Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int Arch Allergy Immunol ; 185(1): 84-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37866360

RESUMEN

INTRODUCTION: Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin disease characterized by Th2 cell-mediated type 2 inflammation. Emerging evidence indicated that AD patients exhibit an increased incidence of oral disorders. In the present study, we sought mechanistic insights into how AD affects periodontitis. METHODS: Onset of AD was induced by 2,4-dinitrochlorobenzene (DNCB). Furthermore, we induced periodontitis (P) in AD mice. The effect of AD in promoting inflammation and bone resorption in gingiva was evaluated. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunofluorescence assay, and flow cytometry were used to investigate histomorphology and cytology analysis, respectively. RNA sequencing of oral mucosa is used tissues to further understand the dynamic transcriptome changes. 16S rRNA microbial analysis is used to profile oral microbial composition. RESULTS: Compared to control group, mice in AD group showed inflammatory signatures and infiltration of a proallergic Th2 (Th2A)-like subset in oral mucosa but not periodontitis, as identified by not substantial changes in mucosa swelling, alveolar bone loss, and TRAP+ osteoclasts infiltration. Similarly, more Th2A-like cell infiltration and interleukin-4 levels were significantly elevated in the oral mucosa of DNCB-P mice compared to P mice. More importantly, AD exacerbates periodontitis when periodontitis has occurred and the severity of periodontitis increased with aggravation of dermatitis. Transcriptional analysis revealed that aggravated periodontitis was positively correlated with more macrophage infiltration and abundant CCL3 secreted. AD also altered oral microbiota, indicating the re-organization of extracellular matrix. CONCLUSIONS: These data provide solid evidence about exacerbation of periodontitis caused by type 2 dermatitis, advancing our understanding in cellular and microbial changes during AD-periodontitis progression.


Asunto(s)
Dermatitis Atópica , Periodontitis , Humanos , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , ARN Ribosómico 16S , Inmunoglobulina E/metabolismo , Antiinflamatorios/farmacología , Piel , Inflamación/metabolismo , Periodontitis/complicaciones , Periodontitis/metabolismo , Ratones Endogámicos BALB C , Citocinas/metabolismo
2.
Eur J Immunol ; 53(10): e2249983, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37489248

RESUMEN

Antigen-specific T lymphocytes are the central regulators of tolerance versus immune pathology against otherwise innocuous antigens and key targets of antigen-specific immune therapy. Recent advances in the understanding of T cells in tolerance and allergy resulted from improved technologies to directly characterize allergen-specific T cells by multiparameter flow cytometry or single-cell sequencing. This unravelled phenotypically and functionally distinct populations, such as Type 2a T helper cells (Th2a), follicular Th cells (Tfh), regulatory T cells (Treg), Type 1 regulatory T cells (Tr1), and follicular T regulatory cells. Here we will discuss the role of the different Th-cell subsets in the healthy state, during sensitization and development of allergy, and in tolerance induction by allergen immunotherapy (AIT). To date, the mechanisms of AIT as the only causal treatment of allergy are not completely understood. The analyses of allergen-specific T cells directly ex vivo during AIT support the concept of specific-Th2(a) cell deletion rather than an expansion of allergen-specific Tr1 or Treg cells as underlying mechanism.


Asunto(s)
Hipersensibilidad , Humanos , Hipersensibilidad/terapia , Subgrupos de Linfocitos T , Desensibilización Inmunológica/métodos , Linfocitos T Reguladores , Tolerancia Inmunológica , Alérgenos
4.
Front Immunol ; 13: 916778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003397

RESUMEN

Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells confined to atopic individuals, and they include all the allergen-specific Th2 cells. Recently, many studies have shown that Th2A cells characterized by CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review, we summarize the discovery, biomarkers, and biological properties of Th2A cells to gain new insights into the pathogenesis of allergic diseases.


Asunto(s)
Dermatitis Atópica , Esofagitis Eosinofílica , Hipersensibilidad a los Alimentos , Rinitis Alérgica , Alérgenos , Humanos
5.
Allergy ; 77(8): 2534-2548, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35266148

RESUMEN

BACKGROUND: The PALISADE study, an international, phase 3 trial of peanut oral immunotherapy (POIT) with AR101, resulted in desensitization in children and adolescents who were highly allergic to peanut. An improved understanding of the immune mechanism induced in response to food allergen immunotherapy would enable more informed and effective therapeutic strategies. Our main purpose was to examine the immunological changes in blood samples from a subset of peanut-allergic individuals undergoing oral desensitization immunotherapy with AR101. METHODS: Blood samples obtained as part of enrollment screening and at multiple time points during PALISADE study were used to assess basophil and CD4+ T-cell reactivity to peanut. RESULTS: The absence of clinical reactivity to the entry double-blinded placebo-controlled peanut challenge (DBPCFC) was accompanied by a significantly lower basophil sensitivity and T-cell reactivity to peanut compared with DBPCFC reactors. At baseline, peanut-reactive TH2A cells were observed in many but not all peanut-allergic patients and their level in peripheral blood correlates with T-cell reactivity to peanut and with serum peanut-specific IgE and IgG4 levels. POIT reshaped circulating peanut-reactive T-cell responses in a subset-dependent manner. Changes in basophil and T-cell responses to peanut closely paralleled clinical benefits to AR101 therapy and resemble responses in those with lower clinical sensitivity to peanut. However, no difference in peanut-reactive Treg cell frequency was observed between groups. CONCLUSION: Oral desensitization therapy with AR101 leads to decreased basophil sensitivity to peanut and reshapes peanut-reactive T effector cell responses supporting its potential as an immunomodulatory therapy.


Asunto(s)
Hipersensibilidad al Cacahuete , Administración Oral , Adolescente , Alérgenos , Arachis , Niño , Desensibilización Inmunológica/métodos , Humanos , Inmunidad , Hipersensibilidad al Cacahuete/terapia
6.
Front Cell Dev Biol ; 9: 755751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938732

RESUMEN

Testis-specific histone variants are crucial to promote open chromatin structure to enable nucleosome disassembly in the final stages of spermiogenesis. However, even after histone replacement, mature sperm retain a proportion of these variants, the function of which is unknown. The present study aimed to understand the functional relevance of the retained H2B and H2A variants, TH2B and TH2A. While no literature is available on the phenotype of TH2A knockouts, TH2B/TH2A double knockout male mice are reported to be infertile. In this study, ChIP-seq analysis was done for TH2B and TH2A to understand the epigenomics of the retained TH2B and TH2A, using murine caudal sperm. Distribution across genomic partitions revealed ∼35% of the TH2B peaks within ±5 kb of TSS whereas TH2A peaks distribution was sparse at TSS. Gene Ontology revealed embryo development as the most significant term associated with TH2B. Also, based on genomic regions, TH2B was observed to be associated with spindle assembly and various meiosis-specific genes, which is an important finding as TH2A/TH2B DKO mice have been reported to have defective cohesin release. A comparison of mouse and human TH2B-linked chromatin revealed 26% overlap between murine and human TH2B-associated genes. This overlap included genes crucial for embryogenesis. Most importantly, heterogeneity in the epigenetic landscape of TH2A and TH2B was seen, which is intriguing as TH2B and TH2A are well reported to be present in the same nucleosomes to promote open chromatin. Additionally, unlike TH2B, TH2A was enriched on the mitochondrial chromosome. TH2A was found to be associated with Nuclear insertion of Mitochondrial DNA sequences (NUMTs) in sperm. A comprehensive analysis of these observations indicates novel functions for the sperm-retained TH2B and TH2A.

7.
Clin Exp Allergy ; 51(12): 1624-1633, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599624

RESUMEN

BACKGROUND: Characterising the clinical and immunological impact of daily cat exposure in cat-allergic subjects with asthma who live with cats (WC) and those who do not (WoC) may provide understanding of the drivers of the allergic response. METHODS: Clinical and immunological characteristics (skin prick test, spirometry, symptom assessments, immunological markers) were compared between asthmatic subjects WC (n = 10) and WoC (n = 9). RESULTS: WC subjects had greater use of long-acting beta agonists (p < .05) and high-potency corticosteroids. No differences were observed in lung function, nasal and ocular symptoms, or asthma control between the groups. Cat dander- and Fel d 1-specific IgG4 concentrations were higher in WC than WoC subjects (both p < .05). Total IgE and cat dander-, Fel d 1- and Fel d 7-specific IgE concentrations were similar, but Fel d 4-sIgE was higher in WC subjects (p < .05) versus WoC. Basophil sensitivity to cat dander extract and Fel d 1 was lower in WC versus WoC subjects (p < .05) and correlated with higher IgG4 concentrations (r = 0.63; p = .009). Fel d 1-specific CD4+ T-cell responses polarised toward Th2A responses in WC versus WoC subjects; Fel d 1-specific IgE correlated with surface expression of CRTH2 and CD200R (both p ≤ .05). CONCLUSION: Immunological differences observed in WC versus WoC did not reflect clinical tolerance with natural cat exposure. The ability to live with a cat despite allergy could be driven by higher preventative medication use. This study may support design of novel therapeutics for allergy management.


Asunto(s)
Asma , Hipersensibilidad , Alérgenos , Asma/diagnóstico , Glicoproteínas , Humanos , Inmunoglobulina E
8.
Clin Exp Allergy ; 51(8): 1057-1068, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33938071

RESUMEN

BACKGROUND: In line with evidence for a role of pathogenic TH2A in seasonal allergies, we previously showed that individuals suffering from food allergy exhibited a decrease in circulating TH2A cells following multi-food immunotherapy. Herein, we aim to confirm the decline of TH2A cells in individuals undergoing house dust mite immunotherapy (HDM-AIT) and extend our observation to a new subset of CD38 expressing activated TH2A cells. METHODS: The frequencies of TH2A and CD38+ TH2A cells were analysed by flow cytometry in blood cells from 182 Japanese HDM-allergic individuals included in a 1-year clinical trial assessing the efficacy of HDM tablets. Interrelationship between these cellular responses and humoral mite-specific IgE and IgG4 levels was further explored. RESULTS: A decrease in TH2A cells was observed in both active and placebo groups. Interestingly, CD38+ TH2A cell frequencies significantly decreased only in active groups. In younger individuals (16-30 years), both TH2A and CD38+ TH2A cells were significantly reduced in active groups but not in the placebo group. Significant inverse correlations were observed in the course of HDM-AIT between changes in TH2A or CD38+ TH2A frequencies and IgG4 antibody levels. CONCLUSIONS: We confirm the value of monitoring TH2A cell frequencies in allergic individuals and extend this observation to perennial allergy to HDM. We highlight the interest of CD38 to better identify the subset of TH2A cell down-regulated by AIT. Finally, correlated cellular and humoral responses observed in immunoreactive individuals stress that coordinated pathways occur in the adaptive responses during AIT.


Asunto(s)
ADP-Ribosil Ciclasa 1/inmunología , Hipersensibilidad/inmunología , Glicoproteínas de Membrana/inmunología , Inmunoterapia Sublingual/métodos , Subgrupos de Linfocitos T/inmunología , Células Th2/inmunología , Adulto , Animales , Método Doble Ciego , Femenino , Humanos , Hipersensibilidad/prevención & control , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Pyroglyphidae/inmunología , Resultado del Tratamiento
9.
Int Arch Allergy Immunol ; 182(5): 365-380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33845475

RESUMEN

T helper (TH) cells have evolved into distinct subsets that mediate specific immune responses to protect the host against a myriad of infectious and noninfectious challenges. However, if dysregulated, TH-cell subsets can cause inflammatory disease. Emerging evidence now suggests that human allergic disease is caused by a distinct subpopulation of pathogenic TH2 cells. Pathogenic TH2 cells from different type-2-driven diseases share a core phenotype and show overlapping functional attributes. The unique differentiation requirements, activating signals, and metabolic characteristics of pathogenic TH2 cells are just being discovered. A better knowledge of this particular TH2 cell population will enable the specific targeting of disease-driving pathways in allergy. In this review, we introduce a rational for classifying TH cells into distinct subsets, discuss the current knowledge on pathogenic TH2 cells, and summarize their involvement in allergic diseases.


Asunto(s)
Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Movimiento Celular/inmunología , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Metabolismo Energético , Regulación de la Expresión Génica , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/terapia , Memoria Inmunológica , Inmunofenotipificación , Activación de Linfocitos/inmunología , Especificidad de Órganos/inmunología
10.
Pediatr Allergy Immunol ; 32(7): 1416-1425, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33715245

RESUMEN

Our understanding of the immune basis of food allergy has grown rapidly in parallel with the development of new immune-targeted interventions for the treatment of food allergy. Local tissue factors, including the composition of skin and gastrointestinal microbiota and production of Th2-inducing cytokines (TSLP, IL-33, and IL-25) from barrier sites, have been shown not only to contribute to the development of food allergy, but also to act as effective targets for treatment in mice. Ongoing clinical trials are testing the targeting of these factors in human disease. There is a growing understanding of the contribution of IL-13 to the induction of high-affinity IgE and the need for continual T-cell help in the maintenance of long-lived IgE. This provides a strong rationale to test biologics targeting both IL-4 and IL-13 in the treatment of established food allergy. Various forms of allergen immunotherapy for food allergy have clearly shown that low specific IgE and elevated specific IgG4 are predictive of sustained treatment effect. Treatments that mimic that immune response, for example, lowering IgE, with monoclonal antibodies such as omalizumab, or administering allergen-specific IgG, are in various stages of investigation. As we gain more opportunities to use immune-modifying treatments for the treatment of food allergy, studies of the immune and clinical response to those interventions will continue to rapidly advance our understanding of the immune basis of food allergy and tolerance.


Asunto(s)
Hipersensibilidad a los Alimentos , Inmunoglobulina E , Alérgenos , Animales , Desensibilización Inmunológica , Hipersensibilidad a los Alimentos/terapia , Humanos , Tolerancia Inmunológica , Ratones
11.
Dev Dyn ; 248(6): 488-500, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30939211

RESUMEN

BACKGROUND: Male germ cells are unique because they express a substantial number of variants of the general DNA binding proteins, known as histones, yet the biological significance of these variants is still unknown. In the present study, we aimed to address the expression pattern of the testis-specific histone H2B variant (TH2B) and the testis-specific histone H2A variant (TH2A) within the neonatal mouse testis. RESULTS: We demonstrate that TH2B and TH2A are present in a testis-enriched for undifferentiated spermatogonia. Co-localization studies with an undifferentiated marker, ZBTB16, revealed that TH2B and ZBTB16 co-localize in the neonatal testis. Upon the appearance of the primary spermatocytes, TH2B no longer co-localized with the ZBTB16 positive spermatogonia but were instead detected within the differentiating spermatogonia. This pattern of expression where TH2B and ZBTB16 no longer co-localize was maintained in the adult testis. CONCLUSION: These findings are in contrast to previous studies, which demonstrated that TH2B and TH2A were found only in adult spermatocytes. Our data are in support of a switch in the expression of these variants following the first round of spermatogonial differentiation. These studies reinforce current understandings that spermatogonia within the neonatal mouse testis are inherently different from those residing within the adult testis.


Asunto(s)
Variación Genética , Histonas/genética , Espermatogénesis , Testículo/química , Animales , Animales Recién Nacidos , Histonas/análisis , Masculino , Ratones , Espermatocitos/química
12.
Front Med ; 13(3): 289-297, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30280307

RESUMEN

Malignant cell transformation could be considered as a series of cell reprogramming events driven by oncogenic transcription factors and upstream signalling pathways. Chromatin plasticity and dynamics are critical determinants in the control of cell reprograming. An increase in chromatin dynamics could therefore constitute an essential step in driving oncogenesis and in generating tumour cell heterogeneity, which is indispensable for the selection of aggressive properties, including the ability of cells to disseminate and acquire resistance to treatments. Histone supply and dosage, as well as histone variants, are the best-known regulators of chromatin dynamics. By facilitating cell reprogramming, histone under-dosage and histone variants should also be crucial in cell transformation and tumour metastasis. Here we summarize and discuss our knowledge of the role of histone supply and histone variants in chromatin dynamics and their ability to enhance oncogenic cell reprogramming and tumour heterogeneity.


Asunto(s)
Reprogramación Celular , Ensamble y Desensamble de Cromatina , Código de Histonas , Histonas/metabolismo , Neoplasias/metabolismo , Animales , Neoplasias de la Mama , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Humanos , Masculino , Neoplasias/genética , Testículo/citología
13.
Frontiers of Medicine ; (4): 289-297, 2019.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-771282

RESUMEN

Malignant cell transformation could be considered as a series of cell reprogramming events driven by oncogenic transcription factors and upstream signalling pathways. Chromatin plasticity and dynamics are critical determinants in the control of cell reprograming. An increase in chromatin dynamics could therefore constitute an essential step in driving oncogenesis and in generating tumour cell heterogeneity, which is indispensable for the selection of aggressive properties, including the ability of cells to disseminate and acquire resistance to treatments. Histone supply and dosage, as well as histone variants, are the best-known regulators of chromatin dynamics. By facilitating cell reprogramming, histone under-dosage and histone variants should also be crucial in cell transformation and tumour metastasis. Here we summarize and discuss our knowledge of the role of histone supply and histone variants in chromatin dynamics and their ability to enhance oncogenic cell reprogramming and tumour heterogeneity.

14.
Eur J Immunol ; 46(1): 122-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518471

RESUMEN

In mouse models of infection with the gastrointestinal parasite Trichuris muris, appropriate dendritic-cell (DC) Ag sampling, migration, and presentation to T cells are necessary to mount a protective Th2-polarized adaptive immune response, which is needed to clear infection. SH2-containing inositol 5'-phosphatase 1 (SHIP-1) has been shown to be an important regulator of DC function in vitro through the negative regulation of the phosphoinositide 3-kinase (PI3K) pathway, but its role in vivo is relatively unexplored. In the current work, mice with a specific deletion of SHIP-1 in DCs (Ship1(ΔDC) ) were infected with the parasite T. muris. Ship1(ΔDC) mice were susceptible to infection due to ineffective priming of Th2-polarized responses. This is likely due to an increased production of interleukin (IL) 12p40 by SHIP-1-deficient DCs, as in vivo antibody blockade of IL-12p40 was able to facilitate the clearing of infection in Ship1(ΔDC) mice. Our results describe a critical role for SHIP-1 in regulating the ability of DCs to efficiently prime Th2-type responses.


Asunto(s)
Células Dendríticas/inmunología , Activación de Linfocitos/inmunología , Monoéster Fosfórico Hidrolasas/inmunología , Células Th2/inmunología , Tricuriasis/inmunología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Mutantes , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trichuris/inmunología
15.
Biochem Biophys Res Commun ; 464(3): 929-35, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26188507

RESUMEN

Histone variants TH2a and TH2b are highly expressed in testes, oocytes and zygotes. Our recent analysis suggested that these histone variants enhance the induced generation of pluripotent stem cells (iPSCs) when co-expressed along with four transcription factors, Oct3/4, Sox2, Klf4 and c-Myc (OSKM), and are associated with an open chromatin structure [1]. In the present study, we report the crystal structures of nucleosomes (NCPs) with the mouse histone variants, TH2a and TH2b. The structures revealed two significant changes, as compared to the canonical counterparts: fewer histone-DNA contacts and changes in dimer-dimer interactions between TH2a-TH2a' (L1-loop). In vivo studies with domain swapping and point mutants of the variants revealed that the residues in the histone tails and the TH2a-L1 loop are important for reprogramming. Taken together, our work indicates that the NCP variants with structural modifications and flexible tails are most likely important for enhanced reprogramming of functions.


Asunto(s)
Histonas/química , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Nucleosomas/química , Secuencia de Aminoácidos , Animales , Células Cultivadas , Reprogramación Celular , Cristalografía por Rayos X , Histonas/genética , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleosomas/metabolismo , Mutación Puntual , Conformación Proteica , Estructura Terciaria de Proteína , Testículo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA