Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
DNA Res ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845356

RESUMEN

Micro-Tom is a cultivar of tomato (Solanum lycopersicum), which is known as a major crop and model plant in Solanaceae. Micro-Tom has phenotypic traits such as dwarfism, and substantial EMS-mutagenized lines have been reported. After Micro-Tom was generated in Florida, USA, it was distributed to research institutes worldwide and used as a genetic resource. In Japan, the Micro-Tom lines have been genetically fixed; currently three lines have been re-distributed from three institutes, but many phenotypes among the lines have been observed. We have determined the genome sequence de novo of the Micro-Tom KDRI line, one of the Micro-Tom lines distributed from Kazusa DNA Research Institute (KDRI) in Japan, and have built chromosome-scale pseudomolecules. Genotypes among six Micro-Tom lines, including three in Japan, one in the United States, one in France, and one in Brazil showed phenotypic alternation. Here, we unveiled the swift emergence of genetic diversity in both phenotypes and genotypes within the Micro-Tom genome sequence during its propagation. These findings offer valuable insights crucial for the management of bioresources.

3.
Heliyon ; 10(9): e30693, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756573

RESUMEN

Individuals with schizophrenia have difficulty attributing mental states to themselves and to others - Theory of Mind (ToM). ToM is a complex, multifaceted theoretical construct comprising first and second order, first and third person, egocentric and allocentric perspective, and cognitive and affective ToM. Most studies addressing ToM deficit in people with schizophrenia consider it an "all-or-nothing" ability and use a classical statistical methodology to test a null hypothesis. With the present study, we investigated ToM in individuals with schizophrenia, considering its complex nature and degrees of impairment. To do this, we used a machine-learning approach to detect patterns in heterogeneous and multivariate data. Our findings highlight the complex nature of ToM deficit in individuals with schizophrenia and reveal the relationship between various different aspects of ToM.

4.
Phytother Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761036

RESUMEN

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

5.
J Inherit Metab Dis ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790152

RESUMEN

Mitochondria carry out essential functions for the cell, including energy production, various biosynthesis pathways, formation of co-factors and cellular signalling in apoptosis and inflammation. The functionality of mitochondria requires the import of about 900-1300 proteins from the cytosol in baker's yeast Saccharomyces cerevisiae and human cells, respectively. The vast majority of these proteins pass the outer membrane in a largely unfolded state through the translocase of the outer mitochondrial membrane (TOM) complex. Subsequently, specific protein translocases sort the precursor proteins into the outer and inner membranes, the intermembrane space and matrix. Premature folding of mitochondrial precursor proteins, defects in the mitochondrial protein translocases or a reduction of the membrane potential across the inner mitochondrial membrane can cause stalling of precursors at the protein import apparatus. Consequently, the translocon is clogged and non-imported precursor proteins accumulate in the cell, which in turn leads to proteotoxic stress and eventually cell death. To prevent such stress situations, quality control mechanisms remove non-imported precursor proteins from the TOM channel. The highly conserved ubiquitin-proteasome system of the cytosol plays a critical role in this process. Thus, the surveillance of protein import via the TOM complex involves the coordinated activity of mitochondria-localized and cytosolic proteins to prevent proteotoxic stress in the cell.

6.
Redox Rep ; 29(1): 2354625, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38794801

RESUMEN

Deficiency of TOM5, a mitochondrial protein, causes organizing pneumonia (OP) in mice. The clinical significance and mechanisms of TOM5 in the pathogenesis of OP remain elusive. We demonstrated that TOM5 was significantly increased in the lung tissues of OP patients, which was positively correlated with the collagen deposition. In a bleomycin-induced murine model of chronic OP, increased TOM5 was in line with lung fibrosis. In vitro, TOM5 regulated the mitochondrial membrane potential in alveolar epithelial cells. TOM5 reduced the proportion of early apoptotic cells and promoted cell proliferation. Our study shed light on the roles of TOM5 in OP.


Asunto(s)
Células Epiteliales Alveolares , Potencial de la Membrana Mitocondrial , Animales , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Ratones , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Masculino , Apoptosis , Femenino , Proliferación Celular , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neumonía en Organización Criptogénica/patología , Neumonía en Organización Criptogénica/metabolismo , Neumonía Organizada
7.
Biochem Soc Trans ; 52(2): 911-922, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629718

RESUMEN

To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas , Microscopía por Crioelectrón/métodos , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Modelos Moleculares , Conformación Proteica , Animales
8.
Methods Mol Biol ; 2778: 201-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478280

RESUMEN

Mitochondrial ß-barrel proteins fulfill crucial roles in the biogenesis and function of the cell organelle. They mediate the import and membrane insertion of proteins and transport of small metabolites and ions. All ß-barrel proteins are made as precursors on cytosolic ribosomes and are imported into mitochondria. The ß-barrel proteins fold and assemble with partner proteins in the outer membrane. The in vitro import of radiolabelled proteins into isolated mitochondria is a powerful tool to investigate the import of ß-barrel proteins, the folding of the ß-barrel proteins, and their assembly into protein complexes. Altogether, the in vitro import assay is a versatile and crucial assay to analyze the mechanisms of the biogenesis of mitochondrial ß-barrel proteins.


Asunto(s)
Proteínas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Transporte de Proteínas , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
9.
Methods Mol Biol ; 2778: 221-236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478281

RESUMEN

Total interference reflection fluorescence (TIRF) microscopy of lipid bilayers is an effective technique for studying the lateral movement and ion channel activity of single integral membrane proteins. Here we describe how to integrate the mitochondrial outer membrane preprotein translocase TOM-CC and its ß-barrel protein-conducting channel Tom40 into supported lipid bilayers to identify possible relationships between movement and channel activity. We propose that our approach can be readily applied to membrane protein channels where transient tethering to either membrane-proximal or intramembrane structures is accompanied by a change in channel permeation.


Asunto(s)
Proteínas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Canales Iónicos/metabolismo
10.
Phytomedicine ; 128: 155547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547615

RESUMEN

BACKGROUND: Emerging evidence suggests that pyroptosis, a form of programmed cell death, has been implicated in cancer progression. The involvement of specific proteins in pyroptosis is an area of growing interest. TOM20, an outer mitochondrial membrane protein, has recently garnered attention for its potential role in pyroptosis. Our previous study found that NBT could induce pyroptosis by ROS/JNK pathway in esophageal cancer cells. PURPOSE: This study aims to investigate whether NBT induces pyroptosis and verify whether such effects are involved in up-regulation of TOM20 in esophageal cancer cells. METHODS: The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) was used to analyze the clinical significance of GSDME in esophageal cancer. MTT assay, morphological observation and Western blot were performed to verify the roles of TOM20 and BAX in NBT-induced pyroptosis after CRISPR-Cas9-mediated knockout. Immunofluorescence was used to determine the subcellular locations of BAX and cytochrome c. MitoSOX Red was employed to assess the mitochondrial reactive oxygen species (ROS) level. KYSE450 and TOM20 knockout KYSE450-/- xenograft models were established to elucidate the mechanisms involved in NBT-induced cell death. RESULTS: In this study, NBT effectively upregulated the expression of TOM20 and facilitated the translocation of BAX to mitochondria, which promoted the release of cytochrome c from mitochondria to the cytoplasm, leading to the activation of caspase-9 and caspase-3, and finally induced pyroptosis. Knocking out TOM20 by CRISPR-Cas9 significantly inhibited the expression of BAX and the downstream BAX/caspase-3/GSDME pathway, which attenuated NBT-induced pyroptosis. The elevated mitochondrial ROS level was observed after NBT treatment. Remarkably, the inhibition of ROS by N-acetylcysteine (NAC) effectively suppressed the activation of TOM20/BAX pathway. Moreover, in vivo experiments demonstrated that NBT exhibited potent antitumor effects in both KYSE450 and TOM20 knockout KYSE450-/- xenograft models. Notably, the attenuated antitumor effects and reduced cleavage of GSDME were observed in the TOM20 knockout model. CONCLUSION: These findings reveal that NBT induces pyroptosis through ROS/TOM20/BAX/GSDME pathway, which highlight the therapeutic potential of targeting TOM20 and GSDME, providing promising prospects for the development of innovative and effective treatment approaches for esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Gasderminas , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Piroptosis , Especies Reactivas de Oxígeno , Transducción de Señal , Proteína X Asociada a bcl-2 , Animales , Humanos , Masculino , Ratones , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
J Integr Plant Biol ; 66(5): 1007-1023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501483

RESUMEN

In plants, thousands of nucleus-encoded proteins translated in the cytosol are sorted to chloroplasts and mitochondria by binding to specific receptors of the TOC (translocon on the outer chloroplast membrane) and the TOM (translocon on the outer mitochondrial membrane) complexes for import into those organelles. The degradation pathways for these receptors are unclear. Here, we discovered a converged ubiquitin-proteasome pathway for the degradation of Arabidopsis thaliana TOC and TOM tail-anchored receptors. The receptors are ubiquitinated by E3 ligase(s) and pulled from the outer membranes by the AAA+ adenosine triphosphatase CDC48, after which a previously uncharacterized cytosolic protein, transmembrane domain (TMD)-binding protein for tail-anchored outer membrane proteins (TTOP), binds to the exposed TMDs at the C termini of the receptors and CDC48, and delivers these complexes to the 26S proteasome.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ubiquitina/metabolismo , Proteolisis , Proteína que Contiene Valosina/metabolismo
12.
Res Sq ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38464024

RESUMEN

Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels. Cultured neurons expressing α-Syn mutants, with or without a mitochondria-targeting signal (MTS) underscore the role of α-Syn's mitochondrial localization in inducing TOM40 degradation. Parkinson's Disease related etiological factors, such as 6-hydroxy dopamine or ROS/metal ions stress, which promote α-Syn oligomerization, exacerbate TOM40 depletion in PD patient-derived cells with SNCA gene triplication. Although α-Syn interacts with both TOM40 and TOM20 in the outer mitochondrial membrane, degradation is selective for TOM40, which occurs via the ubiquitin-proteasome system (UPS) pathway. Our comprehensive analyses using Seahorse technology, mitochondrial DNA sequencing, and damage assessments, demonstrate that mutant α-Syn-induced TOM40 loss results in mitochondrial dysfunction, characterized by reduced membrane potential, accumulation of mtDNA damage, deletion/insertion mutations, and altered oxygen consumption rates. Notably, ectopic supplementation of TOM40 or reducing pathological forms of α-Syn using ADP-ribosylation inhibitors ameliorate these mitochondrial defects, suggesting potential therapeutic avenues. In conclusion, our findings provide crucial mechanistic insights into how α-Syn accumulation leads to TOM40 degradation and mitochondrial dysfunction, offering insights for targeted interventions to alleviate mitochondrial defects in PD.

13.
Front Plant Sci ; 15: 1325365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439987

RESUMEN

Chemical priming has emerged as a promising area in agricultural research. Our previous studies have demonstrated that pretreatment with a low concentration of ethanol enhances abiotic stress tolerance in Arabidopsis and cassava. Here, we show that ethanol treatment induces heat stress tolerance in tomato (Solanum lycopersicon L.) plants. Seedlings of the tomato cultivar 'Micro-Tom' were pretreated with ethanol solution and then subjected to heat stress. The survival rates of the ethanol-pretreated plants were significantly higher than those of the water-treated control plants. Similarly, the fruit numbers of the ethanol-pretreated plants were greater than those of the water-treated ones. Transcriptome analysis identified sets of genes that were differentially expressed in shoots and roots of seedlings and in mature green fruits of ethanol-pretreated plants compared with those in water-treated plants. Gene ontology analysis using these genes showed that stress-related gene ontology terms were found in the set of ethanol-induced genes. Metabolome analysis revealed that the contents of a wide range of metabolites differed between water- and ethanol-treated samples. They included sugars such as trehalose, sucrose, glucose, and fructose. From our results, we speculate that ethanol-induced heat stress tolerance in tomato is mainly the result of increased expression of stress-related genes encoding late embryogenesis abundant (LEA) proteins, reactive oxygen species (ROS) elimination enzymes, and activated gluconeogenesis. Our results will be useful for establishing ethanol-based chemical priming technology to reduce heat stress damage in crops, especially in Solanaceae.

14.
Autism Res ; 17(4): 702-715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456581

RESUMEN

Autistic individuals can experience difficulties with attention reorienting and Theory of Mind (ToM), which are closely associated with anterior and posterior subdivisions of the right temporoparietal junction. While the link between these processes remains unclear, it is likely subserved by a dynamic crosstalk between these two subdivisions. We, therefore, examined the dynamic functional connectivity (dFC) between the anterior and posterior temporoparietal junction, as a biological marker of attention and ToM, to test its contribution to the manifestation of autistic trait expression in Autism Spectrum Condition (ASC). Two studies were conducted, exploratory (14 ASC, 15 TD) and replication (29 ASC, 29 TD), using resting-state fMRI data and the Social Responsiveness Scale (SRS) from the Autism Brain Imaging Data Exchange repository. Dynamic Independent Component Analysis was performed in both datasets using the CONN toolbox. An additional sliding-window analysis was performed in the replication study to explore different connectivity states (from highly negatively to highly positively correlated). Dynamic FC was reduced in ASC compared to TD adults in both the exploratory and replication datasets and was associated with increased SRS scores (especially in ASC). Regression analyses revealed that decreased SRS autistic expression was predicted by engagement of highly negatively correlated states, while engagement of highly positively correlated states predicted increased expression. These findings provided consistent evidence that the difficulties observed in ASC are associated with altered patterns of dFC between brain regions subserving attention reorienting and ToM processes and may serve as a biomarker of autistic trait expression.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adulto , Humanos , Masculino , Trastorno Autístico/diagnóstico por imagen , Mapeo Encefálico , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
15.
Int J Neurosci ; : 1-5, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38441493

RESUMEN

Although impairments in social cognition are a core feature in schizophrenia, the relationship between its subcomponents is less clear. Nineteen schizophrenia patients and 20 matched healthy controls were tested for emotion recognition, and for the cognitive and affective subcomponents of empathy and theory of mind (ToM). Patients scored significantly worse than controls on cognitive empathy and both subcomponents of ToM. Group differences disappeared for cognitive empathy and affective ToM when emotion recognition was included as a covariate. Our results indicate that emotion recognition is an important factor involved in the deficits on higher levels of social cognition in schizophrenia.

16.
Cell Rep ; 43(3): 113805, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38377000

RESUMEN

The majority of mitochondrial precursor proteins are imported through the Tom40 ß-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for ß-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.


Asunto(s)
Proteínas de Transporte de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Transporte de Proteínas
17.
Biol Methods Protoc ; 9(1): bpae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414647

RESUMEN

Protoplast regeneration has become a key platform for genetic and genome engineering. However, we lack reliable and reproducible methods for efficient protoplast regeneration for tomato (Solanum lycopersicum) cultivars. Here, we optimized cell and tissue culture methods for protoplast isolation, microcallus proliferation, shoot regeneration, and plantlet establishment of the tomato cultivar Micro-Tom. A thin layer of alginate was applied to protoplasts isolated from third to fourth true leaves and cultured at an optimal density of 1 × 105 protoplasts/ml. We determined the optimal culture media for protoplast proliferation, callus formation, de novo shoot regeneration, and root regeneration. Regenerated plantlets exhibited morphologically normal growth and sexual reproduction. The entire regeneration process, from protoplasts to flowering plants, was accomplished within 5 months. The optimized protoplast regeneration platform enables biotechnological applications, such as genome engineering, as well as basic research on plant regeneration in Solanaceae species.

18.
J Intell ; 12(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38392168

RESUMEN

The aim of the present study was to examine how a person with amnestic mild cognitive impairment perceives the phenomenon of deception. Amnestic mild cognitive impairment (aMCI) usually represents the prodromal phase of Alzheimer's disease (AD), with patients showing memory impairment but with normal activities of daily living. It was expected that aMCI patients would face difficulties in the attribution and interpretation of deceptive behavior due to deficits regarding their diagnosis. The main sample of the study consisted of 76 older adults who were patients of a daycare center diagnosed with aMCI. A sample of 55 highly educated young adults was also examined in the same experiment to qualitatively compare their performance with that of aMCI patients. Participants were assigned a scenario where a hypothetical partner (either a friend or a stranger) was engaged in a task in which the partner could lie to boost their earnings at the expense of the participant. The results showed that aMCI patients, even if they understood that something was going wrong, did not invest in interpretations of potential deception and tended to avoid searching for confirmative information related to the hypothetical lie of their partner compared to highly educated young adults. It seems that aMCI patients become somehow "innocent", and this is discussed in terms of cognitive impairment and/or socioemotional selectivity.

19.
Brain Struct Funct ; 229(3): 657-680, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305874

RESUMEN

The cingulate cortex is a limbic structure involved in multiple functions, including emotional processing, pain, cognition, memory, and spatial orientation. The main goal of this structural Magnetic Resonance Imaging (MRI) study was to investigate whether age affects the cingulate cortex uniformly across its anteroposterior dimensions and determine if the effects of age differ based on sex, hemisphere, and regional cingulate anatomy, in a large cohort of healthy individuals across the adult lifespan. The second objective aimed to explore whether the decline in emotional recognition accuracy and Theory of Mind (ToM) is linked to the potential age-related reductions in the pregenual anterior cingulate (ACC) and anterior midcingulate (MCC) cortices. We recruited 126 healthy participants (18-85 years) for this study. MRI datasets were acquired on a 4.7 T system. The cingulate cortex was manually segmented into the pregenual ACC, anterior MCC, posterior MCC, and posterior cingulate cortex (PCC). We observed negative relationships between the presence and length of the superior cingulate gyrus and bilateral volumes of pregenual ACC and anterior MCC. Age showed negative effects on the volume of all cingulate cortical subregions bilaterally except for the right anterior MCC. Most of the associations between age and the cingulate subregional volumes were linear. We did not find a significant effect of sex on cingulate cortical volumes. However, stronger effects of age were observed in men compared to women. This study also demonstrated that performance on an emotional recognition task was linked to pregenual ACC volume, whist the ToM capabilities were related to the size of pregenual ACC and anterior MCC. These results suggest that the cingulate cortex contributes to emotional recognition ability and ToM across the adult lifespan.


Asunto(s)
Giro del Cíngulo , Teoría de la Mente , Masculino , Adulto , Humanos , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/anatomía & histología , Cognición , Imagen por Resonancia Magnética/métodos , Envejecimiento
20.
Biomedicines ; 12(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275411

RESUMEN

VPS13A, also known as chorein, whose loss of function causes chorea-acanthocytosis (ChAc), is characterized by Huntington's-disease-like neurodegeneration and neuropsychiatric symptoms in addition to acanthocytosis in red blood cells. We previously reported that ChAc-model mice with a loss of chorein function exhibited male infertility, with asthenozoospermia and mitochondrial dysmorphology in the spermatozoa. Here, we report a novel aspect of chorein dysfunction in male fertility, particularly its role in spermatogenesis and mitochondrial integrity. An increase in anti-malondialdehyde antibody immunoreaction within the testes, predominantly observed at the advanced stages of sperm formation in chorein-deficient mice, suggests oxidative stress as a contributing factor to mitochondrial dysfunction and impaired sperm maturation. The chorein immunoreactivity in spermatids of wild-type mice accentuates its significance in sperm development. ChAc-model mice exhibit mitochondrial ultrastructural abnormalities, specifically during the late stages of sperm maturation, suggesting a critical timeframe for chorein's action in spermiogenesis. We observed an increase in TOM20 protein levels, indicative of disrupted mitochondrial import mechanisms. The concurrent decrease in metabolic enzymes such as IDH3A, LDHC, PGK2, and ACAT1 suggests a complex chorein-mediated metabolic network that is essential for sperm vitality. Additionally, heightened separation of cytoplasmic droplets from sperm highlights the potential membrane instability in chorein-deficient spermatozoa. Metabolomic profiling further suggests a compensatory metabolic shift, with elevated glycolytic and TCA-cycle substrates. Our findings suggest that chorein is involved in anti-ferroptosis and the maturation of mitochondrial morphology in the late stages of spermatogenesis, and its deficiency leads to asthenozoospermia characterized by membrane instability, abnormal cytosolic glycolysis, abnormal mitochondrial function, and a disrupted TCA cycle. Further analyses are required to unravel the molecular mechanisms that directly link these findings and to elucidate the role of chorein in spermatogenesis as well as its broader implications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...