Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Surg Oncol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047056

RESUMEN

BACKGROUND: The immune system is recognized to have therapeutic potential to destroy cancer cells. Soluble T-cell immunoglobulin mucin domain-3 (sTIM-3) and its ligand galectin 9 (Gal-9) cause suppression of cytokine production, cell cycle arrest and cell death. sTIM-3 and Gal-9 levels may have prognostic implications in non-small-cell lung cancer (NSCLC) patients. METHODS: This prospective cohort study was performed at Instituto de Medicina Integral Prof. Fernando Figueira, Recife, Pernambuco, Brazil. Fifty-eight patients were diagnosed with advanced NSCLC from January 2019 to January 2020. RESULTS: The age median was of 64.0 years. Soluble galectin-9 (sGal-9) levels in the smokers compared to nonsmoker patients (p < 0.0001). By using the receiver operating characteristic curve, we found that a baseline of 1694 pg/mL (cutoff). sGAL9 with specificity (72.2%), sensitivity (83.2%) and area under the curve = 0.8497 (p < 0.0004). Until 18.2 months, 46.8% and 72.9% were alive in the sGAL9low and sGAL9high groups, respectively (log-rank test; p = 0.02). The median survival was 15.9 months for sGAL9low (≤1694 pg/mL). CONCLUSION: This study indicated an association of tobacco with the release of circulating sGal-9 levels and the accuracy of sGal-9 as a potential biomarker predictive of survival time in advanced NSCLC patients. Furthermore, sGal-9 has may be a potential therapeutic target in the advanced NSCLC.

2.
Front Bioeng Biotechnol ; 11: 1227212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588136

RESUMEN

Introduction: Microbial systems, such as Escherichia coli, as host recombinant expression is the most versatile and the cheapest system for protein production, however, several obstacles still remain, such as recovery of soluble and functional proteins from inclusion bodies, elimination of lipopolysaccharides (LPS) contamination, incomplete synthesis, degradation by proteases, and the lack of post-translational modifications, which becomes even more complex when comes to membrane proteins, because they are difficult not only to produce but also to keep in solution in its active state. T-cell Immunoglobulin and Mucin domain 3 (TIM-3) is a type I transmembrane protein that is predominantly expressed on the surface of T lymphocytes, natural killer (NK) cells, dendritic cells, and macrophages, playing a role as a negative immune checkpoint receptor. TIM-3 comprises a single ectodomain for interaction with immune system soluble and cellular components, a transmembrane domain, and a cytoplasmic tail, responsible for the binding of signaling and scaffolding molecules. TIM-3 pathway holds potential as a therapeutic target for immunotherapy against tumors, autoimmunity, chronic virus infections, and various malignancies, however, many aspects of the biology of this receptor are still incompletely understood, especially regarding its ligands. Methods: Here we overcome, for the first time, the challenge of the production of active immune checkpoint protein recovered from bacterial cytoplasmic inclusion bodies, being able to obtain an active, and non-glycosylated TIM-3 ectodomain (TIM-3-ECD), which can be used as a tool to better understand the interactions and roles of this immune checkpoint. The TIM-3 refolding was obtained by the association of high pressure and alkaline pH. Results: The purified TIM-3-ECD showed the correct secondary structure and was recognized from anti-TIM-3 structural-dependent antibodies likewise commercial TIM-3-ECD was produced by a mammal cells system. Furthermore, immunofluorescence showed the ability of TIM-3-ECD to bind to the surface of lung cancer A549 cells and to provide an additional boost for the expression of the lymphocyte activation marker CD69 in anti-CD3/CD28 activated human PBMC. Discussion: Taken together these results validated a methodology able to obtain active checkpoint proteins from bacterial inclusion bodies, which will be helpful to further investigate the interactions of this and others not yet explored immune checkpoints.

3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12997, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1528096

RESUMEN

Early and accurate diagnosis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation is crucial for the prognosis of patients. This study identified a potential biomarker for the severity of aGVHD after human leukocyte antigen (HLA)-haploidentical peripheral blood hematopoietic stem cell transplantation (haplo-PBSCT). We included 20 healthy subjects and 57 patients who underwent haplo-PBSCT. Of these patients, 22 developed aGVHD after haplo-PBSCT. The results showed that patients with aGVHD had significantly increased levels of Tim-3+/Perforin+/Granzyme B+CD8+ T cells, but significantly decreased Galectin-9. The differences in Galectin-9 and Tim-3+/Granzyme B+CD8+ T cells between grade I-II aGVHD and III-IV aGVHD were also significant. In vitro, the apoptosis of CD8+ T cells from aGVHD patients was significantly increased after Tim-3/Galectin-9 pathway activation, which decreased Granzyme B secretion. As revealed by univariate analysis, the level of Tim-3+CD8+ T cells was a risk factor for severe aGVHD. ROC analysis demonstrated that high levels of Tim-3+CD8+ T cells had a significant diagnostic value for severe aGVHD, with an area under the curve of 0.854 and cut-off value of 14.155%. In conclusion, the binding of Tim-3 with exogenous Galectin-9 can promote apoptosis of CD8+ T cells and affect the secretion of Granzyme B. Tim-3+CD8+ T cells have the potential to serve as immunological markers for assessing the severity of aGVHD after haplo-PBSCT and identifying patients at a higher risk for severe aGVHD.

4.
Front Bioeng Biotechnol, v. 11, jul. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5086

RESUMEN

Introduction: Microbial systems, such as Escherichia coli, as host recombinant expression is the most versatile and the cheapest system for protein production, however, several obstacles still remain, such as recovery of soluble and functional proteins from inclusion bodies, elimination of lipopolysaccharides (LPS) contamination, incomplete synthesis, degradation by proteases, and the lack of post-translational modifications, which becomes even more complex when comes to membrane proteins, because they are difficult not only to produce but also to keep in solution in its active state. T-cell Immunoglobulin and Mucin domain 3 (TIM-3) is a type I transmembrane protein that is predominantly expressed on the surface of T lymphocytes, natural killer (NK) cells, dendritic cells, and macrophages, playing a role as a negative immune checkpoint receptor. TIM-3 comprises a single ectodomain for interaction with immune system soluble and cellular components, a transmembrane domain, and a cytoplasmic tail, responsible for the binding of signaling and scaffolding molecules. TIM-3 pathway holds potential as a therapeutic target for immunotherapy against tumors, autoimmunity, chronic virus infections, and various malignancies, however, many aspects of the biology of this receptor are still incompletely understood, especially regarding its ligands. Methods: Here we overcome, for the first time, the challenge of the production of active immune checkpoint protein recovered from bacterial cytoplasmic inclusion bodies, being able to obtain an active, and non-glycosylated TIM-3 ectodomain (TIM-3-ECD), which can be used as a tool to better understand the interactions and roles of this immune checkpoint. The TIM-3 refolding was obtained by the association of high pressure and alkaline pH. Results: The purified TIM-3-ECD showed the correct secondary structure and was recognized from anti-TIM-3 structural-dependent antibodies likewise commercial TIM-3-ECD was produced by a mammal cells system. Furthermore, immunofluorescence showed the ability of TIM-3-ECD to bind to the surface of lung cancer A549 cells and to provide an additional boost for the expression of the lymphocyte activation marker CD69 in anti-CD3/CD28 activated human PBMC. Discussion: Taken together these results validated a methodology able to obtain active checkpoint proteins from bacterial inclusion bodies, which will be helpful to further investigate the interactions of this and others not yet explored immune checkpoints.

5.
No convencional en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4918
6.
Biology (Basel) ; 11(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36358310

RESUMEN

Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Immunotherapy for patients with ATC remains challenging. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. Consequently, the development of new therapies targeting immune checkpoints in TAMs is considered a promising therapeutic approach for ATC. We have previously shown that soluble factors secreted by ATC cells induced pro-tumor M2-like polarization of human monocytes by upregulating the levels of the inhibitory receptor TIM3. Here, we extended our observations on ATC-cell-induced xenograft tumors. We observed a large number of immune cells infiltrating the ATC xenograft tumors. Significantly, 24-28% of CD45+ immune cells were macrophages (CD11b+ F4/80+). We further showed that 40% of macrophages were polarized toward a M2-like phenotype, as assessed by CD206 expression and by a significant increase in the Arg1/iNOS (M2/M1) ratio. Additionally, we found that ATC xenograft tumors had levels of TIM3 expression when determined by RT-PCR and immunofluorescence assays. Interestingly, we detected the expression of TIM3 in macrophages in ATC tumors by flow cytometry assays. Furthermore, TIM3 expression correlated with macrophage marker expression in human ATC. Our studies show that TIM3 is a newly identified immune checkpoint in macrophages. Since TIM3 is known as a negative immune regulator, it should be considered as a promising immunotherapeutic target for ATC.

7.
Cancers (Basel) ; 13(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638305

RESUMEN

Anaplastic thyroid cancer (ATC) is a highly aggressive type of thyroid cancer (TC). Currently, no effective target treatments are available that can improve overall survival, with ATC representing a major clinical challenge because of its remarkable lethality. Tumor-associated macrophages (TAMs) are the most evident cells in ATCs, and their high density is correlated with a poor prognosis. However, the mechanisms of how TAMs promote ATC progression remain poorly characterized. Here, we demonstrated that the treatment of human monocytes (THP-1 cells) with ATC cell-derived conditioned media (CM) promoted macrophage polarization, showing high levels of M2 markers. Furthermore, we found that STAT3 was activated, and this was correlated with an increased expression and secretion of the inflammatory cytokine interleukin-6. Remarkably, the M2-like macrophages obtained revealed tumor-promoting activity. A cytokine array analysis demonstrated that M2-like macrophage-derived CM contained high levels of TIM3, which is an important immune regulatory molecule. Consistently, TIM3 expression was up-regulated in THP-1 cells cultured with ATC cell-derived CM. Moreover, TIM3 blockade significantly reversed the polarization of THP-1 cells induced by ATC cell-secreted soluble factors. We validated the clinical significance of the TIM3 in human TC by analyzing public datasets and found that the expression of TIM3 and its ligand galectin 9 was significantly higher in human TC tissue samples than in normal thyroid tissues. Taken together, our findings identified a new mechanism by which TIM3 induces tumor-promoting M2-like macrophage polarization in TC. Furthermore, TIM3 interference might be a potential tool for treatment of patients with ATC.

8.
Life (Basel) ; 11(6)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198803

RESUMEN

Immune reconstitution inflammatory syndrome (IRIS) is an exacerbated immune response that can occur to HIV+ patients after initiating antiretroviral therapy (ART). IRIS pathogenesis is unclear, but dysfunctional and exhausted cells have been reported in IRIS patients, and the TIM-3/Gal-9 axis has been associated with chronic phases of viral infection. This study aimed to evaluate the soluble levels of TIM-3 and Gal-9 and their relationship with IRIS development. TIM-3, Gal-9, TNF-α, IFN-γ, IL-6, TNFR1, TNFR2, E-cadherin, ADAM10, and ADAM17 were measured to search for IRIS-associated biomarkers in plasma samples from 0-, 4-, 8-, 12-, and 24-weeks after ART initiation of 61 HIV+ patients (15 patients developed IRIS, and 46 did not). We found that patients who developed IRIS had higher levels of TIM-3 [median 4806, IQR: 3206-6182] at the time of the IRIS events, compared to any other follow-up time evaluated in these patients or compared with a control group of patients who did not develop IRIS. Similarly, IRIS patients had a higher TNF-α level [median 10.89, IQR: 8.36-12.34] at IRIS events than any other follow-up time evaluated. Other molecules related to the TIM-3 and TNF-α pathway (Gal-9, IL-6, IFN-γ, TNFR1, TNFR2, ADAM-10, and ADAM-17) did not change during the IRIS events. In conclusion, our data suggest that a high level of soluble TIM-3 and TNF-α could be used as an IRIS biomarker.

9.
Cancer Immunol Immunother ; 68(10): 1585-1596, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31515670

RESUMEN

Patients with non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC) have shown benefit from anti-PD-1 therapies. However, not all patients experience tumor shrinkage, durable responses or prolonged survival, demonstrating the need to find response markers. In blood samples from NSCLC and RCC patients obtained before and after anti-PD-1 treatment, we studied leukocytes by complete blood cell count, lymphocyte subsets using flow cytometry and plasma concentration of nine soluble mediators, in order to find predictive biomarkers of response and to study changes produced after anti-PD-1 therapy. In baseline samples, discriminant analysis revealed a combination of four variables that helped differentiate stable disease-response (SD-R) from progressive disease (PD) patients: augmented frequency of central memory CD4+ T cells and leukocyte count was associated with response while increased percentage of PD-L1+ natural killer cells and naïve CD4+ T cells was associated with lack of response. After therapy, differential changes between responders and non-responders were found in leukocytes, T cells and TIM-3+ T cells. Patients with progressive disease showed an increase in the frequency of TIM-3 expressing CD4+ and CD8+ T cells, whereas SD-R patients showed a decrease in these subsets. Our findings indicate that a combination of immune variables from peripheral blood (PB) could be useful to distinguish response groups in NSCLC and RCC patients treated with anti-PD-1 therapy. Frequency of TIM-3+ T cells showed differential changes after treatment in PD vs SD-R patients, suggesting that it may be an interesting marker for monitoring progression during therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/inmunología , Anciano , Proteína C-Reactiva/análisis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Células Renales/inmunología , Femenino , Receptor 2 Celular del Virus de la Hepatitis A/sangre , Humanos , Neoplasias Renales/inmunología , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/inmunología , Masculino , Persona de Mediana Edad
10.
Expert Opin Ther Pat ; 29(8): 587-593, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31241380

RESUMEN

Introduction: TIM3 and PD-1 are checkpoint inhibitors in cancer that coordinate the downregulation of the proliferation of antigen-specific lymphocytes. There is a great need to discover and develop new therapies focused on inhibiting the action of TIM3 and PD-1 and consequently improving the immune response in the various types of cancer. The authors of patent EP3356411A1 propose several anti-TIM3/anti-PD-1 bispecific antibodies, as well as the method for producing them and their pharmacological application in the treatment of cancer. Areas covered: Patent EP3356411A1 describes a method by producing anti-TIM3/anti-PD-1 bispecific antibodies and their potential in cancer treatment. Expert opinion: Data supporting the patent demonstrate the ability by producing anti-TIM3/anti-PD-1 bispecific antibodies. Although the proposed methodology is very interesting and promising, further studies are necessary to assess the clinical applicability of the inventions on cancer.


Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Inmunoterapia/métodos , Neoplasias/terapia , Animales , Anticuerpos Biespecíficos/inmunología , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Neoplasias/inmunología , Patentes como Asunto , Receptor de Muerte Celular Programada 1/inmunología
11.
Clin Transl Oncol ; 19(9): 1079-1083, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28357631

RESUMEN

Evidences have suggested that immunotherapy for ovarian cancer is effective. Immune checkpoints have emerged in the field of cancer immunotherapy. Multiple studies have shown negative regulation of TIM-3 expression on CD4+ and CD8+ T cells and other immunocytes. Overexpression of TIM-3 in innate immune cells has been found in certain types of tumor. The blockade of TIM-3 leads to sustained anti-tumor reactions. TIM-3 plays an inhibitive role for immunity in ovarian cancer. TIM-3 is involved in the development of various subtypes of ovarian cancer and thus has the potential to be a therapeutic target for treatment of ovarian cancer.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Inmunoterapia/métodos , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Ováricas/inmunología , Animales , Carcinoma Epitelial de Ovario , Femenino , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo
12.
Cancer Immunol Immunother ; 66(6): 765-776, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28289860

RESUMEN

Malignant pleural effusions are frequent in patients with advanced stages of lung cancer and are commonly infiltrated by lymphocytes and tumor cells. CD8+ T cells from these effusions have reduced effector functions. The programmed death receptor 1(PD-1)/programmed death ligand 1 (PD-L1) pathway is involved in T-cell exhaustion, and it might be responsible for T-cell dysfunction in lung cancer patients. Here, we show that PD-L1 is expressed on tumor cell samples from malignant effusions, on lung cancer cell lines, and, interestingly, on MRC-5 lung fibroblasts. PD-L1 was up-regulated in lung cancer cell lines upon treatment with IFN-gamma, but not under hypoxic conditions, as detected by RT-qPCR and flow cytometry. Blockade of PD-L1 on tumor cells restored granzyme-B expression in allogenic CD8+ T cells in vitro. Remarkably, pleural effusion CD8+ T cells that responded to the tumor antigens MAGE-3A and WT-1 (identified as CD137+ cells) were lower in frequency than CMV pp65-responding CD8+ T cells and did not have an exhausted phenotype (PD-1+ TIM-3+). Nonetheless, tumor-responding CD8+ T cells had a memory phenotype and expressed higher levels of PD-1. A PD-L1 blocking antibody increased the expression of granzyme-B and perforin on polyclonal- and tumor-stimulated CD8+ T cells. Taken together, our data show that rather than being exhausted, tumor-responding CD8+ T cells are not completely differentiated into effector cells and are prone to negative regulation by PD-L1. Hence, our study provides evidence that lung cancer patients respond to immunotherapy due to blockade of the PD-L1/PD-1 pathway.


Asunto(s)
Adenocarcinoma/inmunología , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/inmunología , Neoplasias Pulmonares/inmunología , Mesotelioma/inmunología , Derrame Pleural/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Subgrupos de Linfocitos T/inmunología , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/patología , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , Mesotelioma/patología , Persona de Mediana Edad , Derrame Pleural/patología , Transducción de Señal
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;48(1): 77-82, 01/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-730432

RESUMEN

The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (rs=0.283, P=0.049) and serum albumin (rs=0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; rs=-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA