Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Curr Issues Mol Biol ; 46(8): 8088-8103, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39194695

RESUMEN

Transmembrane protein 106B (TMEM106B), which is a type II transmembrane protein, is believed to be involved in intracellular dynamics and morphogenesis in the lysosome. TMEM106B is known to be a risk factor for frontotemporal lobar degeneration and has been recently identified as the receptor needed for the entry of SARS-CoV-2, independently of angiotensin-converting enzyme 2 (ACE2). A missense mutation, p.Asp252Asn, of TMEM106B is associated with hypomyelinating leukodystrophy 16 (HLD16), which is an oligodendroglial cell-related white matter disorder causing thin myelin sheaths or myelin deficiency in the central nervous system (CNS). However, it remains to be elucidated how the mutated TMEM106B affects oligodendroglial cells. Here, we show that the TMEM106B mutant protein fails to exhibit lysosome distribution in the FBD-102b cell line, an oligodendroglial precursor cell line undergoing differentiation. In contrast, wild-type TMEM106B was indeed localized in the lysosome. Cells harboring wild-type TMEM106B differentiated into ones with widespread membranes, whereas cells harboring mutated TMEM106B failed to differentiate. It is of note that the output of signaling through the lysosome-resident mechanistic target of rapamycin (mTOR) was greatly decreased in cells harboring mutated TMEM106B. Furthermore, treatment with hesperetin, a citrus flavonoid known as an activator of mTOR signaling, restored the molecular and cellular phenotypes induced by the TMEM106B mutant protein. These findings suggest the potential pathological mechanisms underlying HLD16 and their amelioration.

2.
FASEB J ; 38(15): e23870, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39120151

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown. Here, we established tmem106bb-/- knockout (KO) zebrafish and showed that tmem106bb KO reduced the proliferation of HSPCs during definitive hematopoiesis. The differentiation potential of HSPCs to lymphoid lineage was reduced, whereas the myeloid and erythroid differentiation potentials of HPSCs were increased in tmem106bb-/- zebrafish. Similar results were obtained with morpholino knockdown of tmem106bb. Mechanistically, TMEM106B interacted with LAMP2A, the lysosomal associated membrane protein 2A, impaired LAMP2A-Cathepsin A interaction, and enhanced LAMP2A stability; tmem106bb KO or TMEM106B knockdown caused LAMP2A degradation and impairment of chaperone-mediated autophagy (CMA). Knockdown of lamp2a caused similar phenotypes to that in tmem106bb-/- zebrafish, and overexpression of lamp2a rescued the impaired phenotypes of HSPCs in tmem106bb-/- embryos. These results uncover a novel molecular mechanism for the maintenance of HSPC proliferation and differentiation through stabilizing LAMP2A via TMEM106B-LAMP2A interaction.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas de la Membrana , Pez Cebra , Animales , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Lisosomas/metabolismo , Humanos , Hematopoyesis/fisiología
3.
Mol Neurobiol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044012

RESUMEN

Parkinson's disease (PD) is closely related to iron accumulation and inflammation. Emerging evidence indicates that TMEM106B plays an essential role in PD. But whether TMEM106B could act on neuroinflammation and iron metabolism in PD has not yet been investigated. The aim of this study was to investigate the pathological mechanisms of inflammation and iron metabolism of TMEM106B in PD. 1-methyl-4-phenylpyridinium (MPP+)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced SH-SY5Y cells and mice were treated with LV-shTMEM106B and AAV-shTMEM106B to construct PD cellular and mouse models. Pole tests and open-field test (OFT) were performed to evaluate the locomotion of the mice. Immunohistochemistry and iron staining were used to detect TH expression and iron deposition in the SN. Iron staining was used to measure the levels of iron. Western blotting was used to detect the expression of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)), NOD-like receptor protein 3 (NLRP3) inflammasome, divalent metal transporter 1 (DMT1), and Ferroportin1 (FPN1)). Knockdown of TMEM106B improved motor ability and rescued dopaminergic (DA) neuron loss. TMEM106B knockdown attenuated the increases of TNF-α, IL-6, NLRP3 inflammasome, and DMT1 expression in the MPP+ and MPTP-induced PD models. Furthermore, TMEM106B knockdown also increases the expression of FPN1. This study provides the first evidence that knockdown of TMEM106B prevents dopaminergic neurodegeneration by modulating neuroinflammation and iron metabolism.

4.
Acta Neuropathol Commun ; 12(1): 99, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886865

RESUMEN

Filaments made of residues 120-254 of transmembrane protein 106B (TMEM106B) form in an age-dependent manner and can be extracted from the brains of neurologically normal individuals and those of subjects with a variety of neurodegenerative diseases. TMEM106B filament formation requires cleavage at residue 120 of the 274 amino acid protein; at present, it is not known if residues 255-274 form the fuzzy coat of TMEM106B filaments. Here we show that a second cleavage appears likely, based on staining with an antibody raised against residues 263-274 of TMEM106B. We also show that besides the brain TMEM106B inclusions form in dorsal root ganglia and spinal cord, where they were mostly found in non-neuronal cells. We confirm that in the brain, inclusions were most abundant in astrocytes. No inclusions were detected in heart, liver, spleen or hilar lymph nodes. Based on their staining with luminescent conjugated oligothiophenes, we confirm that TMEM106B inclusions are amyloids. By in situ immunoelectron microscopy, TMEM106B assemblies were often found in structures resembling endosomes and lysosomes.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Proteínas de la Membrana/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/metabolismo , Amiloide/metabolismo , Ganglios Espinales/metabolismo , Encéfalo/metabolismo , Masculino , Femenino , Sistema Nervioso Periférico/metabolismo , Anciano , Animales
5.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915598

RESUMEN

Genetic variation in the lysosomal and transmembrane protein 106B (TMEM106B) modifies risk for a diverse range of neurodegenerative disorders, especially frontotemporal lobar degeneration (FTLD) with progranulin (PGRN) haplo-insufficiency, although the molecular mechanisms involved are not yet understood. Through advances in cryo-electron microscopy (cryo-EM), homotypic aggregates of the C-Terminal domain of TMEM106B (TMEM CT) were discovered as a previously unidentified cytosolic proteinopathy in the brains of FTLD, Alzheimer's disease, progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB) patients. While it remains unknown what role TMEM CT aggregation plays in neuronal loss, its presence across a range of aging related dementia disorders indicates involvement in multi-proteinopathy driven neurodegeneration. To determine the TMEM CT aggregation propensity and neurodegenerative potential, we characterized a novel transgenic C. elegans model expressing the human TMEM CT fragment constituting the fibrillar core seen in FTLD cases. We found that pan-neuronal expression of human TMEM CT in C. elegans causes neuronal dysfunction as evidenced by behavioral analysis. Cytosolic aggregation of TMEM CT proteins accompanied the behavioral dysfunction driving neurodegeneration, as illustrated by loss of GABAergic neurons. To investigate the molecular mechanisms driving TMEM106B proteinopathy, we explored the impact of PGRN loss on the neurodegenerative effect of TMEM CT expression. To this end, we generated TMEM CT expressing C. elegans with loss of pgrn-1, the C. elegans ortholog of human PGRN. Neither full nor partial loss of pgrn-1 altered the motor phenotype of our TMEM CT model suggesting TMEM CT aggregation occurs downstream of PGRN loss of function. We also tested the ability of genetic suppressors of tauopathy to rescue TMEM CT pathology. We found that genetic knockout of spop-1, sut-2, and sut-6 resulted in weak to no rescue of proteinopathy phenotypes, indicating that the mechanistic drivers of TMEM106B proteinopathy may be distinct from tauopathy. Taken together, our data demonstrate that TMEM CT aggregation can kill neurons. Further, expression of TMEM CT in C. elegans neurons provides a useful model for the functional characterization of TMEM106B proteinopathy in neurodegenerative disease.

6.
Neuron ; 112(14): 2269-2288, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38834068

RESUMEN

Neurodegenerative diseases are commonly associated with the formation of aberrant protein aggregates within the brain, and ultrastructural analyses have revealed that the proteins within these inclusions often assemble into amyloid filaments. Cryoelectron microscopy (cryo-EM) has emerged as an effective method for determining the near-atomic structure of these disease-associated filamentous proteins, and the resulting structures have revolutionized the way we think about aberrant protein aggregation and propagation during disease progression. These structures have also revealed that individual fibril conformations may dictate different disease conditions, and this newfound knowledge has improved disease modeling in the lab and advanced the ongoing pursuit of clinical tools capable of distinguishing and targeting different pathogenic entities within living patients. In this review, we summarize some of the recently developed cryo-EM structures of ex vivo α-synuclein, tau, ß-amyloid (Aß), TAR DNA-binding protein 43 (TDP-43), and transmembrane protein 106B (TMEM106B) fibrils and discuss how these structures are being leveraged toward mechanistic research and therapeutic development.


Asunto(s)
Microscopía por Crioelectrón , Enfermedades Neurodegenerativas , Microscopía por Crioelectrón/métodos , Humanos , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/metabolismo , Amiloide/metabolismo , Amiloide/ultraestructura , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestructura , Proteínas tau/metabolismo , Proteínas tau/ultraestructura , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura
7.
Alzheimers Dement ; 20(7): 5071-5077, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38924247

RESUMEN

INTRODUCTION: Sequence variants in TMEM106B have been associated with an increased risk of developing dementia. METHODS: As part of our efforts to generate a set of mouse lines in which we replaced the mouse Tmem106b gene with a human TMEM106B gene comprised of either a risk or protective haplotype, we conducted an in-depth sequence analysis of these alleles. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge portal) and full genome sequences (1000 Genomes). RESULTS: We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. DISCUSSION: We conclude that this risk haplotype arose early in human development with a single Alu-insertion event within a unique haplotype context. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia. HIGHLIGHTS: We conducted an in-depth sequence analysis of (1) a risk and (2) a protective haplotype of the human TMEM106B gene. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge Portal) and full genome sequences (1000 Genomes). We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia.


Asunto(s)
Regiones no Traducidas 3' , Elementos Alu , Demencia , Haplotipos , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Demencia/genética , Humanos , Animales , Regiones no Traducidas 3'/genética , Ratones , Elementos Alu/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Predisposición Genética a la Enfermedad/genética , Ratones Transgénicos , Alelos , Mutagénesis Insercional
8.
Genes (Basel) ; 15(4)2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38674351

RESUMEN

The e4 allele of the apolipoprotein E gene is the strongest genetic risk factor for sporadic Alzheimer's disease. Nevertheless, how APOE is regulated is still elusive. In a trans-eQTL analysis, we found a genome-wide significant association between transmembrane protein 106B (TMEM106B) genetic variants and cortical APOE mRNA levels in human brains. The goal of this study is to determine whether TMEM106B is mis-regulated in Alzheimer's disease or in other neurodegenerative conditions. Available genomic, transcriptomic and proteomic data from human brains were downloaded from the Mayo Clinic Brain Bank and the Religious Orders Study and Memory and Aging Project. An in-house mouse model of the hippocampal deafferentation/reinnervation was achieved via a stereotaxic lesioning surgery to the entorhinal cortex, and mRNA levels were measured using RNAseq technology. In human temporal cortices, the mean TMEM106B expression was significantly higher in Alzheimer's disease compared to cognitively unimpaired individuals. In the mouse model, hippocampal Tmem106b reached maximum levels during the early phase of reinnervation. These results suggest an active response to tissue damage that is consistent with compensatory synaptic and terminal remodeling.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Humanos , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Apolipoproteínas E/genética , Masculino , Femenino , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Hipocampo/metabolismo , Anciano , Estudio de Asociación del Genoma Completo , Modelos Animales de Enfermedad
9.
Acta Neuropathol ; 147(1): 61, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526616

RESUMEN

TMEM106B is a risk modifier of multiple neurological conditions, where a single coding variant and multiple non-coding SNPs influence the balance between susceptibility and resilience. Two key questions that emerge from past work are whether the lone T185S coding variant contributes to protection, and if the presence of TMEM106B is helpful or harmful in the context of disease. Here, we address both questions while expanding the scope of TMEM106B study from TDP-43 to models of tauopathy. We generated knockout mice with constitutive deletion of TMEM106B, alongside knock-in mice encoding the T186S knock-in mutation (equivalent to the human T185S variant), and crossed both with a P301S transgenic tau model to study how these manipulations impacted disease phenotypes. We found that TMEM106B deletion accelerated cognitive decline, hind limb paralysis, tau pathology, and neurodegeneration. TMEM106B deletion also increased transcriptional correlation with human AD and the functional pathways enriched in KO:tau mice aligned with those of AD. In contrast, the coding variant protected against tau-associated cognitive decline, synaptic impairment, neurodegeneration, and paralysis without affecting tau pathology. Our findings reveal that TMEM106B is a critical safeguard against tau aggregation, and that loss of this protein has a profound effect on sequelae of tauopathy. Our study further demonstrates that the coding variant is functionally relevant and contributes to neuroprotection downstream of tau pathology to preserve cognitive function.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Tauopatías , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Parálisis/genética , Polimorfismo de Nucleótido Simple , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/patología
10.
Acta Neuropathol ; 147(1): 62, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526799

RESUMEN

TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Animales , Humanos , Ratones , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas tau/genética
11.
Alzheimers Dement ; 20(4): 3080-3087, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38343132

RESUMEN

INTRODUCTION: Genetic studies conducted over the past four decades have provided us with a detailed catalog of genes that play critical roles in the etiology of Alzheimer's disease (AD) and related dementias (ADRDs). Despite this progress, as a field we have had only limited success in incorporating this rich complexity of human AD/ADRD genetics findings into our animal models of these diseases. Our primary goal for the gene replacement (GR)-AD project is to develop mouse lines that model the genetics of AD/ADRD as closely as possible. METHODS: To do this, we are generating mouse lines in which the genes of interest are precisely and completely replaced in the mouse genome by their full human orthologs. RESULTS: Each model set consists of a control line with a wild-type human allele and variant lines that precisely match the human genomic sequence in the control line except for a high-impact pathogenic mutation or risk variant.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Mutación , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética
12.
Free Neuropathol ; 42023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093787

RESUMEN

TAR DNA binding protein 43 (TDP-43) pathology is a defining feature of frontotemporal lobar degeneration (FTLD). In FTLD-TDP there is a moderate-to-high burden of morphologically distinctive TDP-43 immunoreactive inclusions distributed throughout the brain. In Alzheimer's disease (AD), similar TDP-43 immunoreactive inclusions are observed. In AD, however, there is a unique phenomenon of neurofibrillary tangle-associated TDP-43 (TATs) whereby TDP-43 intermingles with neurofibrillary tangles. Little is known about the characteristics and distribution of TATs, or how burden and distribution of TATs compares to burden and distribution of other FTLD-TDP-like lesions observed in AD. Here we characterize molecular fragment characteristics, burden and distribution of TATs and assess how these features compare to features of other TDP-43 lesions. We performed TDP-43 immunohistochemistry with anti-phosphorylated, C- and N-terminal TDP-43 antibodies in 20 high-probability AD cases and semi-quantitative burden of seven inclusion types within five brain regions (entorhinal cortex, subiculum, CA1 and dentate gyrus of hippocampus, occipitotemporal cortex). Hierarchical cluster analysis was used to analyze the dataset that consisted of 75 different combinations of neuropathological features. TATs were nonspherical with heterogeneous staining patterns and present in all regions except hippocampal dentate. All three antibodies detected TATs although N-terminal antibody sensitivity was low. Three clusters were identified: Cluster-1 had mild-moderate TATs, moderate-frequent neuronal cytoplasmic inclusions, dystrophic neurites, neuronal intranuclear inclusions and fine neurites, and perivascular and granular inclusions identified only with the N-terminal antibody throughout the brain; Cluster-2 had scant TATs in limbic regions and Cluster-3 mild-moderate TATs and mild-moderate neuronal cytoplasmic inclusions and dystrophic neurites throughout the brain and moderate fine neurites. Only 17% of cluster 1 cases had the TMEM106b GG (protective) haplotype and 83% had hippocampal sclerosis. Both features differed across clusters (p=0.03 & p=0.01). TATs have molecular characteristics, distribution and burden, and genetic and pathologic associations like FTLD-TDP lesions.

13.
Front Neurosci ; 17: 1250547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937069

RESUMEN

Accumulation of TMEM106B fibrils composed of cleaved C-terminal fragments (CTF) of transmembrane protein 106B (TMEM106B) has recently been observed in the brains of elderly subjects and individuals with neurodegenerative diseases. To date, one antibody recognizing the residues 239-250 has been found to display immunoreactivity to the TMEM106B CTF, thereby defining TMEM106B C-terminal immunoreactive (TMEM-ir) material. Immunohistochemical characterization of the CTF using antibodies targeting different immunogens could further shed light on the attributes of TMEM-ir material and the biological relevance of TMEM106B fibril accumulation in vivo. Therefore, we generated and validated five polyclonal antibodies against distinct CTF immunogens, namely the residues 140-163, 164-187, 188-211, 239-250, and 253-274. The antibody recognizing the residues 239-250 (antibody no. 5: 239-250) was employed to identify cases positive for TMEM-ir material. Among the remaining four antibodies, antibody no. 3: 188-211 exhibited significant immunoreactivity in TMEM-ir material-positive cases. Comparative analyzes indicated that antibody no. 3: 188-211 and antibody no. 5: 239-250 likely recognized the same TMEM-ir material. The TMEM-ir material detected by antibody no. 3: 188-211 was observed across multiple brain cell types without co-localization with other pathogenic proteins. In conclusion, our findings suggest that the antibody recognizing the residues 188-211 displays immunohistochemical reactivity to TMEM-ir material. Therefore, in addition to the established antibody recognizing the residues 239-250, the antibody recognizing the residues 188-211 can potentially be used in immunohistochemical studies to further elucidate the significance of CTF accumulation in the brain.

14.
J Mol Biol ; 435(24): 168361, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949311

RESUMEN

Tauopathies, synucleinopathies, Aß amyloidosis, TDP-43 proteinopathies, and prion diseases- these neurodegenerative diseases have in common the formation of amyloid filaments rich in cross-ß sheets. Cryo-electron microscopy now permits the visualization of amyloid assemblies at atomic resolution, ushering a wide range of structural studies on several of these poorly understood amyloidogenic proteins. Amyloids are polymorphic with minor modulations in reaction environment affecting the overall architecture of their assembly, making amyloids an extremely challenging venture for structure-based therapeutic intervention. In 2017, the first cryo-EM structure of tau filaments from an Alzheimer's disease-affected brain established that in vitro assemblies might not necessarily reflect the native amyloid fold. Since then, brain-derived amyloid structures for several proteins across many neurodegenerative diseases have uncovered the disease-relevant amyloid folds. It has now been shown for tauopathies, synucleinopathies and TDP-43 proteinopathies, that distinct amyloid folds of the same protein might be related to different diseases. Salient features of each of these brain-derived folds are discussed in detail. It was also recently observed that seeded aggregation does not necessarily replicate the brain-derived structural fold. Owing to high throughput structure determination, some of these native amyloid folds have also been successfully replicated in vitro. In vitro replication of disease-relevant filaments will aid development of imaging ligands and defibrillating drugs. Towards this direction, recent high-resolution structures of tau filaments with positron emission tomography tracers and a defibrillating drug are also discussed. This review summarizes and celebrates the recent advancements in structural understanding of neuropathological amyloid filaments using cryo-EM.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Sinucleinopatías , Proteinopatías TDP-43 , Tauopatías , Humanos , Proteínas tau/metabolismo , Microscopía por Crioelectrón/métodos , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Proteínas Amiloidogénicas
15.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014238

RESUMEN

TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased disruption of the neuronal cytoskeleton, autophagy-lysosomal function, and lysosomal trafficking along the axon as well as enhanced gliosis compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.

16.
Front Neurosci ; 17: 1275959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901434

RESUMEN

The lysosomal protein TMEM106B was identified as a risk modifier of multiple dementias including frontotemporal dementia and Alzheimer's disease. The gene comes in two major haplotypes, one associated with disease risk, and by comparison, the other with resilience. Only one coding polymorphism distinguishes the two alleles, a threonine-to-serine substitution at residue 185 (186 in mouse), that is inherited in disequilibrium with multiple non-coding variants. Transcriptional studies suggest synaptic, neuronal, and cognitive preservation in human subjects with the protective haplotype, while murine in vitro studies reveal dramatic effects of TMEM106B deletion on neuronal development. Despite this foundation, the field has not yet resolved whether coding variant is biologically meaningful, and if so, whether it has any specific effect on neuronal phenotypes. Here we studied how loss of TMEM106B or expression of the lone coding variant in isolation affected transcriptional signatures in the mature brain and neuronal structure during development in primary neurons. Homozygous expression of the TMEM106B T186S variant in knock-in mice increased cortical expression of genes associated with excitatory synaptic function and axon outgrowth, and promoted neurite branching, dendritic spine density, and synaptic density in primary hippocampal neurons. In contrast, constitutive TMEM106B deletion affected transcriptional signatures of myelination without altering neuronal development in vitro. Our findings show that the T186S variant is functionally relevant and may contribute to disease resilience during neurodevelopment.

17.
Trends Neurosci ; 46(12): 1025-1041, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827960

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Mutación , Autofagia , Proteína C9orf72/genética
18.
Mol Neurodegener ; 18(1): 63, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726834

RESUMEN

BACKGROUND: The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. METHODS: Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Fibrillar C-terminal TMEM106B fragments were isolated using sarkosyl fractionation and quantified by immunoblotting. RESULTS: Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. TMEM106B, a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with ageing was specific to carriers of the rs1990622-A allele in the TMEM106B gene that increases risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Rs1990622-A was also associated with higher TMEM106B fibril content. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. CONCLUSIONS: Our study demonstrates that TMEM106B protein abundance is increased with brain ageing in humans, establishes that dementia risk allele rs1990622-A predisposes to TMEM106B fibril formation in the hippocampus, and provides the first evidence that rs1990622-A affects brain lipid homeostasis, particularly myelin lipids. Our data suggests that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.


Asunto(s)
Enfermedad de Alzheimer , Vaina de Mielina , Humanos , Alelos , Proteoma , Proteómica , Citoesqueleto , Hipocampo , Envejecimiento , Homeostasis , Lípidos , Apolipoproteínas E , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso
19.
F1000Res ; 12: 308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545650

RESUMEN

Transmembrane protein 106B (TMEM106B), a protein that is localized to the lysosome, is genetically linked to many neurodegenerative diseases and forms fibrils in diseased brains. The reproducibility of TMEM106B research would be enhanced if the community had access to well-characterized anti-TMEM106B antibodies. In this study, we characterized six commercially available TMEM106B antibodies for their performance in Western blot, immunoprecipitation, and immunofluorescence, using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Reproducibilidad de los Resultados , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación
20.
Mol Neurodegener ; 18(1): 54, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563705

RESUMEN

BACKGROUND: Mutations of the gene TMEM106B are risk factors for diverse neurodegenerative diseases. Previous understanding of the underlying mechanism focused on the impairment of lysosome biogenesis caused by TMEM106B loss-of-function. However, mutations in TMEM106B increase its expression level, thus the molecular process linking these mutations to the apparent disruption in TMEM106B function remains mysterious. MAIN BODY: Recent new studies reported that TMEM106B proteins form intracellular amyloid filaments which universally exist in various neurodegenerative diseases, sometimes being the dominant form of protein aggregation. In light of these new findings, in this review we systematically examined previous efforts in understanding the function of TMEM106B in physiological and pathological conditions. We propose that TMEM106B aggregations could recruit normal TMEM106B proteins and interfere with their function. CONCLUSIONS: TMEM106B mutations could lead to lysosome dysfunction by promoting the aggregation of TMEM106B and reducing these aggregations may restore lysosomal function, providing a potential therapeutic target for various neurodegenerative diseases.


Asunto(s)
Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Mutación/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA