Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Med Genet A ; 182(11): 2666-2670, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32798301

RESUMEN

With the increasing capabilities of non-invasive prenatal testing (NIPT), detection of sub-chromosomal deletions and duplications are possible. This case series of deletion rescues resulting in segmental homozygosity helps provide a biological explanation for NIPT discrepancies and adds to the dearth of existing literature surrounding segmental UPD cases and their underlying mechanisms. In the three cases presented here, NIPT reported a sub-chromosomal deletion (in isolation or as part of a complex finding). Diagnostic testing, however, revealed segmental homozygosity or UPD for the region reported deleted on NIPT. Postnatal placental testing was pursued in two cases and confirmed the NIPT findings. This discordance between the screening and diagnostic testing is suggestive of a corrective post-zygotic event, such as telomere capture and/or deletion rescue, ultimately resulting in segmental homozygosity and fetoplacental mosaicism. Imprinted chromosomes and autosomal recessive disease genes make homozygosity an important clinical consideration. Amniocentesis with SNP microarray is particularly useful in determining both copy number and UPD issues alike.


Asunto(s)
Amniocentesis/métodos , Deleción Cromosómica , Homocigoto , Mosaicismo , Placenta/metabolismo , Diagnóstico Prenatal/métodos , Disomía Uniparental/diagnóstico , Adulto , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 20/genética , Cromosomas Humanos Par 8/genética , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Disomía Uniparental/genética , Adulto Joven
2.
Hum Genet ; 137(10): 817-829, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30276538

RESUMEN

We investigated 52 cases of de novo unbalanced translocations, consisting in a terminally deleted or inverted-duplicated deleted (inv-dup del) 46th chromosome to which the distal portion of another chromosome or its opposite end was transposed. Array CGH, whole-genome sequencing, qPCR, FISH, and trio genotyping were applied. A biparental origin of the deletion and duplication was detected in 6 cases, whereas in 46, both imbalances have the same parental origin. Moreover, the duplicated region was of maternal origin in more than half of the cases, with 25% of them showing two maternal and one paternal haplotype. In all these cases, maternal age was increased. These findings indicate that the primary driver for the occurrence of the de novo unbalanced translocations is a maternal meiotic non-disjunction, followed by partial trisomy rescue of the supernumerary chromosome present in the trisomic zygote. In contrast, asymmetric breakage of a dicentric chromosome, originated either at the meiosis or postzygotically, in which the two resulting chromosomes, one being deleted and the other one inv-dup del, are repaired by telomere capture, appears at the basis of all inv-dup del translocations. Notably, this mechanism also fits with the origin of some simple translocations in which the duplicated region was of paternal origin. In all cases, the signature at the translocation junctions was that of non-homologous end joining (NHEJ) rather than non-allelic homologous recombination (NAHR). Our data imply that there is no risk of recurrence in the following pregnancies for any of the de novo unbalanced translocations we discuss here.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Meiosis , Reparación del ADN por Recombinación , Translocación Genética/genética , Femenino , Humanos , Masculino
3.
Chromosome Res ; 26(3): 191-198, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29752677

RESUMEN

A complex mosaicism of the short arm of chromosome 1 detected by SNP microarray analysis is described in a patient presenting a 4-Mb 1p36 terminal deletion and associated phenotypic features. The array pattern of chromosome 1p displayed an intriguing increase in divergence of the SNP heterozygote frequency from the expected 50% from the centromere towards the 1p36 breakpoint. This suggests that various overlapping segments of UPD were derived by somatic recombination between the 1p homologues. The most likely explanation was the occurrence of a series of events initiated in either a gamete or an early embryonic cell division involving a 1pter deletion rapidly followed by multiple telomere captures, resulting in additive, stepped increases in frequency of homozygosity towards the telomere. The largest segment involved the entire 1p, and at least four other capture events were observed, indicating that at least five independent telomere captures occurred in separate cell lineages. The determination of breakpoint position by detection of abrupt changes in B-allele frequency using a moving window analysis demonstrated that they were identical in blood and saliva, the tissues available for analysis. We developed a model to explain the interaction of parameters determining the mosaic clones and concluded that, while number, size, and position of telomere captures were important initiating determinants, variation in individual clone frequencies was the main contributor to mosaic differences between tissues. All previous reports of telomere capture have been restricted to single events. Other cases involving multiple telomere capture probably exist but require investigation by SNP microarrays for their detection.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Mosaicismo , Telómero/genética , Linaje de la Célula , Humanos , Polimorfismo de Nucleótido Simple , Disomía Uniparental
4.
Mol Cytogenet ; 8: 32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25969696

RESUMEN

BACKGROUND: All human chromosomes are capped by tandem repeat (TTAGGG)n sequences that protect them against end-to-end fusion and are essential to chromosomal replication and integrity. Therefore, after a chromosomal breakage, the deleted chromosomes must be stabilized by retaining the telomere or acquiring a new cap, by telomere healing or telomere capture. There are few reports with molecular approaches on the mechanisms involved in stabilization of 18q terminal deletions. RESULTS: In this study we analyzed nine patients with 18q terminal deletion identified by G-banding and genomic array. FISH using PNA probe revealed telomeric signals in all deleted chromosomes tested. We fine-mapped breakpoints with customized arrays and sequenced six terminal deletion junctions. In all six deleted chromosomes sequenced, telomeric sequences were found directly attached to the breakpoints. Little or no microhomology was found at the breakpoints and none of the breaks sequenced were located in low copy repeat (LCR) regions, though repetitive elements were found around the breakpoints in five patients. One patient presented a more complex rearrangement with two deleted segments and an addition of 17 base pairs (bp). CONCLUSIONS: We found that all six deleted chromosomes sequenced were probably stabilized by the healing mechanism leading to a neotelomere formation.

5.
Early Hum Dev ; 90(9): 465-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25010904

RESUMEN

INTRODUCTION: Placentas from pregnancies complicated with IUGR (intrauterine growth restriction) express altered telomere homeostasis. In the current study, we examined mechanisms of telomere shortening in these placentas. METHODS: Placental biopsies from 15 IUGR and 15 healthy control pregnancies were examined. The percentage of trophoblasts with fragmented nuclei: senescence-associated heterochromatin foci (SAHF), was calculated using DAPI staining. The amount of human telomerase reverse transcriptase (hTERT) mRNA was evaluated using RtPCR levels of telomere capture using FISH in those samples were estimated. RESULTS: The percentage of trophoblasts with SAHF was higher in IUGR compared to control samples, (25±13.4% vs. 1.6±1.6%, P<0.0001), hTERT mRNA was decreased (0.5±0.2 vs. 0.9±0.1, P<0.0001) and telomere capture was increased (13.2±9.7% vs.1.3±2.5%, P<0.001). CONCLUSIONS: We suggest that IUGR placentas express increased signs of senescence as part of the impaired telomere homeostasis. One factor that mediates telomere shortening in these placentas is decreased hTERT mRNA, leading to decreased protein expression and therefore, reduced telomere elongation. Telomere capture, which is a healing process, is increased in IUGR trophoblasts as a compensatory mechanism.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Acortamiento del Telómero , Estudios de Casos y Controles , Femenino , Retardo del Crecimiento Fetal/patología , Homeostasis , Humanos , Hibridación Fluorescente in Situ , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA