG could attenuate the ferroptosis by inhibiting TGF-ß1/Smad3 signaling pathway in DKD rats, and eventually attenuated DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ferroptosis , Gastrectomía , Ratas Wistar , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Ratas , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad3/metabolismo , Transducción de Señal/fisiología , Masculino , Gastrectomía/métodos , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Regulación hacia Abajo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Dieta Alta en Grasa/efectos adversos
6.
Int Urol Nephrol ; 56(8): 2779-2791, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38530583

RESUMEN

PURPOSE: Diabetic bladder fibrosis is a common comorbidity. Altered expression of some long non-coding RNAs (LncRNAs) has been associated with bladder fibrosis. LncRNA H19 has been reported to regulate bladder cancer through miR-29b. However, the action mechanism of LncRNA H19 in bladder fibrosis is unclear. METHODS: In vitro, human bladder smooth muscle cells (HBSMCs) were cultured with transforming growth factor-ß1 (TGF-ß1) for 48 h to construct cell model of bladder fibrosis. HBSMCs were then transfected with si-LncRNA H19, si-NC, miR-29b-mimic, mimic-NC, or miR-29b-inhibitor. In vivo, Sprague-Dawley (SD) rats were given a high-sucrose-high-fat (HSHF) diet for 4 weeks and injected with streptozotocin (STZ, 50 mg/kg) to induce bladder fibrosis model in diabetic rats, followed by injection of lentiviral particles knocking down LncRNA H19 expression, empty vector, or miR-29b-inhibitor, respectively. RESULTS: LncRNA H19 was up-regulated in TGF-ß1-induced HBSMC fibrosis and STZ-induced diabetic rat bladder fibrosis, whereas miR-29b was down-regulated. si-LncRNA H19 reduced blood glucose levels and improved histopathological damage of bladder tissue in rats. In addition, si-LncRNA H19 or miR-29b-mimic increased the expression of E-cadherin, but decreased the expression of N-cadherin, vimentin, fibronectin (FN) in bladder tissues, and HBSMCs. si-LncRNA H19 reduced TGF-ß1/p-drosophila mothers against decapentaplegic 3 (Smad3) protein in HBSMCs and in rat bladder tissues, while miR-29b-inhibitor reversed the effect of si-LncRNA H19. CONCLUSION: This study indicated that LncRNA H19 may inhibit bladder fibrosis in diabetic rats by targeting miR-29b via the TGF-ß1/Smad3 signalling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Fibrosis , MicroARNs , ARN Largo no Codificante , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Animales , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , MicroARNs/metabolismo , MicroARNs/genética , Ratas , Factor de Crecimiento Transformador beta1/metabolismo , Diabetes Mellitus Experimental/complicaciones , Humanos , Células Cultivadas , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Masculino , Enfermedades de la Vejiga Urinaria/metabolismo , Enfermedades de la Vejiga Urinaria/etiología , Proteína smad3/metabolismo
7.
Heliyon ; 10(3): e24984, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333829

RESUMEN

Objective: To study the role and mechanism of chloride channel-3 (ClC-3) in the formation of hypertrophic scar by constructing ClC-3 interference vectors and examining their effects on human hypertrophic scar fibroblasts (HSFB). Methods: Human HSFB and human normal skin fibroblasts (NSFB) were used in this study, and ClC-3 interference vectors were constructed to transfect cells. ClC-3 inhibitors NPPB and Tamoxifen were used to treat cells. Cell migration and the expression of TGF-ß/Smad, CollagenⅠ,CollagenⅢ were examined to explore the role of ClC-3 in the formation of hypertrophic scar. Results: Compared with the normal skin tissue, the positive expression of ClC-3 and TGF-ß in the scar tissue was significantly increased. The relative expression of ClC-3 and TGF-ß1 in HSFB cells was higher than that in NSFB cells. Interfering with the expression of CLC-3 can inhibit the migration of HSFB cells and the expression of TGF- ß/Smad, CollagenⅠ/Ⅲ. The experiment of HSFB cells treated by CLC-3 inhibitors can also obtain similar results. Conclusion: Inhibiting CLC-3 can reduce the formation of hypertrophic scars.

8.
Chem Biol Drug Des ; 103(1): e14446, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230787

RESUMEN

Ammonia can induce pulmonary fibrosis in humans and animals. Platycodin D (PLD) possesses various bioactive activities including anti-fibrotic properties. In this study, we aimed to explore the activity and mechanism of PLD in pulmonary fibrosis induced by ammonia. The mouse model of ammonia-induced lung fibrosis was established, and the role of PLD was assessed by H&E and Masson's trichrome staining. The differentially expressed genes (DEGs) were identified by RNA-seq and subjected to GO and KEGG pathway analyses. BEAS-2B cells were treated with NH4 Cl alone or along with PLD. Results showed that PLD attenuated ammonia-induced pulmonary inflammation and fibrosis in vivo. The extracellular matrix (ECM)-receptor interaction pathway was predicted as a prominent pathway underlying the anti-fibrotic function of PLD. In ammonia-induced mouse models and NH4 Cl-treated BEAS-2B cells, PLD could repress the activation of the TGF-ß1 pathway. By incubating lung fibroblast HFL1 cells with the conditioned medium of BEAS-2B cells treated with NH4Cl alone or along with PLD, PLD was confirmed to attenuate NH4 Cl-induced ECM deposition in HFL1 cells. Our findings demonstrate that PLD exerts a protective function in ammonia-induced pulmonary fibrosis by repressing TGF-ß1-mediated ECM remodeling, suggesting the potential therapeutic value of PLD in this disease.


Asunto(s)
Fibrosis Pulmonar , Saponinas , Triterpenos , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Amoníaco/efectos adversos , Amoníaco/metabolismo , Transducción de Señal , Matriz Extracelular , Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Bleomicina/efectos adversos
9.
J Ethnopharmacol ; 324: 117737, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38228229

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Leech, as a traditional Chinese medicine for the treatment of blood circulation and blood stasis, was also widely used to cure pulmonary fibrosis in China. In clinical practice, some traditional Chinese medicine preparation such as Shui Zhi Xuan Bi Hua Xian Tang and Shui Zhi Tong Luo Capsule composed of leech, could improve the clinical symptoms and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). However, the material basis of the leech in the treatment of IPF were not yet clear. AIM OF THE STUDY: Screen out the components of leech that have the anti-pulmonary fibrosis effects, and further explore the therapeutic mechanism of the active components. MATERIALS AND METHODS: In this study, the different molecular weight components of leech extract samples were prepared using the semi-permeable membranes with different pore sizes. The therapeutic effects of the leech extract groups with molecular weight greater than 10 KDa (>10 KDa group), between 3 KDa and 10 KDa (3-10 KDa group), and less than 3 KDa (<3 KDa group) on pulmonary fibrosis were firstly investigated by cell proliferation and cytotoxicity assay (MTT), cell wound healing assay, immunofluorescence staining (IF) and Western blot (WB) assay through the TGF-ß1-induced fibroblast cell model. Then bleomycin-induced pulmonary fibrosis (BML-induced PF) mouse model was constructed to investigate the pharmacological activities of the active component group of leech extract in vivo. Pathological changes of the mouse lung were observed by hematoxylin-eosin staining (H&E) and Masson's trichrome staining (Masson). The hydroxyproline (HYP) content of lung tissues was quantified by HYP detection kit. The levels of extracellular matrix-related fibronectin (FN) and collagen type Ⅰ (Collagen Ⅰ), pyruvate kinase M2 (PKM2) monomer and Smad7 protein were determined via WB method. PKM2 and Smad7 protein were further characterized by IF assays. RESULTS: Using TGF-ß1-induced HFL1 cell line as a PF cell model, the in vitro results demonstrated that the >10 KDa group could significantly inhibited the cell proliferation and migration, downregulated the expression level of cytoskeletal protein vimentin and α-smooth muscle actin (α-SMA), and reduced the deposition of FN and Collagen Ⅰ. In the BML-induced PF mouse model, the >10 KDa group significantly reduced the content of HYP, downregulated the expression levels of FN and Collagen Ⅰ in lung tissues, and delayed the pathological changes of lung tissue structure. The results of WB and IF assays further indicated that the >10 KDa group could up-regulate the expression level of PKM2 monomer and Smad7 protein in the cellular level, thereby delaying the progression of pulmonary fibrosis. CONCLUSIONS: Our study revealed that the >10 KDa group was the main material basis of the leech extract that inhibited pulmonary fibrosis through TGF-ß1/Smad3 signaling pathway.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad7/metabolismo , Proteína smad7/farmacología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Colágeno Tipo I/metabolismo , Bleomicina , Modelos Animales de Enfermedad , Transducción de Señal
10.
Curr Mol Pharmacol ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38258594

RESUMEN

BACKGROUND: Pancreatic fibrosis is a hallmark feature of chronic pancreatitis (CP), resulting in persistent damage to the pancreas. The sustained activation of pancreatic stellate cells (PSCs) plays a pivotal role in the progression of pancreatic fibrosis and is a major source of extracellular matrix (ECM) deposition during pancreatic injury. METHODS: Calpain is a calcium-independent lysosomal neutral cysteine endopeptidase and was found to be correlated to various fibrotic diseases. Studies have revealed that calpeptin, a calpain inhibitor, can improve the fibrosis process of multiple organs. This study investigated the effect of the calpain inhibitor, calpeptin, on fibrosis in experimental CP and activation of cultured PSCs in mice. CP was induced in mice by repeated injections of cerulein for four weeks in vivo, and the activation process of mouse PSCs was isolated and cultured in vitro. Then, the inhibitory effect of calpeptin on pancreatic fibrosis was confirmed based on the histological damage of CP, the expression of α-smooth muscle actin (α-SMA) and collagen-Iα1(Col1α1), and the decrease in mRNA levels of calpain-1 and calpain-2. RESULTS: In addition, it was revealed that calpeptin can inhibit the activation process of PSCs and induce significant PSCs apoptosis by downregulating the expression of calpain-1, calpain-2 and TGF-ß1, and the expression and phosphorylation of smad3 in vitro. CONCLUSION: These results suggest that the calpain inhibitor, calpeptin, plays a key role in the regulation of PSC activation by inhibiting the TGF-ß1/smad3 signaling pathway, which supports the potential of calpeptin as an inhibitor of pancreatic fibrosis in mice by interfering with calpain.

11.
Biol Trace Elem Res ; 202(2): 569-579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37140770

RESUMEN

Excessive fluoride intake during enamel development can affect enamel mineralization, leading to dental fluorosis. However, its potential mechanisms remain largely unexplored. In the present study, we aimed to investigate the impact of fluoride on the expressions of RUNX2 and ALPL during mineralization and the effect of TGF-ß1 administration on fluoride treatment. A dental fluorosis model of newborn mice and an ameloblast cell line ALC were both used in the present study. The mice of the NaF group, including the mothers and newborns, were fed with water containing 150 ppm NaF after delivery to induce dental fluorosis. The mandibular incisors and molars showed significant abrasion in the NaF group. Immunostaining, qRT-PCR, and Western blotting analysis indicated that exposure to fluoride markedly down-regulated RUNX2 and ALPL in mouse ameloblasts and ALCs. Besides, fluoride treatment significantly decreased the mineralization level detected by ALP staining. Furthermore, exogenous TGF-ß1 up-regulated RUNX2 and ALPL and promoted mineralization, while the addition of SIS3 could block such TGF-ß1-induced up-regulation. In TGF-ß1 conditional knockout mice, the immunostaining of RUNX2 and ALPL was weaker compared with wild-type mice. Exposure to fluoride inhibited the expressions of TGF-ß1 and Smad3. Co-treatment of TGF-ß1 and fluoride up-regulated RUNX2 and ALPL compared with the fluoride alone treatment, promoting mineralization. Collectively, our data indicated that TGF-ß1/Smad3 signaling pathway was necessary for the regulatory effects of fluoride on RUNX2 and ALPL, and the fluoride-induced suppression of ameloblast mineralization was mitigated by activating TGF-ß1/Smad3 signaling pathway.


Asunto(s)
Fluoruros , Fluorosis Dental , Ratones , Animales , Fluoruros/farmacología , Factor de Crecimiento Transformador beta1 , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Transducción de Señal
12.
Burns ; 50(1): 178-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37783633

RESUMEN

BACKGROUND AND OBJECTIVES: Botulinum toxin type A (BTA) is often used for wrinkles and muscle convulsive diseases due to its blocking of the transmission of nerve impulses. Stromal vascular fraction gel (SVF-gel) prepared from adipose tissue has novel effects on skin depression and poor texture. Both BTA and SVF-gel are proved to possess anti-scar potential. This study aimed to assess and compare their therapeutic effects on hypertrophic scars. MATERIALS AND METHODS: The rabbit ear scar model was established and treated with BTA and SVF-gel, alone or in combination. Gross evaluation using Manchester Scar Scale (MSS) was conducted immediately, 4 and 8 weeks after initial treatment. After tissue sample harvest, histological and Western blot analyses were performed. RESULTS: All the treatments alleviated scar hyperplasia in different degrees by inhibiting fibroblast activation (Ki-67, α-SMA), tissue inflammation (CD45, IL-1ß) and the transforming growth factor-ß1 (TGF-ß1)/Smad3 pathway. Despite an excellent anti-inflammatory effect, improvement of scar appearance and pathological characteristics in SVF-gel-contained groups was not as good as that in BTA-only group, which might be related to the retention of M2-type macrophages (CD163 +) and partial maintenance of TGF-ß1 expression. CONCLUSION: Our data suggest that BTA has better anti-scar efficacy than SVF-gel, and the combination of these two treatments shows no obvious combinatorial effect.


Asunto(s)
Toxinas Botulínicas Tipo A , Quemaduras , Cicatriz Hipertrófica , Animales , Conejos , Cicatriz Hipertrófica/patología , Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas Tipo A/uso terapéutico , Toxinas Botulínicas Tipo A/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fracción Vascular Estromal , Quemaduras/complicaciones , Quemaduras/terapia , Quemaduras/metabolismo , Fibroblastos
13.
Mol Cell Probes ; 73: 101947, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122948

RESUMEN

Airway fibrosis is among the pathological manifestations of benign central airway obstruction noted in the absence of effective treatments and requires new drug targets to be developed. Slit guidance ligand 2-roundabout guidance receptor 1 (Slit2-Robo1) is involved in fibrosis and organ development. However, its significance in airway fibrosis has not yet been reported. The study explored how the recombinant protein Slit2 functions in transforming growth factor-ß1 (TGF-ß1)-mediated airway fibrosis in vivo and in vitro. In this study, Slit2 expression initially increased in the tracheal granulation tissues of patients with tracheobronchial stenosis but decreased in the fibrotic tissue. In primary rat tracheal fibroblasts (RTFs), recombinant Slit2 inhibited the expression of extracellular matrices such as Timp1, α-SMA, and COL1A2, whereas recombinant TGF-ß1 promoted the expression of Robo1, α-SMA, and COL1A2. Slit2 and TGF-ß1 played a mutual inhibitory role in RTFs. Slit2 supplementation and Robo1 downregulation inhibited excessive extracellular matrix (ECM) deposition induced by TGF-ß1 in RTFs via the TGF-ß1/Smad3 pathway. Ultimately, exogenous Slit2 and Robo1 knockdown-mediated attenuation of airway fibrosis were validated in a trauma-induced rat airway obstruction model. These findings demonstrate that recombinant Slit2 alleviated pathologic tracheobronchial healing by attenuating excessive ECM deposition. Slit2-Robo1 is an attractive target for further exploring the mechanisms and treatment of benign central airway obstruction.


Asunto(s)
Obstrucción de las Vías Aéreas , Fibrosis Pulmonar , Animales , Humanos , Ratas , Obstrucción de las Vías Aéreas/metabolismo , Fibroblastos/metabolismo , Fibrosis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología
14.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834451

RESUMEN

Trichinella spiralis (T. spiralis) muscle larvae colonize in the host's skeletal muscle cells, which are surrounded by collagen capsules. The mechanism underlying muscle stage larva-induced collagen capsule formation remains unknown. To clarify the mechanism, a T. spiralis muscular-infected mouse model was established by a single lateral tail vein injection with 20,000 T. spiralis newborn larvae (NBL). The infected mice were treated with or without SB525334 (TGF-ß1 receptor type I inhibitor). Diaphragms were obtained post-infection, and the expression levels of the TGF-ß1/Smad3 pathway-related genes and collagen genes (type IV and VI) were observed during the process of collagen capsule formation. The changes in myoblasts under stimulation of the excretory-secretory (ES) products of NBL with or without SB525334 were further investigated. Results showed that the expression levels of type IV collagen gene, type VI collagen gene, Tgfb1, and Smad3 were significantly increased in infected mice muscle cells. The expression levels of all the above genes were enhanced by the products of NBL in myoblast cells. These changes were reversed by co-treatment with SB525334 in vivo and in vitro. In conclusion, the TGF-ß1/Smad3 pathway can be activated by T. spiralis infection in muscle cells. The activated TGF-ß1/Smad3 pathway can stimulate the secretion of collagens by myocytes and plays a promoting role in the process of collagen capsule formation. The research has the limitation that the protein identification of the products of NBL has yet to be performed. Therefore, the specific components in the T. spiralis ES products that induce collagen synthesis should be further investigated.


Asunto(s)
Trichinella spiralis , Ratones , Animales , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Proteínas del Helminto/genética , Antígenos Helmínticos/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Colágeno/metabolismo , Larva/metabolismo
15.
J Mol Histol ; 54(6): 655-664, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37759133

RESUMEN

Sepsis is a serious inflammatory disease caused by bacterial infection. Cardiovascular dysfunction and remodeling are serious complications of sepsis, which can significantly affect sepsis patients' mortality. Delta-like homologue 1 (DLK1) has been reported could inhibit cardiac myofibroblast differentiation. However, the function of DLK1 in sepsis is unknown. In the present study, the DLK1 expression was first identified based on the online dataset GSE79962 analysis and cecal ligation and puncture (CLP)-induced sepsis mouse model. DLK1 expression was significantly reduced in septic heart tissues. In septic mouse heart, CLP operation decreased the fractional shortening (EF) (%) and ejection fraction (FS) (%) and caused significant edema, disordered myofilament arrangement, and degradation and necrosis in myocardial cells; CLP operation also increased collagen deposition and elevated the protein levels of fibrotic markers (α-SMA and F-actin). DLK1 overexpression in septic mice could effectively increase EF (%) and FS (%), attenuate CLP-caused ECM degradation and deposition and partially inhibit the CLP-induced TGF-ß1/Smad signaling activation. In conclusion, DLK1 expression was poorly expressed in the CLP-induced septic mouse heart. DLK1 overexpression partially alleviated sepsis-induced cardiac dysfunction and fibrosis, with the involvement of the TGF-ß1/Smad3 signaling pathway and MMPs.


Asunto(s)
Cardiopatías , Sepsis , Humanos , Animales , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal/fisiología , Sepsis/complicaciones , Sepsis/metabolismo , Fibrosis , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo
16.
Dig Dis Sci ; 68(11): 4186-4195, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37679574

RESUMEN

BACKGROUND: Hepatic stellate cell hyperactivation is a central link in liver fibrosis development, transforming growth factor ß1 (TGF-ß1) is a key activator of HSCs. AIMS: This study investigated whether anlotinib attenuates CCl4 induced liver fibrosis in mice and explored its antifibrotic mechanism. METHODS: We used the human hepatic stellate cell line LX-2 for in vitro assays and used TGF-ß1 to induce hepatic fibrosis in LX-2 cells. We analyzed cytotoxicity using a cell-counting kit-8 and transwell chambers to detect the migratory ability of LX-2 cells. Western blotting was used to detect the protein levels of collagen type I, α-smooth muscle actin, and p-Smad3. In addition, mice with CCl4-induced hepatic fibrosis were used as in vivo models. Histopathological examination was performed using H&E staining, Masson's trichrome staining, and immunohistochemistry. RESULTS: Anlotinib significantly reversed TGF-ß1-induced protein levels of Col I, α-SMA and p-Smad3 and inhibits migratory and proliferative abilities in vitro using LX-2 cells. CCl4 cause F4 grade (Ishak) hepatic fibrosis, liver inflammatory scores ranged from 12 to 14 (Ishak), a mean ALT measurement of 130 U/L and a mean measurement AST value of 119 U/L in mice. However, the CCl4-induced changes were markedly attenuated by anlotinib treatment, which returned to F2 grade (Ishak) hepatic fibrosis, liver inflammatory scores ranged from 4 to 6 (Ishak), a mean ALT measurement of 40 U/L and a mean measurement AST value of 56 U/L in mice. CONCLUSIONS: Our results suggest that anlotinib-mediated suppression of liver fibrosis is related to the inhibition of TGF-ß1 signaling pathway. Hepatic stellate cell hyper activation is a central link in liver fibrosis development, transforming growth factor ß1 is a key activator of HSCs. Anlotinib is a multi-targeted tyrosine kinase inhibitor that has similar targets to nintedanib, a clinically used anti-pulmonary fibrosis drug. Our study demonstrates an FDA-approved drug-anlotinib-that could prevent liver fibrosis and inflammation. Experiments in cell cultures and mice show that anlotinib can inhibit the activation of hepatic stellate cells by down-regulating the TGFß1/smad3 pathway, thereby reversing liver fibrosis. In animal experiments, anlotinib showed protective effects on the CCl4-induced liver damage, including ameliorating liver inflammation, reversing liver fibrosis and reducing liver enzymes. This is a very good signal, anlotinib may be useful for halting or reversing the progression of liver fibrosis and could be employed in the development of novel therapeutic drugs for the management of chronic liver diseases.

17.
Biochem Biophys Res Commun ; 677: 38-44, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544102

RESUMEN

Myocardial fibrosis (MF) is the manifestation of a variety of cardiovascular diseases. Salidroside (SAL) has been proved to have a certain effect on anti-fibrosis in various organs. However, the mechanism of SAL in the treatment of MF remains unclear. Network pharmacology showed that there were 1228 SAL-related target genes and 2793 MF-related target genes. The intersection of these genes resulted in 271 drug-disease interactions, and 15 core active targets were filtered from protein-protein interaction mapping. The top 20 Gene ontology biological processes analysis showed that the involved processes were close to the pathogenesis of MF. Among the top 20 enriched KEGG pathways, Wnt/ß-catenin and TGF-ß1/Smad3 signaling pathways were identified. In vivo, MI rats exhibited thinning of the myocardial region and the formation of fibrous scars, the expression of smad3 and ß-catenin were increased. After SAL treatment, there was a significant reduction in collagen area and a decrease in the ratio of collagen type I to type III. The expression of smad3 and ß-catenin was suppressed and positively correlated with the dosage of SAL. SAL may contribute to the progression of MF through the TGF-ß1/Smad3 and Wnt/ß-catenin signaling pathways.


Asunto(s)
Factor de Crecimiento Transformador beta1 , beta Catenina , Ratas , Animales , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/metabolismo , Farmacología en Red , Fibrosis , Vía de Señalización Wnt , Proteína smad3/metabolismo
18.
Open Med (Wars) ; 18(1): 20230752, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465345

RESUMEN

Heart failure (HF) is a major global cause of morbidity and mortality. This study aimed to elucidate the role of secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2) in HF development and its underlying mechanism. Using a rat HF model, SMOC2 expression was examined and then knocked down via transfection to assess its impact on cardiac function and damage. The study also evaluated the effects of SMOC2 knockdown on autophagy-related molecules and the transforming growth factor beta 1 (TGF-ß1)/SMAD family member 3 (Smad3) signaling pathway. Intraperitoneal injection of the TGF-ß agonist (SRI-011381) into the HF rat model was performed to explore the SMOC2-TGF-ß1/Smad3 pathway relationship. SMOC2 expression was elevated in HF rats, while its downregulation improved cardiac function and damage. SMOC2 knockdown reversed alterations in the LC3-II/I ratio, Beclin-1, and p62 levels in HF rats. Through transmission electron microscope, we observed that SMOC2 knockdown restored autophagosome levels. Furthermore, SMOC2 downregulation inhibited the TGF-ß1/Smad3 signaling pathway, which was counteracted by SRI-011381. In conclusion, SMOC2 knockdown inhibits HF development by modulating TGF-ß1/Smad3 signaling-mediated autophagy, suggesting its potential as a therapeutic target for HF.

19.
Zhongguo Zhen Jiu ; 43(6): 684-90, 2023 Jun 12.
Artículo en Chino | MEDLINE | ID: mdl-37313563

RESUMEN

OBJECTIVE: To observe the effect of acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6) + "Yuji" (LU 10) for the airway remodeling in asthma rats based on the transforming growth factor-ß1 (TGF-ß1)/ Smad family member 3 (Smad3) signaling pathway; and explore the efficacy difference between the two acupoint combinations. METHODS: Forty SPF male SD rats, aged 4 weeks, were randomly divided into a blank group (n = 10) and a modeling group (n = 30). The ovalbumin (OVA) sensitization method was used to establish asthma model in the modeling group. After successful model preparation, the rats of the modeling group were randomized into a model group, an acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) (AAF) group, and acupuncture at "Kongzui" (LU 6)+"Yuji" (LU 10) (AAK) group, with 10 rats in each one. Starting from day 15 of the experiment, 5 min after motivating, acupuncture was applied to "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6)+"Yuji" (LU 10) in the AAF group and the AAK group respectively. The intervention was delivered for 30 min each time, once daily, lasting 3 weeks consecutively. Using lung function detector, the airway resistance (RL) and dynamic compliance (Cdyn) of the lungs were detected. The histomorphology of lung tissues was detected with HE staining and Masson staining, and the mRNA and protein expression of TGF-ß1 and Smad3 in lung tissues was detected with the real-time PCR and Western blot methods. RESULTS: Compared with the blank group, RL was increased and Cdyn was decreased in the rats of the model group (P<0.01); and RL was reduced and Cdyn was increased in the AAF group and the AAK group when compared with those in the model group (P<0.01, P<0.05). The rats of the model group had bronchial lumen stenosis, inflammatory cell infiltration, collagen fibre hyperplasia and thickened smooth muscle in the lung tissues when compared with those in the blank group; and in comparison with the model group, all of the above morphological changes were attenuated in the AAF group and the AAK group. Besides, these morphological changes of the lung tissues were more alleviated in the AAF group when compared with those in the AAK group. In comparison with the blank group, the mRNA and protein expression of TGF-ß1 and Smad3 of the lung tissues was increased in the model group (P<0.01), and it was reduced in the AAF group and the AAK group when compared with that in the model group (P<0.05, P<0.01). The mRNA expression of TGF-ß1 and Smad3 was lower in the AAF group when compared with that in the AAK group (P<0.05). CONCLUSION: Acupuncture at either "Feishu" (BL 13)+"Dingchuan" (EX-B 1) or "Kongzui" (LU 6)+"Yuji" (LU 10) reduces the airway remodeling in the rats with asthma, which may be related to the down-regulation of mRNA and protein expression of TGF-ß1 and Smad3. The better efficacy is obtained with acupuncture at "Feishu" (BL 13)+"Dingchuan" (EX-B 1).


Asunto(s)
Terapia por Acupuntura , Antiasmáticos , Asma , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/genética , Remodelación de las Vías Aéreas (Respiratorias) , Transducción de Señal , Asma/genética , Asma/terapia , Constricción Patológica
20.
Phytomedicine ; 116: 154849, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163903

RESUMEN

BACKGROUND: Cardiac fibrosis contributes to myocardial remodeling after myocardial infarction (MI), which may facilitate the progression to end-stage heart failure. Dengzhan Shengmai capsule (DZSMC), a traditional Chinese formula derived from Shen-mai powder, has shown remarkable therapeutic effects against cardiovascular diseases. However, the effect of DZSMC on cardiac fibrosis and its potential mechanism are ill-defined. PURPOSE: To evaluate the effects of DZSMC on cardiac fibrosis after myocardial infarction (MI) and investigate its underlying mechanism. METHOD: In vivo, MI rat models were established by permanently ligation of left anterior descending coronary arteries (LAD) and then were intragastrically treated with DZSMC or captopril for 5 weeks. Ex vivo, an everted intestinal sac model was used to study the intestinal absorption components of DZSMC, which were further identified through an ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method. In vitro, a myocardium fibrotic model was constructed by stimulating primary cardiac fibroblasts (CFs) with 1 µM Ang II. Subsequently, the absorbent solution of DZSMC from the intestinal sac was performed on the cell models to further elucidate its anti-fibrotic effects and underling mechanism. RESULTS: In vivo results showed that DZSMC significantly improved cardiac function and inhibited pathological myocardial fibrosis in post-MI rats in a dose dependent manner. Histological analysis and western blot results demonstrated that DZSMC treatment significantly reduced the expression of extracellular matrix (ECM)-related proteins, including LTBP2, TGF-ßR1, Smad3 and pSmad3, in myocardial tissue of MI rats. Ex vivo results showed that 18 absorbed components were identified, mainly consisting of phenolic acids, flavonoids and lignans, which may be responsible for the anti-fibrotic effects. Further in vitro results validated that DZSMC attenuated myocardial fibrosis by suppressing the expression of LTBP2, TGF-ß1 and pSmad3. CONCLUSION: DZSMC ameliorates cardiac function and alleviates cardiac fibrosis, which may be mediated by inhibition of CFs activation and reduction of excessive ECM deposition via LTBP2 and TGF-ß1/Smad3 pathways.


Asunto(s)
Infarto del Miocardio , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Miocardio/metabolismo , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA