Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Sci Rep ; 14(1): 17024, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043711

RESUMEN

Cetaceans represent a natural experiment within the tree of life in which a lineage changed from terrestrial to aquatic habitats. This shift involved phenotypic modifications, representing an opportunity to explore the genetic bases of phenotypic diversity. Among the different molecular systems that maintain cellular homeostasis, ion channels are crucial for the proper physiological functioning of all living species. This study aims to explore the evolution of ion channels during the evolutionary history of cetaceans. To do so, we created a bioinformatic pipeline to annotate the repertoire of ion channels in the genome of the species included in our sampling. Our main results show that cetaceans have, on average, fewer protein-coding genes and a higher percentage of annotated ion channels than non-cetacean mammals. Signals of positive selection were detected in ion channels related to the heart, locomotion, visual and neurological phenotypes. Interestingly, we predict that the NaV1.5 ion channel of most toothed whales (odontocetes) is sensitive to tetrodotoxin, similar to NaV1.7, given the presence of tyrosine instead of cysteine, in a specific position of the ion channel. Finally, the gene turnover rate of the cetacean crown group is more than three times faster than that of non-cetacean mammals.


Asunto(s)
Cetáceos , Evolución Molecular , Canales Iónicos , Animales , Cetáceos/genética , Cetáceos/fisiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Filogenia , Biología Computacional/métodos , Genoma
2.
Sci Rep ; 14(1): 16684, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085277

RESUMEN

Tetrodotoxin (TTX) is a potent neurotoxin that accumulates in Takifugu rubripes, commonly known as pufferfish, through the ingestion of TTX-bearing organisms as part of their food chain. Although researchers believe that pufferfish use TTX to relieve stress, data are not currently available on how TTX affects the gut microbiota of pufferfish. To address this gap, our study aimed to investigate whether administering TTX to fish could alter their gut microbiota and overall health under various salinity conditions, including 30.0 ppt, 8.5 ppt, and 1.7 ppt salinity, which represent full-strength, isosmotic, and low-salinity stress, respectively. We analyzed the effect of TTX ingestion on the community structure, core microbiome, and metabolic capabilities of the gut microbiome using high-throughput sequencing technologies. The predominant bacterial taxa within the gut microbiome were Firmicutes (21-85%), Campilobacterota (2.8-67%), Spirochaetota (0.5-14%), and Proteobacteria (0.7-9.8%), with Mycoplasma, uncultured Arcobacteraceae, Brevinema, Vibrio, Rubritalea, and uncultured Pirellulaceae as core genera. Our findings indicated that the impact of TTX on high-abundance genera at 30.0 ppt and 8.5 ppt salinity levels was negligible, indicating their stability and resilience to TTX ingestion. However, at 1.7 ppt, TTX-fed fish showed a significant increase in uncultured Arcobacteraceae. Furthermore, our analysis of TTX-fed fish revealed taxonomic alterations in low-abundance taxa, which altered the predicted functions of the gut microbiota at all salinity levels. These results suggest that TTX administration could cause subtle effects on the metabolic functions of gut microbial communities. Overall, our study provides insights into the complex relationship between a TTX-accumulating animal, T. rubripes, and its gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Takifugu , Tetrodotoxina , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Takifugu/metabolismo , Salinidad , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo
3.
Mar Biotechnol (NY) ; 26(4): 649-657, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861110

RESUMEN

Tetrodotoxin (TTX), a pufferfish toxin, is a highly potent neurotoxin that has been found in a wide variety of animals. The TTX-bearing flatworm Planocera multitentaculata possesses a large amount of TTX and is considered responsible for the toxification of TTX-bearing animals such as pufferfish (Takifugu and Chelonodon) and the toxic goby Yongeichthys criniger. However, the mechanism underlying TTX accumulation in flatworms remains unclear. Previous studies have been limited to identifying the distribution of TTX in multiple organs, such as the digestive organs, genital parts, and the remaining tissues of flatworms. Here, we performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and immunohistochemical staining using a monoclonal anti-TTX antibody to elucidate the detailed localization of TTX in the tissues and organs of the flatworm P. multitentaculata. Immunohistochemical staining for P. multitentaculata showed that TTX-specific signals were detected not only in the ovaries and pharynx but also in many other tissues and organs, whereas no signal was detected in the brain, Lang's vesicle, and genitalia. In addition, combined with LC-MS/MS analysis, it was revealed for the first time that TTX accumulates in high concentrations in the basement membrane and epidermis. These findings robustly support the hypotheses of "TTX utilization protection from predators."


Asunto(s)
Platelmintos , Espectrometría de Masas en Tándem , Tetrodotoxina , Animales , Tetrodotoxina/metabolismo , Tetrodotoxina/análisis , Cromatografía Liquida , Platelmintos/metabolismo , Femenino , Inmunohistoquímica , Distribución Tisular
4.
Toxicon ; 246: 107777, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38810888

RESUMEN

Pufferfish saxitoxin- and tetrodotoxin (TTX)-binding protein (PSTBP) is considered to transfer TTX between tissues. The immunohistochemical distribution of PSTBP-homolog (PSTBPh) and TTX in the brain and pituitary of hatchery-reared juvenile tiger puffer Takifugu rubripes was investigated. PSTBPh was observed mainly in the pars intermedia of the pituitary. TTX was only detected in a TTX-fed fish in the neurohypophysis of the pituitary and in several other brain regions. The relationship between PSTBPh and TTX is discussed.


Asunto(s)
Encéfalo , Hipófisis , Saxitoxina , Takifugu , Tetrodotoxina , Animales , Tetrodotoxina/metabolismo , Hipófisis/metabolismo , Takifugu/metabolismo , Encéfalo/metabolismo , Proteínas de Peces/metabolismo , Canales de Sodio
5.
PeerJ ; 12: e17307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742097

RESUMEN

Invasive species threaten biodiversity globally. Amphibians are one of the most threatened vertebrate taxa and are particularly sensitive to invasive species, including other amphibians. African clawed frogs (Xenopus laevis) are native to Southern Africa but have subsequently become invasive on multiple continents-including multiple parts of North America-due to releases from the pet and biomedical trades. Despite their prevalence as a global invader, the impact of X. laevis remains understudied. This includes the Pacific Northwest of the USA, which now hosts multiple expanding X. laevis populations. For many amphibians, chemical cues communicate important information, including the presence of predators. Here, we tested the role chemical cues may play in mediating interactions between feral X. laevis and native amphibians in the Pacific Northwest. We tested whether native red-legged frog (Rana aurora) tadpoles display an antipredator response to non-native frog (X. laevis) or native newt (rough-skinned newts, Taricha granulosa) predator chemical stimuli. We found that R. aurora tadpoles exhibited pronounced anti-predator responses when exposed to chemical cues from T. granulosa but did not display anti-predator response to invasive X. laevis chemical cues. We also began experimentally testing whether T. granulosa-which produce a powerful neurotoxin tetrodotoxin (TTX)-may elicit an anti-predator response in X. laevis, that could serve to deter co-occupation. However, our short-duration experiments found that X. laevis were attracted to newt chemical stimuli rather than deterred. Our findings show that X. laevis likely poses a threat to native amphibians, and that these native species may also be particularly vulnerable to this invasive predator, compared to native predators, because toxic native newts may not limit X. laevis invasions. Our research provides some of the first indications that native Pacific Northwest species may be threatened by feral X. laevis and provides a foundation for future experiments testing potential management techniques for X. laevis.


Asunto(s)
Señales (Psicología) , Especies Introducidas , Salamandridae , Xenopus laevis , Animales , Washingtón , Salamandridae/fisiología , Larva , Conducta Predatoria , Ranidae
6.
Mar Biotechnol (NY) ; 26(3): 500-510, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630353

RESUMEN

Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.


Asunto(s)
Tetrodotoxina , Animales , Tetrodotoxina/análisis , Tetrodotoxina/metabolismo , Japón , Platelmintos/genética , Platelmintos/metabolismo , Tetraodontiformes , Takifugu/metabolismo , Takifugu/genética , Cromatografía Liquida , Espectrometría de Masas , Islas , Pueblos del Este de Asia
7.
Biology (Basel) ; 13(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38666820

RESUMEN

The silver-cheeked toadfish Lagocephalus sceleratus (Gmelin 1789), and to a lesser degree the orange spotted toadfish Torquigener hypselogeneion (Bleeker, 1852), pose threats to human health from physical attacks and poisonings in the Eastern Mediterranean Sea. This study reviewed human health-related impacts resulting from these pufferfish, compiling and assessing records from online sources, the peer-reviewed literature, medical records, personal interviews, and observations across the Eastern Mediterranean in the years 2004 to 2023. A total of 198 events impacting human health were documented: 28 records of physical attacks, at least 144 non-lethal poisoning episodes, and 27 human fatalities resulting from consumption. The majority of the reported incidences occurred in Syria, Türkiye, and Lebanon. Most physical attacks occurred in summer, while most poisoning events occurred during winter. The number of recorded incidents greatly increased after 2019, especially with regard to poisonings, yet whether this is related to greater media attention, or to increased fish abundance is unclear. This is the first comprehensive study to collate findings on attacks, poisonings and fatalities caused by these pufferfish in the Mediterranean Sea, and may help in improving national health policies. We urge the continuation of national campaigns to caution residents and tourists of these species' high toxicities and potential aggressiveness.

8.
Brain ; 147(9): 3157-3170, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38447953

RESUMEN

Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.


Asunto(s)
Ganglios Espinales , Hiperalgesia , Canal de Sodio Activado por Voltaje NAV1.8 , Neuronas , Vincristina , Animales , Vincristina/toxicidad , Vincristina/farmacología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/genética , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Ratones Noqueados , Tetrodotoxina/farmacología , Potenciales de Acción/efectos de los fármacos , Ratones Endogámicos C57BL , Antineoplásicos Fitogénicos/toxicidad , Técnicas de Placa-Clamp
9.
Toxins (Basel) ; 16(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251259

RESUMEN

Tetrodotoxin (TTX), an extremely potent low-molecular-weight neurotoxin, is widespread among marine animals including ribbon worms (Nemertea). Previously, studies on the highly toxic palaeonemertean Cephalothrix cf. simula showed that toxin-positive structures are present all over its body and are mainly associated with glandular cells and epithelial tissues. The highest TTXs concentrations were detected in a total extract from the intestine of the anterior part of the body and also in a total extract from the proboscis. However, many questions as to the TTXs distribution in the organs of the anterior part of the worm's body and the functions of the toxins in these organs are still unanswered. In the present report, we provide additional results of a detailed and comprehensive analysis of TTXs distribution in the nemertean's proboscis, buccal cavity, and cephalic gland using an integrated approach including high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), confocal laser scanning microscopy with anti-TTX antibodies, light and electron microscopies, and observations of feeding behavior. For the proboscis, we have found a TTXs profile different from that characteristic of other organs and tissues. We have also shown for the first time that the major amount of TTXs is localized in the anterior part of the proboscis that is mainly involved in hunting. TTX-containing glandular cells, which can be involved in the prey immobilization, have been found in the buccal cavities of the nemerteans. A significant contribution of the cephalic gland to the toxicity of this animal has been shown for the first time, and the role of the gland is hypothesized to be involved not only in protection against potential enemies but also in immobilizing prey. The data obtained have made it possible to extend the understanding of the role and features of the use of TTXs in the organs of the anterior part of nemertean's body.


Asunto(s)
Neurotoxinas , Espectrometría de Masas en Tándem , Animales , Tetrodotoxina , Cromatografía Líquida de Alta Presión , Células Epiteliales
10.
Channels (Austin) ; 18(1): 2289256, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055732

RESUMEN

Sexual dimorphism has been reported in multiple pre-clinical and clinical studies on pain. Previous investigations have suggested that in at least some states, rodent dorsal root ganglion (DRG) neurons display differential sex-dependent regulation and expression patterns of various proteins involved in the pain pathway. Our goal in this study was to determine whether sexual dimorphism in the biophysical properties of voltage-gated sodium (Nav) currents contributes to these observations in rodents. We recently developed a novel method that enables high-throughput, unbiased, and automated functional analysis of native rodent sensory neurons from naïve WT mice profiled simultaneously under uniform experimental conditions. In our previous study, we performed all experiments in neurons that were obtained from mixed populations of adult males or females, which were combined into single (combined male/female) data sets. Here, we have re-analyzed the same previously published data and segregated the cells based on sex. Although the number of cells in our previously published data sets were uneven for some comparisons, our results do not show sex-dependent differences in the biophysical properties of Nav currents in these native DRG neurons.


Asunto(s)
Ganglios Espinales , Sodio , Ratones , Animales , Femenino , Masculino , Ganglios Espinales/metabolismo , Tetrodotoxina , Sodio/metabolismo , Células Receptoras Sensoriales/metabolismo , Dolor/metabolismo
11.
Animals (Basel) ; 13(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37889799

RESUMEN

Pufferfish (Tetraodontidae) inhabiting the Mediterranean Sea may represent an emerging public health risk due to the possible accumulation of marine neurotoxins such as tetrodotoxin (TTXs) and saxitoxin (STXs) in their tissues. In this study, the presence of pufferfish species in the Strait of Sicily (Lampedusa Island, Italy) was investigated using a citizen science (CS) approach, involving local fishermen. Samples (liver, intestine, gonads, muscle, skin) from 20 specimens were sent to the National Reference Laboratory on Marine Biotoxins for TTXs detection using a validated HILIC-MS/MS method on fish tissue. The presence of STXs was also screened in part of the specimens. Overall, 56 specimens identified as Sphoeroides pachygaster (Müller &Troschel, 1848) were collected. Data on their total length, body weight, fishing method and catch area (with relative depth temperature and salinity) were analyzed and compared with the S. pachygaster records reported in literature which were updated to 2022. All the analysed tissues were found to be negative for both TTXs and STXs. CS played an essential role in monitoring potentially toxic marine species in this investigation. Outcomes from this study, which is the first investigating S. pachygaster toxicity in Italian waters, may provide useful data for the proper assessment of this emerging risk.

12.
Mar Biotechnol (NY) ; 25(6): 918-934, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37672165

RESUMEN

The toxic ribbon worm, Cephalothrix cf. simula (Palaeonemertea, Nemertea), possesses extremely high concentrations of tetrodotoxin (TTX). Although TTX has been found in the eggs of this species, the fate of the toxin in the ontogeny of the animal has not been explored. Here, using high performance liquid chromatography with tandem mass spectrometry and immunohistochemistry with anti-TTX antibodies, we examined levels, profile, and localization of TTX and its analogues (TTXs) in larvae of C. cf. simula throughout 41 days post-fertilization. A detailed investigation of cells in sites of TTX-accumulation was performed with light and electron microscopy. Newly hatched larvae possessed weak TTX-like immunoreactivity in all cells. With subsequent development, intensity of TTX-labeling in the ectodermal structures, mesodermal cells and apical cylinder of the apical gland increased. In the ectodermal structures, an intense TTX-labeling was observed in the multiciliated, type II granular, type I mucoid, and basal cells of the epidermis, and in the type III granular cells of the mouth gland. In the mesoderm, TTX was localized in the muscle and unigranular parenchyma-like cells. Eggs and larvae of C. cf. simula contained five TTXs, with two major toxins - TTX and 5,6,11-trideoxyTTX. Level and relative proportion of TTXs did not differ significantly among developmental stages, confirming that larvae obtained toxins from maternal eggs and were able to retain it. The results of this study provide insights into the formation of TTX-bearing apparatus of C. cf. simula through the larval development.


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Tetrodotoxina/química , Espectrometría de Masas en Tándem/métodos
13.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37572357

RESUMEN

Analyses of the contributions of genetic variants in wild strains to phenotypic differences have led to a more complete description of the pathways underlying cellular functions. Causal loci are typically identified via interbreeding of strains with distinct phenotypes in order to establish recombinant inbred lines (RILs). Since the generation of RILs requires growth for multiple generations, their genomes may contain not only different combinations of parental alleles but also genetic changes that arose de novo during the establishment of these lines. Here, we report that in the course of generating RILs between Caenorhabditis elegans strains that exhibit distinct thermotaxis behavioral phenotypes, we identified spontaneously arising variants in the ttx-1 locus. ttx-1 encodes the terminal selector factor for the AFD thermosensory neurons, and loss-of-function mutations in ttx-1 abolish thermotaxis behaviors. The identified genetic changes in ttx-1 in the RIL are predicted to decrease ttx-1 function in part via specifically affecting a subset of AFD-expressed ttx-1 isoforms. Introduction of the relevant missense mutation in the laboratory C. elegans strain via gene editing recapitulates the thermotaxis behavioral defects of the RIL. Our results suggest that spontaneously occurring genomic changes in RILs may complicate identification of loci contributing to phenotypic variation, but that these mutations may nevertheless lead to the identification of important causal molecules and mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Taxia , Animales , Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutación , Animales de Laboratorio
14.
Chemosphere ; 339: 139682, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37527741

RESUMEN

Tetrodotoxins (TTXs) are potent neurotoxins named after the Tetraodontidae fish family. The ingestion of TTX-contaminated flesh can cause neurotoxic symptoms and can lead to death. In 2017 symptoms the European Food Safety Authority (EFSA) recognized the threat to food safety resulting from TTX exposure via food consumption and, thus, proposed a safety limit of 44 µg/kg of TTX in marine gastropods and bivalves. To date, however, TTXs have not yet been included in the list of biotoxins to be monitored within the European Union, even though, in a few cases, levels of TTX found were higher than the EFSA limit. The origin of TTX production is debated and the roles of both biotic and abiotic factors on TTX-mediated toxic events remain unclear. In order to meet these knowledge requests the present study was aimed to investigate the role of seawater temperature, pH, water conductivity, and oxygen saturation, along with the marine phytoplankton community and the bacterial community of mussels and oysters on the accumulation of TTX and analogues in the bivalves. Abiotic parameters were measured by means of a multi-parametric probe, phytoplankton community was analyzed by optic microscopy while microbial community was described by amplicon metataxonomic sequencing, TTXs concentration in the collected matrices were measured by HILIC-MS/MS. A possible role of seawater pH and temperature, among the investigated abiotic factors, in regulating the occurrence of TTXs was found. Regarding biotic variables, a possible influence of Vibrio, Shewanella and Flavobacteriaceae in the occurrence of TTXs was found. Concurrently, Prorocentrum cordatum cell numbers were correlated to the incidence of TTX in mussels. The results herein collected suggest that environmental variables play a consistent part in the occurrence of TTX in the edible bivalve habitats, and there are also indications of a potential role played by specific bacteria taxa in association with phytoplankton.


Asunto(s)
Bivalvos , Espectrometría de Masas en Tándem , Animales , Tetrodotoxina/toxicidad , Comprensión , Neurotoxinas , Fitoplancton
15.
Mar Drugs ; 21(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37623713

RESUMEN

Tetrodotoxin (TTX) is a potent marine neurotoxin involved in poisoning cases, especially through the consumption of puffer fish. Knowledge of the toxicity equivalency factors (TEFs) of TTX analogues is crucial in monitoring programs to estimate the toxicity of samples analyzed with instrumental analysis methods. In this work, TTX analogues were isolated from the liver of a Lagocephalus sceleratus individual caught on South Crete coasts. A cell-based assay (CBA) for TTXs was optimized and applied to the establishment of the TEFs of 5,11-dideoxyTTX, 11-norTTX-6(S)-ol, 11-deoxyTTX and 5,6,11-trideoxyTTX. Results showed that all TTX analogues were less toxic than the parent TTX, their TEFs being in the range of 0.75-0.011. Then, different tissues of three Lagocephalus sceleratus individuals were analyzed with CBA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The obtained TEFs were applied to the TTX analogues' concentrations obtained by LC-MS/MS analysis, providing an indication of the overall toxicity of the sample. Information about the TEFs of TTX analogues is valuable for food safety control, allowing the estimation of the risk of fish products to consumers.


Asunto(s)
Tetraodontiformes , Animales , Tetrodotoxina/toxicidad , Grecia , Cromatografía Liquida , Espectrometría de Masas en Tándem
16.
Chemosphere ; 336: 139214, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37327821

RESUMEN

Tetrodotoxin (TTX)-bearing fish are thought to accumulate TTXs in their bodies through a food chain that begins with marine bacteria. However, the mechanism of TTXs transfer between prey and predators in the food chain remains unclear and the reasons for regional differences in pufferfish toxicity are also unknown. To investigate these matters, we collected juveniles of four species of pufferfish, Takifugu alboplumbeus, Takifugu flavipterus, Takifugu stictonotus, and Chelonodon patoca, from various locations in the Japanese Islands, and subjected them to liquid chromatography-tandem mass spectrometry analysis for TTX and its analog 5,6,11-trideoxyTTX (TDT). Concentrations of these substances tended to be higher in pufferfish juveniles collected from the Sanriku coastal area (Pacific coast of northern Japan) than in those from other locations. Juveniles had higher concentrations of TTX at all locations than of TDT. Mitochondrial cytochrome c oxidase subunit I (COI) sequences specific to the TTX-bearing flatworm, Planocera multitentaculata, were detected in the intestinal contents of up to 100% of pufferfish juveniles from various sampling sites, suggesting that P. multitentaculata was widely involved in the toxification of the juveniles in the coastal waters of Japan. A toxification experiment was conducted on three species of pufferfish juveniles (T. alboplumbeus, Takifugu rubripes and C. patoca) using TTX-bearing flatworm eggs harboring equal amounts of TTX and TDT. The TTX content of juveniles fed on flatworm eggs was found to be more than twice that of TDT, suggesting that pufferfish preferentially incorporate TTX compared to TDT.


Asunto(s)
Takifugu , Tetrodotoxina , Animales , Platelmintos , Espectrometría de Masas en Tándem/métodos , Tetrodotoxina/química , Tetraodontiformes , Japón
17.
BMC Anesthesiol ; 23(1): 145, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120567

RESUMEN

BACKGROUND: Chloral hydrate is a sedative-hypnotic drug widely used for relieving fear and anxiety in pediatric patients. However, mechanisms underlying the chloral hydrate-mediated analgesic action remain unexplored. Therefore, we investigated the effect of 2',2',2'-trichloroethanol (TCE), the active metabolite of chloral hydrate, on tetrodotoxin-resistant (TTX-R) Na+ channels expressed in nociceptive sensory neurons. METHODS: The TTX-R Na+ current (INa) was recorded from acutely isolated rat trigeminal ganglion neurons using the whole-cell patch-clamp technique. RESULTS: Trichloroethanol decreased the peak amplitude of transient TTX-R INa in a concentration-dependent manner and potently inhibited persistent components of transient TTX-R INa and slow voltage-ramp-induced INa at clinically relevant concentrations. Trichloroethanol exerted multiple effects on various properties of TTX-R Na+ channels; it (1) induced a hyperpolarizing shift on the steady-state fast inactivation relationship, (2) increased use-dependent inhibition, (3) accelerated the onset of inactivation, and (4) retarded the recovery of inactivated TTX-R Na+ channels. Under current-clamp conditions, TCE increased the threshold for the generation of action potentials, as well as decreased the number of action potentials elicited by depolarizing current stimuli. CONCLUSIONS: Our findings suggest that chloral hydrate, through its active metabolite TCE, inhibits TTX-R INa and modulates various properties of these channels, resulting in the decreased excitability of nociceptive neurons. These pharmacological characteristics provide novel insights into the analgesic efficacy exerted by chloral hydrate.


Asunto(s)
Nociceptores , Canales de Sodio , Ratas , Animales , Tetrodotoxina/farmacología , Tetrodotoxina/metabolismo , Nociceptores/metabolismo , Canales de Sodio/metabolismo , Canales de Sodio/farmacología , Hidrato de Cloral/farmacología , Hidrato de Cloral/metabolismo , Potenciales de la Membrana/fisiología , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo
18.
Mar Drugs ; 21(4)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37103347

RESUMEN

Tetrodotoxin (TTX), also known as pufferfish toxin, is an extremely potent neurotoxin thought to be used as a biological defense compound in organisms bearing it. Although TTX was thought to function as a chemical agent for defense and anti-predation and an attractant for TTX-bearing animals including pufferfish, it has recently been demonstrated that pufferfish were also attracted to 5,6,11-trideoxyTTX, a related compound, rather than TTX alone. In this study, we attempted to estimate the roles of TTXs (TTX and 5,6,11-trideoxyTTX) in the pufferfish, Takifugu alboplumbeus, through examining the location of TTXs in various tissues of spawning pufferfish from Enoshima and Kamogawa, Japan. TTXs levels in the Kamogawa population were higher than those in the Enoshima population, and there was no significant difference in the amount of TTXs between the sexes in either population. Individual differences were greater in females than in males. However, the location of both substances in tissues differed significantly between sexes: male pufferfish accumulated most of their TTX in the skin and liver and most of their 5,6,11-trideoxyTTX in the skin, whereas females accumulated most of their TTX and 5,6,11-trideoxyTTX in the ovaries and skin.


Asunto(s)
Takifugu , Tetraodontiformes , Animales , Femenino , Masculino , Tetrodotoxina/toxicidad , Tetrodotoxina/análisis , Piel/química , Hígado/química , Neurotoxinas/análisis
19.
Mar Drugs ; 21(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36976245

RESUMEN

Tetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of voltage-gated Na+ (NaV) channels. In arteries, NaV channels are expressed in sympathetic nerve endings, both in the intima and media. In this present work, we aimed to decipher the role of NaV channels in vascular tone using TTX. We first characterized the expression of NaV channels in the aorta, a model of conduction arteries, and in mesenteric arteries (MA), a model of resistance arteries, in C57Bl/6J mice, by Western blot, immunochemistry, and absolute RT-qPCR. Our data showed that these channels are expressed in both endothelium and media of aorta and MA, in which scn2a and scn1b were the most abundant transcripts, suggesting that murine vascular NaV channels consist of NaV1.2 channel subtype with NaVß1 auxiliary subunit. Using myography, we showed that TTX (1 µM) induced complete vasorelaxation in MA in the presence of veratridine and cocktails of antagonists (prazosin and atropine with or without suramin) that suppressed the effects of neurotransmitter release. In addition, TTX (1 µM) strongly potentiated the flow-mediated dilation response of isolated MA. Altogether, our data showed that TTX blocks NaV channels in resistance arteries and consecutively decreases vascular tone. This could explain the drop in total peripheral resistance observed during mammal tetrodotoxications.


Asunto(s)
Aorta , Arterias Mesentéricas , Ratones , Animales , Tetrodotoxina/farmacología , Mamíferos , Subunidad beta-1 de Canal de Sodio Activado por Voltaje
20.
Mar Biotechnol (NY) ; 25(5): 666-676, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36648572

RESUMEN

Tetrodotoxin (TTX), or pufferfish toxin, has been frequently detected in edible bivalves around the world during the last decade and is problematic in food hygiene and safety. It was reported recently that highly concentrated TTX was detected in the midgut gland of the akazara scallop Chlamys (Azumapecten) farreri subsp. akazara collected in coastal areas of the northern Japanese archipelago. The toxification of the bivalve was likely to involve the larvae of the flatworm, Planocera multitentaculata. However, the overall status of bivalve TTX toxification has not been elucidated. In this study, 14 species/subspecies of bivalves from various Japanese waters were subjected to LC-MS/MS analysis to reveal TTX toxification state, demonstrating that the Pectinidae, including C. farreri akazara, Chlamys farreri nipponensis, Chlamys (Mimachlamys) nobilis, and Mizuhopecten yessoensis, accumulated TTX in their midgut gland. Many individuals of C. farreri akazara and C. farreri nipponensis were found with high concentrations of TTX, while C. nobilis and M. yessoensis exhibited low concentrations. The extent of TTX accumulation in C. farreri akazara and C. farreri nipponensis varied widely by region and season. Curiously, no other bivalve species investigated in this study showed evidence of TTX. These results suggest that monitoring for TTX, like other shellfish toxins, is necessary to ensure that pectinid bivalves are a safe food resource.


Asunto(s)
Pectinidae , Platelmintos , Tetrodotoxina , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Tetrodotoxina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA