Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Physiol Genomics ; 56(9): 634-647, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037434

RESUMEN

Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+ excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared with animals aged 6 mo, an increase in Mg2+ excretion was observed at 12 and 18 mo. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 mo of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. In addition, urinary Mg2+ excretion and the expression of renal magnesiotropic genes were unaltered in Oit3-/- mice. For animals aged 12 and 18 mo, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNA sequencing (RNA-Seq) data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods of life, although OIT3 is unlikely to affect renal Mg2+ handling.NEW & NOTEWORTHY Aging increased urinary magnesium (Mg2+) excretion in mice. We show here that variation in Oit3, a candidate gene for the locus associated with Mg2+ excretion in young mice, is unlikely to be involved as knockout of Oit3 did not affect Mg2+ excretion. Differences in the expression of the renal Mg2+ channel TRPM6 may contribute to the variation in urinary Mg2+ excretion in older mice.


Asunto(s)
Envejecimiento , Magnesio , Ratones Noqueados , Sitios de Carácter Cuantitativo , Canales Catiónicos TRPM , Animales , Magnesio/orina , Magnesio/metabolismo , Magnesio/sangre , Sitios de Carácter Cuantitativo/genética , Masculino , Femenino , Ratones , Envejecimiento/genética , Canales Catiónicos TRPM/genética , Riñón/metabolismo
3.
J Pediatr Genet ; 13(1): 35-42, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38567178

RESUMEN

HOMG1 (hypomagnesemia 1, intestinal) or hypomagnesemia with secondary hypocalcemia is a rare autosomal recessive disorder of magnesium metabolism, characterized by impaired magnesium absorption. This disorder may mimic other conditions presenting with neonatal seizures. Here, we report an infant diagnosed to have hypomagnesemia with secondary hypocalcemia due to novel variants in TRPM6 gene.

4.
Front Physiol ; 15: 1363708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638279

RESUMEN

Osteoporosis after bariatric surgery is an increasing health concern as the rate of bariatric surgery has risen. In animal studies mimicking bariatric procedures, bone disease, together with decreased serum levels of Ca2+, Mg2+ and the gastric hormone Ghrelin were described. Ghrelin regulates metabolism by binding to and activating the growth hormone secretagogue receptor (GHSR) which is also expressed in the kidney. As calcium and magnesium are key components of bone, we tested the hypothesis that Ghrelin-deficiency contributes to osteoporosis via reduced upregulation of the renal calcium channel TRPV5 and the heteromeric magnesium channel TRPM6/7. We expressed GHSR with TRPV5 or TRPM6/7 channel in HEK293 cells and treated them with purified Ghrelin. Whole-cell current density was analyzed by patch-clamp recording. Nephron-specific gene expression was performed by tubular microdissection followed by qPCR in wild-type (WT) mice, and immunofluorescent imaging of GHSR-eGFP mice. Tubular magnesium homeostasis was analyzed in GHSR-null and WT mice at baseline and after caloric restriction. After Ghrelin exposure, whole-cell current density did not change for TRPV5 but increased for TRPM6/7 in a dose-dependent fashion. Applying the Ghrelin-mimetic (D-Trp7, Ala8,D-Phe10)-α-MSH (6-11) amide without and with the GHSR antagonist (D-Lys3)-GHRP6, we confirmed the stimulatory role of Ghrelin towards TRPM6/7. As GHSR initiates downstream signaling via protein kinase A (PKA), we found that the PKA inhibitor H89 abrogated TRPM6/7 stimulation by Ghrelin. Similarly, transfected Gαs, but not the Gαs mutant Q227L, nor Gαi2, Gαq, or Gα13 upregulated TRPM6/7 current density. In microdissected TALs and DCTs similar levels of GHSR mRNA were detected. In contrast, TRPM6 mRNA was expressed in the DCT and also detected in the TAL at 25% expression compared to DCT. Immunofluorescent studies using reporter GHSR-eGFP mice showed a strong eGFP signal in the TAL but surprisingly displayed no eGFP signal in the DCT. In 3-, 6-, and 9-month-old GHSR-null and WT mice, baseline serum magnesium was not significantly different, but 24-h urinary magnesium excretion was elevated in 9-month-old GHSR-null mice. In calorically restricted GHSR-null mice, we detected excess urinary magnesium excretion and reduced serum magnesium levels compared to WT mice. The kidneys from calorically restricted WT mice showed upregulated gene expression of magnesiotropic genes Hnf1b, Cldn-16, Cldn-19, Fxyd-2b, and Parvalbumin compared to GHSR-null mice. Our in vitro studies show that Ghrelin stimulates TRPM6/7 via GHSR and Gαs-PKA signaling. The murine studies are consistent with Ghrelin-GHSR signaling inducing reduced urinary magnesium excretion, particularly in calorically restricted mice when Ghrelin levels are elevated. This effect may be mediated by Ghrelin-upregulation of TRPM6 in the TAL and/or upregulation of other magnesiotropic genes. We postulate that rising Ghrelin levels with hunger contribute to increased renal Mg2+ reabsorption to compensate for lack of enteral Mg2+ uptake.

5.
Cureus ; 16(3): e55856, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38590468

RESUMEN

Proton pump inhibitors (PPIs) are commonly used for many gastrointestinal issues, such as gastroesophageal reflux disease (GERD), peptic ulcer disease, and Zollinger-Ellison syndrome. Many patients are on life-long daily therapy with this class of medications. The adverse effects of long-term use of PPI have been studied, and over the last two decades, a link between hypomagnesemia and PPI has been established. In addition, other electrolyte derangements can also ensue, such as hypokalemia and hypocalcemia. Losses through the gastrointestinal or renal systems may also be responsible for this electrolyte disturbance. In this case, we present a "perfect storm" of a patient who, in addition to having ongoing gastrointestinal losses through an ostomy, had severe hypomagnesemia to less than 1 mg/dL compounded by PPI use. Through its unique mechanism of action on intestinal epithelial cells, PPI use in certain settings can potentially be catastrophic. Severe hypomagnesemia may manifest as tetany, convulsions, tremors, arrhythmias, or torsades de pointes.

6.
Am J Kidney Dis ; 83(6): 803-815, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38372687

RESUMEN

Magnesium is ubiquitous in nature. It sits at the origin of the food chain, occupying the center of chlorophyl in plants. In humans, magnesium is critical to diverse molecular and catalytic processes, including energy transfer and maintenance of the genome. Despite its abundance, hypomagnesemia is common and often goes undiagnosed. This is in spite of epidemiologic data linking low magnesium with chronic diseases including diabetes mellitus. Clinically significant hypermagnesemia is encountered less frequently, but the presentation may be dramatic. Advances in molecular biology and the elucidation of the genetic causes of magnesium disorders have enhanced our understanding of their pathophysiology. Treatment approaches are also changing. The repurposing of newer medications, such as sodium/glucose cotransporter 2 inhibitors, offers new therapeutic options. In this review we integrate knowledge in this rapidly evolving field to provide clinicians and trainees with a resource for approaching common clinical scenarios involving magnesium disorders.


Asunto(s)
Deficiencia de Magnesio , Magnesio , Humanos , Magnesio/sangre , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
7.
J Pediatr Endocrinol Metab ; 37(2): 184-188, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38084506

RESUMEN

OBJECTIVES: Hereditary hypomagnesemia with secondary hypocalcemia (HSH), which results from variations in the transient receptor potential melastatin 6 (TRPM6) genes, is a rare hereditary cause of extremely low serum magnesium levels. We describe an infant with triggered seizures due to hypomagnesemia and a novel mutation in TRPM6 gene was identified. CASE PRESENTATION: A 10-month-old boy presented with multidrug resistant seizures, and axial hypotonia due to severe hypomagnesemia. Electroencephalography and neuroimaging of the patient was normal. He had a favorable outcome with magnesium supplement. In this study, the patient underwent clinical exome sequencing (CES) which detected a novel homozygous variant in the TRPM6 gene: NM_017662.5: c.5571-3C>G. After replacing his magnesium orally, he was free from seizures and had an encouraging outcome at the twelfth-month follow-up. CONCLUSIONS: HSH often presents with developmental issues, treatment-resistant seizures, and increased neuromuscular excitability. Untreated hypomagnesemia can potentially be fatal and severely impair cognitive function. Clinical suspicion is essential for early diagnosis and treatment.


Asunto(s)
Hipocalcemia , Deficiencia de Magnesio/congénito , Canales Catiónicos TRPM , Masculino , Lactante , Humanos , Magnesio , Canales Catiónicos TRPM/genética , Hipocalcemia/complicaciones , Hipocalcemia/genética , Convulsiones/genética , Convulsiones/complicaciones , Mutación
8.
Mol Nutr Food Res ; 67(22): e2200835, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37759402

RESUMEN

SCOPE: Magnesium plays an important role in regulating glucose metabolism. The study attempts to explore association between magnesium status and single nucleotide polymorphisms (SNPs) of gene involved in magnesium absorption-transient receptor potential membrane melastatin 6 (TRPM6) and gestational diabetes mellitus (GDM) risk METHODS AND RESULTS: A nested case-control study including 170 GDM cases and matched 340 controls is conducted based on Tongji Birth Cohort. Dietary, serum, and urine magnesium are evaluated before the diagnosis of GDM. Compared to the lowest tertile, women in the highest tertile of serum magnesium are at a lower risk of GDM (adjusted odds ratio [aOR] 0.42, 95% confidence intervals [CI] 0.21-0.84). Serum magnesium is inversely associated with insulin and homeostatic model assessment of insulin resistance (ß = -0.05, p = 0.002; ß = -0.04, p = 0.001, respectively). The aOR for GDM in carriers of the CT or CC genotypes of TRPM6 rs2274924 compared with carriers of the TT genotype is 2.76 (95% CI 1.78-4.26). Dietary magnesium is positively associated with serum magnesium (ß = 0.02, p = 0.004), but not with GDM risk. CONCLUSION: Serum magnesium and the TRPM6 rs2274924 polymorphism are associated with the risk of GDM.


Asunto(s)
Diabetes Gestacional , Canales Catiónicos TRPM , Femenino , Humanos , Embarazo , Diabetes Gestacional/genética , Magnesio , Mujeres Embarazadas , Canales Catiónicos TRPM/genética , Estudios de Casos y Controles , Pueblos del Este de Asia , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
9.
Genes (Basel) ; 14(5)2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-37239476

RESUMEN

The implementation of array comparative genomic hybridisation (array-CGH) allows us to describe new microdeletion/microduplication syndromes which were previously not identified. 9q21.13 microdeletion syndrome is a genetic condition due to the loss of a critical genomic region of approximately 750kb and includes several genes, such as RORB and TRPM6. Here, we report a case of a 7-year-old boy affected by 9q21.13 microdeletion syndrome. He presents with global developmental delay, intellectual disability, autistic behaviour, seizures and facial dysmorphism. Moreover, he has severe myopia, which was previously reported in only another patient with 9q21.13 deletion, and brain anomalies which were never described before in 9q21.13 microdeletion syndrome. We also collect 17 patients from a literature search and 10 cases from DECIPHER database with a total number of 28 patients (including our case). In order to better investigate the four candidate genes RORB, TRPM6, PCSK5, and PRUNE2 for neurological phenotype, we make, for the first time, a classification in four groups of all the collected 28 patients. This classification is based both on the genomic position of the deletions included in the 9q21.3 locus deleted in our patient and on the different involvement of the four-candidate gene. In this way, we compare the clinical problems, the radiological findings, and the dysmorphic features of each group and of all the 28 patients in our article. Moreover, we perform the genotype-phenotype correlation of the 28 patients to better define the syndromic spectrum of 9q21.13 microdeletion syndrome. Finally, we propose a baseline ophthalmological and neurological monitoring of this syndrome.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Masculino , Niño , Discapacidades del Desarrollo/genética , Deleción Cromosómica , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Estudios de Asociación Genética
10.
CEN Case Rep ; 12(4): 413-418, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36967423

RESUMEN

TRPM6 is predominantly expressed in the kidney and colon and encodes a protein containing an ion channel domain and a protein kinase domain. It is crucial for magnesium homeostasis and plays important roles in epithelial magnesium transport and the active magnesium absorption. In this study, we present a 70-day-old Iranian female patient from consanguineous parents with hypomagnesemia and secondary hypocalcemia. She presented with seizures 19 days after birth and refractory watery non-bloody diarrhea. She consequently had failure to thrive. Other features included hypotonia, wide anterior fontanel, ventriculomegaly, and pseudotumor cerebri following administration of nalidixic acid. She had severe hypomagnesemia and hypocalcemia which were treated with magnesium and calcium supplementation. Despite initial unstable response to supplemental magnesium, she eventually improved and the diarrhea discontinued. The patient was discharged by magnesium and calcium therapy. At the last follow-up at age 2.5 years, the patient remained well without any recurrence or complication. Genetic testing by whole-exome sequencing revealed a novel homozygous frameshift insertion-deletion (indel) variant in exon 26 of the TRPM6 gene, c.3693-3699del GCAAGAG ins CTGCTGTTGACATCTGCT, p.L1231Ffs*36. Segregation analysis revealed the TRPM6 heterozygous variant in both parents. Patients with biallelic TRPM6 pathogenic variants typically exhibit hypomagnesemia with secondary hypocalcemia and present with neurologic manifestations including seizures. In some patients, this is also complicated by chronic diarrhea and failure to thrive. Long-term complications are rare and most of the patients show a good prognosis with supplemental magnesium therapy.


Asunto(s)
Hipocalcemia , Canales Catiónicos TRPM , Femenino , Humanos , Calcio , Diarrea/etiología , Diarrea/complicaciones , Insuficiencia de Crecimiento/etiología , Hipocalcemia/diagnóstico , Hipocalcemia/genética , Irán , Magnesio , Convulsiones/complicaciones , Canales Catiónicos TRPM/genética , Anciano
11.
J Dent Sci ; 18(1): 382-391, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36643266

RESUMEN

Background/purpose: Transient receptor potential melastatin (TRPM) channel is involved in cell proliferation and cell survival. Eight members (TRPM1-8) are within the TRPM subfamily. The current study is aimed to investigate TRPM6 expression in human oral carcinogenesis. Materials and methods: Sixty-six oral squamous cell carcinomas (OSCCs), 47 oral potentially malignant disorders (OPMD) with moderate-severe epithelial dysplasia (ED), 28 OPMD with mild ED, and 33 normal oral mucosa (NOM) samples were subjected to immunohistochemical staining. Two human oral cancer cell lines (OCCLs), an oral premalignant cell line (DOK), and a normal oral keratinocyte culture (HOK) were used for Western blot analysis. OCCLs were evaluated for proliferation, migration, invasion assays, and intracellular calcium concentration. Results: TRPM6 protein expression in OSCC was significantly increased as compared with normal samples. Protein expression of TRPM6 in OCCLs was significantly higher as compared with HOK. Significant decreases in degrees of proliferation, migration, invasion, and intracellular calcium concentration were noted in OCCLs with TRPM6 siRNA transfection as compared with those without transfection. Significantly increased TRPM6 protein level was noted in OPMD with moderate-severe ED as compared with those with mild ED. Conclusion: Our results implicate that TRPM6 overexpression is potentially related to human oral carcinogenesis.

12.
Nephrol Dial Transplant ; 38(3): 679-690, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35561741

RESUMEN

BACKGROUND: Hypomagnesaemia with secondary hypocal-caemia (HSH) is a rare autosomal recessive disorder caused by pathogenic variants in TRPM6, encoding the channel-kinase transient receptor potential melastatin type 6. Patients have very low serum magnesium (Mg2+) levels and suffer from muscle cramps and seizures. Despite genetic testing, a subgroup of HSH patients remains without a diagnosis. METHODS: In this study, two families with an HSH phenotype but negative for TRPM6 pathogenic variants were subjected to whole exome sequencing. Using a complementary combination of biochemical and functional analyses in overexpression systems and patient-derived fibroblasts, the effect of the TRPM7-identified variants on Mg2+ transport was examined. RESULTS: For the first time, variants in TRPM7 were identified in two families as a potential cause for hereditary HSH. Patients suffer from seizures and muscle cramps due to magnesium deficiency and episodes of hypocalcaemia. In the first family, a splice site variant caused the incorporation of intron 1 sequences into the TRPM7 messenger RNA and generated a premature stop codon. As a consequence, patient-derived fibroblasts exhibit decreased cell growth. In the second family, a heterozygous missense variant in the pore domain resulted in decreased TRPM7 channel activity. CONCLUSIONS: We establish TRPM7 as a prime candidate gene for autosomal dominant hypomagnesaemia and secondary hypocalcaemia. Screening of unresolved patients with hypocalcaemia and secondary hypocalcaemia may further establish TRPM7 pathogenic variants as a novel Mendelian disorder.


Asunto(s)
Hipocalcemia , Canales Catiónicos TRPM , Humanos , Magnesio , Canales Catiónicos TRPM/metabolismo , Calambre Muscular/complicaciones , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499188

RESUMEN

Magnesium-sensitive transient receptor potential melastatin (TRPM) ion channels, TRPM6 and TRPM7, are present in several organs, but their roles in the heart remain unclear. Therefore, here, we studied the expression patterns of TRPM6 and TRPM7 in normal and diseased myocardium. Cardiac atrial tissue and cardiomyocytes were obtained from healthy pigs and undiseased human hearts as well as from hearts of patients with ischemic heart disease (IHD) or atrial fibrillation (AF). Immunofluorescence and ELISA were used to detect TRP proteins. TRPM6 and TRPM7 immunofluorescence signals, localized at/near the cell surface or intracellularly, were detected in pig and human atrial tissues. The TRP channel modulators carvacrol (CAR, 100 µM) or 2-aminoethoxydiphenyl borate (2-APB, 500 µM) decreased the TRPM7 signal, but enhanced that of TRPM6. At a higher concentration (2 mM), 2-APB enhanced the signals of both proteins. TRPM6 and TRPM7 immunofluorescence signals and protein concentrations were increased in atrial cells and tissues from IHD or AF patients. TRPM6 and TRPM7 proteins were both detected in cardiac atrial tissue, with relatively similar subcellular localization, but distinctive drug sensitivity profiles. Their upregulated expression in IHD and AF suggests a possible role of the channels in cardiac atrial disease.


Asunto(s)
Fibrilación Atrial , Canales Catiónicos TRPM , Humanos , Porcinos , Animales , Fibrilación Atrial/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Magnesio/metabolismo , Membrana Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Front Oncol ; 12: 947899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110961

RESUMEN

Disruption of small intestinal Mg2+ absorption has been reported as the underlying mechanism of proton pump inhibitor-induced hypomagnesemia (PPIH); hence, this study evaluated the expression, localization, phosphorylation, and oxidation of transient receptor potential melastatin 6 (TRPM6) and TRPM7 in the small intestine of rats subjected to PPIH. The expression and localization of cyclin M4 (CNNM4) was also analyzed. We show that, compared to control rats, membrane expression of the TRPM6/7 heterodimer and TRPM7 was markedly lower in the duodenum and the jejunum of PPIH rats; in contrast, expression of membrane TRPM6 and CNNM4 was higher in these organs. Mass spectrometric analysis of TRPM6 demonstrated hyper-phosphorylation, especially T1851, and hyper-oxidation at M1755, both of which can suppress its channel permeability. Further, hypo-phosphorylation of S141 and the dimerization motif domain of TRPM6 in PPIH rats might be involved in lower TRPM6/7 heterodimer expression. Hypo-phosphorylation, especially at S138 and S1360 in TRPM7 from PPIH rats disrupted stability of TRPM7 at the cell membrane; hyper-oxidation of TRPM7 was also observed. These results help explain the mechanism underlying the disruption of small intestinal Mg2+ absorption in PPIH.

15.
Cell Calcium ; 106: 102640, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36030694

RESUMEN

The transient receptor potential cation channel, subfamily M, members 6 and 7 (TRPM6 and TRPM7) are homologous membrane proteins encompassing cation channel units fused to cytosolic serine/threonine-protein kinase domains. Clinical studies and experiments with animal disease models suggested that selective inhibition of TRPM6 and TRPM7 currents might be beneficial for subjects with immune and cardiovascular disorders, tumours and other pathologies, but the suitable pharmacological toolkit remains underdeveloped. The present study identified small synthetic molecules acting specifically on the channel moieties of TRPM6 and TRPM7. Using electrophysiological analysis in conjunction with Ca2+ imaging, we show that iloperidone and ifenprodil inhibit the channel activity of recombinant TRPM6 with IC50 values of 0.73 and 3.33 µM, respectively, without an impact on the TRPM7 channel. We also found that VER155008 suppresses the TRPM7 channel with an IC50 value of 0.11 µM but does not affect TRPM6. Finally, the effects of iloperidone and VER155008 were found to be suitable for blocking native endogenous TRPM6 and TRPM7 in a collection of mouse and human cell models. Hence, the identification of iloperidone, ifenprodil, and VER155008 allows for the first time to selectively manipulate TRPM6 and TRPM7 currents.


Asunto(s)
Canales Catiónicos TRPM , Animales , Humanos , Isoxazoles/farmacología , Magnesio/metabolismo , Ratones , Piperidinas/farmacología , Proteínas Serina-Treonina Quinasas , Nucleósidos de Purina/farmacología , Canales Catiónicos TRPM/efectos de los fármacos , Canales Catiónicos TRPM/metabolismo , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo
16.
Front Pediatr ; 10: 912524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903165

RESUMEN

Background: Hereditary hypomagnesemia with secondary hypocalcemia (HSH) is a rare autosomal recessive disease due to biallelic TRPM6 mutations. Although the reports of HSH caused by TRPM6 mutations are not very rare, the age of onset in previously reported HSH cases were <1 year. Methods: We collected and analyzed the clinical data of twin brothers with onset age over 1 year old and performed whole exome sequencing in the patients and their parents. Confirmed by Sanger sequencing, missense mutation was analyzed in silico. We also searched Pubmed, and extracted clinical data from case reports and case series with full text in English, reporting original data of patients with TRPM6 mutations. Results: The twin patients had canonical HSH phenotype with compound novel TRPM6 mutations, p.T87K and c.705dupT, inherited from their father and mother, respectively. T87 is a highly conserved site and T87K is predicted to cause hydrogen bond disruption. We identified 26 articles published between May 28, 2002 to December 31, 2021 which reported a total of 88 patients with TRPM6 mutation. We found that the most common clinical phenotypes were hypomagnesemia, hypocalcemia, and convulsions. However, the age of onset in HSH patients almost always occurred under 12 months old, the twin patients of our study were 18 and 26 months old at onset. Conclusion: We identified two novel TRPM6 mutations in a Chinses family with HSH, and showed that the age of onset with c.704c-c.705(exon7)insT and c.260(exon4)C>A mutation in TRPM6 was much later than other mutations and would be much less serious.

17.
Front Pediatr ; 10: 834241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692977

RESUMEN

Objective: Primary hypomagnesemia with secondary hypocalcemia (HSH) is caused by loss-of-function mutations in the TRPM6 gene encoding the epithelial magnesium channel. It is characterized by hypomagnesemia and secondary hypocalcemia associated with neurological symptoms. Here, we aimed to investigate the genetic defects of the TRPM6 gene found in a girl from China. Methods: The genomic DNA of the proband and the parents was extracted for whole-exome sequencing. Sanger sequencing was further performed to validate the candidate variants. Subsequently, the TRPM6 gene deletion was verified by quantitative PCR (qPCR) experiment. The effect of the variant on mRNA splicing was analyzed through a minigene splice assay and reverse transcription PCR (RT-PCR) in vitro. Results: The proband presented with the symptoms of generalized seizures, tetany, and muscle spasms, which were refractory to anticonvulsant treatment. Phenotypic data indicated that the patient had hypomagnesemia, poor parathyroid hormone response, and resultant hypocalcemia. The trio whole-exome sequencing identified that the proband carried compound heterozygous variants in the TRPM6 gene, a paternally derived exon 6 deletion, and a maternally derived splicing variant (c.1638+7T>C) in exon 14. The minigene splice assay confirmed that the c.1638+7T>C variant resulted in exon 14 skipping, which caused the alteration of TRPM6 mRNA splicing. Conclusion: Our results support that the compound heterozygous variants in TRPM6 are responsible for HSH in this patient. A novel pathogenic splicing variant (c.1638+7T>C) in the intron 14 disturbs the normal TRPM6 mRNA splicing, suggesting that the non-classical splice variant plays a critical role in HSH. This variant is essential for future effective genetic diagnosis.

18.
Clin Biochem ; 105-106: 1-15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35381264

RESUMEN

Magnesium is the fourth most abundant cation in the human body, essential for physiological processes and is the electrolyte with levels commonly deranged in critically ill patients. These derangements of magnesium imbalance can go unnoticed and result in poor clinical outcomes, requiring both worthy attention to abnormal values and accurate tools and methods to measure magnesium reliably. At present, clinical laboratories employ various methodologies for measuring magnesium in blood and urine. This review aims to address the role of magnesium from not only physiological and pathophysiological perspectives, but importantly to review the methods for measuring magnesium with relevant analytical considerations. Given the role of magnesium and drugs for various treatments, measuring magnesium has become more relevant as drugs can lead to magnesium imbalances. Clinical manifestations and etiology of magnesium imbalance as divided into hypomagnesemia and hypermagnesemia are also reviewed.


Asunto(s)
Deficiencia de Magnesio , Enfermedades Metabólicas , Enfermedad Crítica , Humanos , Magnesio
19.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35216094

RESUMEN

Farnesoid x receptor (FXR) is a nuclear bile acid receptor that belongs to the nuclear receptor superfamily. It plays an essential role in bile acid biosynthesis, lipid and glucose metabolism, liver regeneration, and vertical sleeve gastrectomy. A loss of the FXR gene or dysregulations of FXR-mediated gene expression are associated with the development of progressive familial intrahepatic cholestasis, tumorigenesis, inflammation, and diabetes mellitus. Magnesium ion (Mg2+) is essential for mammalian physiology. Over 600 enzymes are dependent on Mg2+ for their activity. Here, we show that the Trpm6 gene encoding a Mg2+ channel is a direct FXR target gene in the intestinal epithelial cells of mice. FXR expressed in the intestinal epithelial cells is absolutely required for sustaining a basal expression of intestinal Trpm6 that can be robustly induced by the treatment of GW4064, a synthetic FXR agonist. Analysis of FXR ChIP-seq data revealed that intron regions of Trpm6 contain two prominent FXR binding peaks. Among them, the proximal peak from the transcription start site contains a functional inverted repeat 1 (IR1) response element that directly binds to the FXR-RXRα heterodimer. Based on these results, we proposed that an intestinal FXR-TRPM6 axis may link a bile acid signaling to Mg2+ homeostasis.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/genética , Canales Catiónicos TRPM/genética , Transcripción Genética/genética , Animales , Secuencia de Bases , Ácidos y Sales Biliares/genética , Línea Celular Tumoral , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Intestinos/metabolismo , Intrones/genética , Magnesio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Elementos de Respuesta/genética , Sitio de Iniciación de la Transcripción/fisiología
20.
Semin Nephrol ; 42(6): 151347, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37086496

RESUMEN

Magnesium is crucial for various cellular and enzymatic processes, yet it often is overlooked or underappreciated. Hypomagnesemia, a deficiency of magnesium in the blood, is a frequent problem in cancer patients and can lead to severe symptoms and morbidity. In this review, we provide an in-depth analysis of the physiology and regulation of magnesium, and signs and symptoms of hypomagnesemia in cancer patients. We also examine the causes and mechanisms of magnesium imbalances in cancer patients, specifically focusing on cancer-specific therapies that can lead to hypomagnesemia. Finally, we provide updates on the management of hypomagnesemia, including oral and parenteral supplementation, as well as the role of drugs in cases that are resistant to treatment. This review aims to raise awareness among health care providers caring for cancer patients about the significance of monitoring magnesium levels in cancer patients and function as a guide. Future clinical studies should focus on magnesium monitoring, its impact on cancer progression, and its potential for preventing acute kidney injury.


Asunto(s)
Magnesio , Neoplasias , Humanos , Magnesio/uso terapéutico , Neoplasias/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA