Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol ; 261(4): 427-441, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776271

RESUMEN

Heart and kidney have a closely interrelated pathophysiology. Acute kidney injury (AKI) is associated with significantly increased rates of cardiovascular events, a relationship defined as cardiorenal syndrome type 3 (CRS3). The underlying mechanisms that trigger heart disease remain, however, unknown, particularly concerning the clinical impact of AKI on cardiac outcomes and overall mortality. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are independently involved in the pathogenesis of both heart and kidney failure, and recent studies have proposed TWEAK as a possible therapeutic target; however, its specific role in cardiac damage associated with CRS3 remains to be clarified. Firstly, we demonstrated in a retrospective longitudinal clinical study that soluble TWEAK plasma levels were a predictive biomarker of mortality in patients with AKI. Furthermore, the exogenous application of TWEAK to native ventricular cardiomyocytes induced relevant calcium (Ca2+ ) handling alterations. Next, we investigated the role of the TWEAK-Fn14 axis in cardiomyocyte function following renal ischaemia-reperfusion (I/R) injury in mice. We observed that TWEAK-Fn14 signalling was activated in the hearts of AKI mice. Mice also showed significantly altered intra-cardiomyocyte Ca2+ handling and arrhythmogenic Ca2+ events through an impairment in sarcoplasmic reticulum Ca2+ -adenosine triphosphatase 2a pump (SERCA2a ) and ryanodine receptor (RyR2 ) function. Administration of anti-TWEAK antibody after reperfusion significantly improved alterations in Ca2+ cycling and arrhythmogenic events and prevented SERCA2a and RyR2 modifications. In conclusion, this study establishes the relevance of the TWEAK-Fn14 pathway in cardiac dysfunction linked to CRS3, both as a predictor of mortality in patients with AKI and as a Ca2+ mishandling inducer in cardiomyocytes, and highlights the cardioprotective benefits of TWEAK targeting in CRS3. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Calcio , Humanos , Ratones , Animales , Calcio/metabolismo , Receptor de TWEAK/metabolismo , Estudios Retrospectivos , Citocina TWEAK/metabolismo , Factores de Necrosis Tumoral/metabolismo , Miocitos Cardíacos/metabolismo , Lesión Renal Aguda/metabolismo
2.
Hum Exp Toxicol ; 42: 9603271231200868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37715308

RESUMEN

PURPOSE: In order to seek effective drugs for treating cisplatin-induced acute renal injury and explore the corresponding potential mechanism. METHODS: Mouse kidney injury model was established by intraperitoneal injection of 20 mg/kg cisplatin. The temporal expression of TRPM2 and the regulation of Ginkgolide A on its expression were analyzed by western blot. In order to perform the mechanical analysis, we used TRPM2-KO knockout mice. In this study, we evaluated the repair effect of GA on acute kidney injury through renal function factors, inflammatory factors and calcium and potassium content. Pathological injury and cell apoptosis were detected by H&E and TUNEL, respectively. RESULT: Ginkgolide A inhibited inflammatory reaction and excessive oxidative stress, reduced renal function parameters, and improved pathological injury. Meanwhile, we also found that the repair effect of Ginkgolide A on renal injury is related to TRPM2, and Ginkgolide A downregulated TRPM2 expression and inactivated TWEAK/Fn14 pathway in cisplatin-induced renal injury model. We also found that inhibition of TWEAK/Fn14 pathway was more effective in TRPM2-KO mice than TRPM2-WT mice. CONCLUSION: Ginkgolide A was the effective therapeutic drug for cisplatin-induced renal injury through acting on TRPM2, and TWEAK/Fn14 pathway was the downstream pathway of Ginkgolide A in acute renal injury, and Ginkgolide A inhibited TWEAK/Fn14 pathway in cisplatin-induced renal injury model.


Asunto(s)
Lesión Renal Aguda , Canales Catiónicos TRPM , Ratas , Ratones , Animales , Factores de Necrosis Tumoral , Receptores del Factor de Necrosis Tumoral/metabolismo , Cisplatino/toxicidad , Receptor de TWEAK/metabolismo , Canales Catiónicos TRPM/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Modelos Animales de Enfermedad
3.
Front Immunol ; 8: 1739, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326686

RESUMEN

Meniere's disease (MD) is a rare disorder characterized by episodic vertigo, sensorineural hearing loss, tinnitus, and aural fullness. It is associated with a fluid imbalance between the secretion of endolymph in the cochlear duct and its reabsorption into the subarachnoid space, leading to an accumulation of endolymph in the inner ear. Epidemiological evidence, including familial aggregation, indicates a genetic contribution and a consistent association with autoimmune diseases (AD). We conducted a case-control study in two phases using an immune genotyping array in a total of 420 patients with bilateral MD and 1,630 controls. We have identified the first locus, at 6p21.33, suggesting an association with bilateral MD [meta-analysis leading signal rs4947296, OR = 2.089 (1.661-2.627); p = 1.39 × 10-09]. Gene expression profiles of homozygous genotype-selected peripheral blood mononuclear cells (PBMCs) demonstrated that this region is a trans-expression quantitative trait locus (eQTL) in PBMCs. Signaling analysis predicted several tumor necrosis factor-related pathways, the TWEAK/Fn14 pathway being the top candidate (p = 2.42 × 10-11). This pathway is involved in the modulation of inflammation in several human AD, including multiple sclerosis, systemic lupus erythematosus, or rheumatoid arthritis. In vitro studies with genotype-selected lymphoblastoid cells from patients with MD suggest that this trans-eQTL may regulate cellular proliferation in lymphoid cells through the TWEAK/Fn14 pathway by increasing the translation of NF-κB. Taken together; these findings suggest that the carriers of the risk genotype may develop an NF-κB-mediated inflammatory response in MD.

4.
Exp Dermatol ; 25(1): 32-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26264384

RESUMEN

Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) has been reported to induce keratinocyte apoptosis in vitro by engaging its sole receptor of fibroblast growth factor-inducible 14 (Fn14). In this study, we explored the role of TWEAK/Fn14 pathway in the growth of psoriatic keratinocytes that is, however, characterized by suppressed apoptotic cell death. Skin tissues from the patients with psoriasis or healthy donors were determined for TWEAK and Fn14 expression, and primary keratinocytes were evaluated under the stimulation of psoriatic proinflammatory cytokines or plus TWEAK. The results showed that both TWEAK and Fn14 were highly expressed in psoriatic skins. Moreover, the stimulation of psoriatic cytokines enhanced Fn14 expression by keratinocytes in vitro, which expressed TNF receptor 2 predominantly and proliferated increasingly with the addition of TWEAK. Furthermore, TWEAK stimulation enhanced the synthesis of survivin, inhibitor of apoptosis protein 2 and cellular FLICE-inhibitory protein in lesional keratinocytes. Therefore, TWEAK/Fn14 interaction prefers to enhance proliferation but not apoptosis of keratinocytes under psoriatic inflammation. The activation of nuclear factor-κB signalling-dependent anti-apoptotic proteins and biased expression of TNF receptors may be responsible for such a novel principle in keratinocytes under psoriatic inflammation.


Asunto(s)
Inflamación/metabolismo , Queratinocitos/citología , Psoriasis/inmunología , Psoriasis/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo , Apoptosis , Proliferación Celular , Citocina TWEAK , Citocinas/metabolismo , Citometría de Flujo , Humanos , Inmunohistoquímica , Inflamación/patología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Queratinocitos/metabolismo , Ligandos , FN-kappa B/metabolismo , Psoriasis/patología , Survivin , Receptor de TWEAK
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA