Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Ethnopharmacol ; 332: 118338, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38759762

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Mesobuthus martensii scorpions, called as "Quanxie", are known Chinese medicinal material base on the "Combat poison with poison" strategy for more than one thousand years, and still widely used to treat various diseases according to the Pharmacopoeia of the People's Republic of China nowadays. AIM OF STUDY: The study aims to investigate the similarity of scorpion neurotoxins at the protein level between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicine materials. MATERIALS AND METHODS: The second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were collected for the characterization of neurotoxin expression through multiple strategic proteomics, including undigested scorpion venom, endopeptidase-digested, and undigested scorpion telson extract for the sample analysis. RESULTS: Based on the known 107 scorpion neurotoxins from the genomic and transcriptomic analysis of adult Mesobuthus martensii scorpions, the multiple strategic proteomics first revealed that neurotoxins exhibited more stability in telson extract than secreted venom. In the reported transcripts of scorpion neurotoxins, approximately 53%, 56%, 66% and 78% of neurotoxins were detected through undigested scorpion venom, the endopeptidase Arg-C-, Lys-C-digested telson extract, and undigested telson extract strategies, respectively. Nearly 79% of scorpion neurotoxins detected in third-instar Mesobuthus martensii scorpions represent the largest number of scorpion neurotoxins from proteomic analysis to date. Moreover, a total of 84% of scorpion neurotoxins were successfully identified at the protein level, and similar neurotoxin expression profiles in second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were first revealed by the multiple strategic proteomics. CONCLUSION: These findings for the first time demonstrate the similar neurotoxin expression profiles between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicinal material, which would serve as a paradigm for further toxin analysis from different venomous animals.


Asunto(s)
Medicina Tradicional China , Neurotoxinas , Proteómica , Venenos de Escorpión , Escorpiones , Animales , Proteómica/métodos , Animales Ponzoñosos
2.
Micron ; 181: 103636, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38579377

RESUMEN

The telson and uropods collectively form the tail fan, playing crucial roles in locomotion, buoyancy, defense, and respiration. We aimed to compare telson and uropod structures in three shrimp species-Penaeus canaliculatus, Penaeus semisulcatus, and Metapenaeus stebbingi-to identify the species with the most robust telson for its environment. Our analysis involved morphological measurements and scanning electron microscopy (SEM), supplemented by a novel approach-Energy-Dispersive X-ray (EDX) spectroscopy, a technique not previously utilized in studies on these three species. M. stebbingi exhibited the longest telson length, whereas P. semisulcatus had the longest uropod. P. canaliculatus featured a single pair of fixed spines, while P. semisulcatus had evenly spaced small conical spines along the sides of the median elevation and groove. A distinctive feature of M. stebbingi was the telson, which had three pairs of large spines. Diverse setae on telsons included simple, unipennate, and plumose setae. Notably, specialized branched tubular setae on uropods' endopods may aid in grooming or swimming behavior. EDX spectroscopy revealed that the telson cuticle primarily consists of carbon, nitrogen, and oxygen, with significantly high concentrations alongside comparatively lower calcium and phosphorous concentrations. P. semisulcatus exhibited the highest calcium and phosphorus content among the three species. In conclusion, M. stebbingi's telson is structurally robust, emphasizing the importance of morphology, while P. semisulcatus demonstrated a hard telson through EDX analysis. Our study underscores not solely relying on morphology for telson strength assessment but considering telson composition. These variations among species may be attributed to diverse ecological and physiological adaptations.

3.
Toxins (Basel) ; 14(3)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35324715

RESUMEN

Scorpionism is a global health concern, with an estimation of over one million annual envenomation cases. Despite this, little is known regarding the drivers of scorpion venom potency. One widely held view is that smaller scorpions with less-developed chelae possess the most potent venoms. While this perception is often used as a guide for medical intervention, it has yet to be tested in a formal comparative framework. Here, we use a phylogenetic comparative analysis of 36 scorpion species to test whether scorpion venom potency, as measured using LD50, is related to scorpion body size and morphology. We found a positive relationship between LD50 and scorpion total length, supporting the perception that smaller scorpions possess more potent venoms. We also found that, independent of body size, scorpion species with long narrow chelae have higher venom potencies compared to species with more robust chelae. These results not only support the general perception of scorpion morphology and potency, but also the presence of an ecology trade-off with scorpions either selected for well-developed chelae or more potent venoms. Testing the patterns of venom variations in scorpions aids both our ecological understanding and our ability to address the global health burden of scorpionism.


Asunto(s)
Picaduras de Escorpión , Venenos de Escorpión , Animales , Tamaño Corporal , Filogenia , Venenos de Escorpión/toxicidad , Escorpiones
4.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200128, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33088287

RESUMEN

As in previous contributions to the JVATiTD, the aim of this note is to bring some general information on a particular aspect of the scorpion biology. An attempt is made to explain the possible coevolution of telson morphology and venom glands, which took place during several hundred million years and in particular since scorpions migrated from aquatic to terrestrial environments. Three components can be directly associated with predation and defensive behaviours: (1) morphology of the chelae and structure of the chelae fingers granulations; (2) morphology of the metasoma and in particular of the telson; (3) evolution of tegumentary glands in the telson toward different types of venom glands. Since a number of recent contributions already treated some of these aspects, I will limit my comments to the possible evolution of the telson in relation to the evolution of venom glands. As in previous contributions, the content of this article is basically addressed to non-specialists on scorpions whose research embraces scorpions in several fields such as venom toxins and public health.

5.
Int J Biol Macromol ; 148: 351-363, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954123

RESUMEN

An increasing number of scorpion fossils indicate that the venomous telson developed from the sharp telson in sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era and then further evolved into the fetal venom system. This hypothesis led us to evaluate the inhibition of scorpion venom-sensitive potassium channels by hemolymph from the scorpion Mesobuthus martensii. Scorpion hemolymph diluted 1:10 inhibited Kv1.1, Kv1.2, Kv1.3 and SK3 potassium channel currents by 76.4%, 90.2%, 85.8%, and 52.8%, respectively. These discoveries encouraged us to investigate the functional similarity between the more ancient defensin ingredients in hemolymph and the evolved neurotoxins in the venom. In addition to the expression of the representative defensin BmKDfsin3 and BmKDfsin5 in both venomous and non-venomous tissues, NMR analysis revealed structural similarities between scorpion defensin and neurotoxin. Functional experiments further indicated that scorpion defensin used the same mechanism as classical neurotoxin to block the neurotoxin-sensitive Kv1.1, Kv1.2, Kv1.3 and SK3 channels. These findings emphasize the likelihood that scorpion defensins evolved into neurotoxins that were adapted to the emergence of the scorpion telson from the sharp telson of sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era.


Asunto(s)
Defensinas/metabolismo , Hemolinfa/metabolismo , Canales Iónicos/metabolismo , Neurotoxinas/metabolismo , Escorpiones/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Potasio con Entrada de Voltaje/metabolismo , Venenos de Escorpión/metabolismo , Homología de Secuencia de Aminoácido
6.
J. venom. anim. toxins incl. trop. dis ; 26: e20200128, 2020. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1135154

RESUMEN

As in previous contributions to the JVATiTD, the aim of this note is to bring some general information on a particular aspect of the scorpion biology. An attempt is made to explain the possible coevolution of telson morphology and venom glands, which took place during several hundred million years and in particular since scorpions migrated from aquatic to terrestrial environments. Three components can be directly associated with predation and defensive behaviours: (1) morphology of the chelae and structure of the chelae fingers granulations; (2) morphology of the metasoma and in particular of the telson; (3) evolution of tegumentary glands in the telson toward different types of venom glands. Since a number of recent contributions already treated some of these aspects, I will limit my comments to the possible evolution of the telson in relation to the evolution of venom glands. As in previous contributions, the content of this article is basically addressed to non-specialists on scorpions whose research embraces scorpions in several fields such as venom toxins and public health.(AU)


Asunto(s)
Animales , Venenos , Conducta Predatoria , Escorpiones , Coevolución Biológica
7.
PeerJ ; 7: e7061, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396437

RESUMEN

An ideal suture material supports healing, minimizes inflammation, and decreases the likelihood of secondary infection. While there are published recommendations for suture materials in some invertebrates, there are no published recommendations for Limulus polyphemus or any chelicerate. This study evaluates the histological reaction of horseshoe crabs to five commonly used suture materials: monofilament nylon, silk, poliglecaprone, polydioxanone, and polyglycolic acid. None of the materials were superior with regards to holding nor was there any dehiscence. Nylon evoked the least amount of tissue reaction. This work also provides a histopathological description of the soft membrane at the hinge area between the opisthosoma and telson (telson ligament) and comments on euthanasia with intracardiac eugenol.

8.
Toxicon ; 159: 5-13, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30611824

RESUMEN

Envenomation by scorpions of the genus Tityus is an important public health problem in Argentina, involving near 8000 stings and 2 deaths each year. Treatment for envenomation is the use of specific antivenom and intensive hospital care. Antivenom is produced by the Ministry of Health and freely distributed throughout the country. For antivenom production it is necessary to collect scorpion venom, which is a difficult task because although scorpions can be found in Argentina, they are less abundant than in warmer latitudes. For this reason venom collection constitutes a bottleneck for antivenom production. Although in Argentina several species of Tityus can be found, most of the accidents are caused by Tityus trivittatus, and the venom of this scorpion has historically been the venom used for antivenom production. We analyzed retrospectively 26 pools of telson homogenates (6964 telsons) and 37 pools of milked venom obtained by electrical stimulation (equivalent to 6841 milkings). Lethal potencies of samples from different provinces were very similar, although venom from scorpions of Buenos Aires city showed the lowest potency. The venom obtained by milking (median LD50 12.3 µg), provided batches containing LD50s more potent when compared with the venom obtained from telson homogenates (p < 0.0001). Many batches of telson homogenates (30%) showed lower potencies than acceptable for antivenom production and control. In addition to the study of the venom yield, the records of immunization of horses, the potency of the batches and the protein content of each batch of anti-scorpion antivenom produced were analyzed, comparing those produced using milked venom with those using telson homogenates as immunogens. Batches produced using milked venom required a shorter period of immunization (p < 0.0001), rendered higher neutralizing titers (p 0.0350) and possessed lower protein content (p 0.0092). Results clearly showed that the milking of scorpions is a more efficient tool to obtain venom for antivenom production in comparison to the use of telson homogenates.


Asunto(s)
Venenos de Escorpión/aislamiento & purificación , Escorpiones , Animales , Antivenenos/aislamiento & purificación , Antivenenos/uso terapéutico , Argentina , Humanos , Picaduras de Escorpión/tratamiento farmacológico
9.
Am Nat ; 190(1): 152-156, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28617636

RESUMEN

Among the largest and most abundant aquatic predators during much of the early evolution of vertebrates, eurypterids have long been an iconic and intensely studied group of Paleozoic arthropods. We report a new specimen of the eurypterid Slimonia acuminata, which includes a fully articulated series of tail (postabdominal and telsonal) segments preserved in a tight lateral curve. Such a high degree of apparent lateral tail flexibility has not been previously recognized in eurypterids. From the perspective of hydrodynamics, the dorsoventrally flattened body plan of eurypterids would have limited the effectiveness of lateral tail motion as a means of propulsion. However, the long and serrated terminal tail spine of S. acuminata (and other eurypterids) would have made lateral tail strikes-which would have met a minimum of hydraulic resistance-an effective means of predatory attack and self-defense. Thus, many eurypterids are reinterpreted as substantially better-armed predators than previously supposed.


Asunto(s)
Movimiento , Escorpiones , Animales , Artrópodos , Evolución Biológica , Vertebrados
10.
Zootaxa ; 4268(3): 301-336, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28610360

RESUMEN

Description of larvae of three species: Pandalus eous, P. goniurus and P. tridens (family Pandalidae) from planktonic samples taken in the Okhotsk Sea, Avacha Gulf, and in the Bering Sea is given. Morphological features of larvae for the purpose of their identification are compared. Features which are not subject to significant intraspecific variation, and which is useful for the separation of these species in larval period are discussed. The most important features for identification of larvae of these species may be the structure of the rostrum, the presence or absence of denticles on the carapace and abdomen, the number of setae on different legs. The most reliable feature for the separation of larvae of these species into stages of zoea is the structure of the maxilla. A key to identify of species in larval stages and drawings of separate stages are given.


Asunto(s)
Pandalidae , Animales , Decápodos , Larva , Plancton
11.
PeerJ ; 3: e1167, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26339545

RESUMEN

In recent years the systematic position of genera in the shrimp families Gnathophyllidae and Hymenoceridae has been under debate, with phylogenetic studies suggesting the families are not real family level units. Here, we review the molecular evidence as well as the morphological characters used to distinguish both families, leading to the conclusion that neither family is valid. Further, we studied the structural details of the single morphological character which distinguishes the two subfamilies (Palaemoninae, Pontoniinae) in Palaemonidae, as well as their phylogenetic relationship. As the supposed character distinction plainly does not hold true and supported by the phylogenetic results, the recognition of subfamilies in Palaemonidae is not warranted. As a consequence, all three supra-generic taxa (Gnathophyllidae, Hymenoceridae, Pontoniinae) are thus herein formally synonymised with Palaemonidae.

12.
J. venom. anim. toxins incl. trop. dis ; 16(1): 76-86, 2010. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: lil-542430

RESUMEN

In this study, the morphology, histology and fine structure of the stinger, a part of the venom apparatus of Euscorpius mingrelicus (Kessler, 1874) (Scorpiones: Euscorpiidae) were studied by light microscopy and transmission electron microscopy (TEM). The stinger, located at the end section of the telson, is sickle-shaped. The venom is ejected through a pair of venom pores on its subterminal portion. Both venom ducts extend along the stinger without contact with each other since they are separated by connective tissue cells. The stinger cuticle is composed of two layers. Additionally, there are many pore canals and some hemolymph vessels in the cuticle. This work constitutes the first histological and fine structure study on Euscorpius mingrelicus stinger.(AU)


Asunto(s)
Animales , Venenos de Escorpión , Escorpiones , Microscopía Electrónica de Transmisión , Histología
13.
J. venom. anim. toxins incl. trop. dis ; 14(3): 466-480, 2008. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: lil-492210

RESUMEN

The histology and ultrastructure of venom glands in the scorpion Euscorpius mingrelicus (Kessler, 1874) are described and illustrated in the current study for the first time by employing light microscopy and transmission electron microscopy (TEM). The venom apparatus is composed of a pair of venom glands and a stinger, both situated in the last segment of the metasoma. The venom glands are completely separate but similar. The two glands are segregated within the telson by striated muscle bundles, and their outer surfaces are surrounded by a cuticle. An internal layer constitutes the secretory epithelium. This epithelium is made up of simple columnar cells. The nucleus and organelles involved in cellular synthetic activity are situated basally. In the apical portion, near the gland lumen, there are many secretory granules of different sizes, shapes and electron densities.(AU)


Asunto(s)
Animales , Venenos de Escorpión/enzimología , Escorpiones , Histología
14.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484431

RESUMEN

Scorpions are included in the order Scorpiones; class Arachnida. Lethal scorpions are mostly of the Buthidae family. Among these, species belonging to Androctonus, Leiurus and Mesobuthus genera cause most scorpion envenomations in Turkey. This study was performed aiming the production of antivenom by using Androctonus crassicauda telsons. Venom toxicity is related to telson weight, size, and storing condition (open or closed). Telsons of A. crassicauda were collected in Southeastern Anatolia (especially in Harran town, Sanliurfa), Turkey. They were separated according to weight, size, and storing condition - open (a) and closed (b). Venom solution was prepared by maceration of telsons. Swiss albino mice were used to determine the lethal dose 50% (LD50), which was as follows: Group 1a - 2.31mg; Group 1b - 2.66mg; Group 2a - 2.32mg; Group 2b - 2.66mg; Group 3a - 6.66mg; Group 3b - 6.88mg. Among the groups of telsons, the first and the second groups showed different characteristics. However, there were no differences between their toxicity. In the third group, a fourfold amount of telsons was used for toxicity. In other words, telsons weighting from 19.99 to 20mg (first group) and from 29.99 to 30mg (second group) presented similar LD50 values, and telsons weighting from 10 to 19.99mg (third group) showed a fourfold higher LD50 value. This difference was caused by the maturity of scorpions and venom toxicity was related to their size. The first and second groups were considered to be mature and the third group, not adult. Therefore, we can conclude that obtaining open telsons due to environmental factors was not effective for venom toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA