Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Hum Brain Mapp ; 45(9): e26771, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925589

RESUMEN

Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.


Asunto(s)
Imagen de Difusión Tensora , Macaca mulatta , Vías Nerviosas , Lóbulo Parietal , Lóbulo Temporal , Humanos , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Lóbulo Parietal/anatomía & histología , Animales , Imagen de Difusión Tensora/métodos , Masculino , Adulto , Femenino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Adulto Joven , Axones/fisiología , Conectoma , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Giro del Cíngulo/anatomía & histología
2.
Brain Commun ; 6(2): fcae097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572268

RESUMEN

Two variants of semantic dementia are recognized based on the laterality of temporal lobe involvement: a left-predominant variant associated with verbal knowledge impairment and a right-predominant variant associated with behavioural changes and non-verbal knowledge loss. This cross-sectional clinicoradiologic study aimed to assess whole hippocampal, subregion, and/or subfield volume loss in semantic dementia versus controls and across its variants. Thirty-five semantic dementia participants and 15 controls from the Neurodegenerative Research Group at Mayo Clinic who had completed 3.0-T volumetric magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography were included. Classification as left-predominant (n = 25) or right-predominant (n = 10) variant was based on temporal lobe hypometabolism. Volumes of hippocampal subregions (head, body, and tail) and subfields (parasubiculum, presubiculum, subiculum, cornu ammonis 1, cornu ammonis 3, cornu ammonis 4, dentate gyrus, molecular layer, hippocampal-amygdaloid transition area, and fimbria) were obtained using FreeSurfer 7. Subfield volumes were measured separately from head and body subregions. We fit linear mixed-effects models using log-transformed whole hippocampal/subregion/subfield volumes as dependent variables; age, sex, total intracranial volume, hemisphere and a group-by-hemisphere interaction as fixed effects; and subregion/subfield nested within hemisphere as a random effect. Significant results (P < 0.05) are hereby reported. At the whole hippocampal level, the dominant (predominantly involved) hemisphere of both variants showed 23-27% smaller volumes than controls. The non-dominant (less involved) hemisphere of the right-predominant variant also showed volume loss versus controls and the left-predominant variant. At the subregional level, both variants showed 17-28% smaller dominant hemisphere head, body, and tail than controls, with the right-predominant variant also showing 8-12% smaller non-dominant hemisphere head than controls and left-predominant variant. At the subfield level, the left-predominant variant showed 12-36% smaller volumes across all dominant hemisphere subfields and 14-15% smaller non-dominant hemisphere parasubiculum, presubiculum (head and body), subiculum (head) and hippocampal-amygdaloid transition area than controls. The right-predominant variant showed 16-49% smaller volumes across all dominant hemisphere subfields and 14-22% smaller parasubiculum, presubiculum, subiculum, cornu ammonis 3, hippocampal-amygdaloid transition area (all from the head) and fimbria of non-dominant hemisphere versus controls. Comparison of dominant hemispheres showed 16-29% smaller volumes of the parasubiculum, presubiculum (head) and fimbria in the right-predominant than left-predominant variant; comparison of non-dominant hemispheres showed 12-15% smaller cornu ammonis 3, cornu ammonis 4, dentate gyrus, hippocampal-amygdaloid transition area (all from the head) and cornu ammonis 1, cornu ammonis 3 and cornu ammonis 4 (all from the body) in the right-predominant variant. All hippocampal subregion/subfield volumes are affected in semantic dementia, although some are more affected in both dominant and non-dominant hemispheres of the right-predominant than the left-predominant variant by the time of presentation. Involvement of hippocampal structures is apparently more subregion dependent than subfield dependent, indicating possible superiority of subregion volumes as disease biomarkers.

3.
Sleep Med ; 116: 81-89, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432031

RESUMEN

OBJECTIVE: There was more than a 10-fold increase in the incidence of narcolepsy type 1 (NT1) after the H1N1 mass vaccination in 2009/2010 in several countries. NT1 is associated with loss and increase of cell groups in the hypothalamus which may be associated with secondary affected sub-cortical and cortical gray matter. We performed a case-control comparison of MRI-based global and sub-cortical volume and cortical thickness in post-H1N1 NT1 patients compared with controls. METHODS: We included 54 post-H1N1 NT1 patients (51 with confirmed hypocretin-deficiency; 48 H1N1-vaccinated with Pandemrix®; 39 females, mean age 21.8 ± 11.0 years) and 114 healthy controls (77 females, mean age 23.2 ± 9.0 years). 3T MRI brain scans were obtained, and the T1-weighted MRI data were processed using FreeSurfer. Group differences among three global, 10 sub-cortical volume measures and 34 cortical thickness measures for bilateral brain regions were tested using general linear models with permutation testing. RESULTS: Patients had significantly thinner brain cortex bilaterally in the temporal poles (Cohen's d = 0.68, p = 0.00080), entorhinal cortex (d = 0.60, p = 0.0018) and superior temporal gyrus (d = 0.60, p = 0.0020) compared to healthy controls. The analysis revealed no significant group differences for sub-cortical volumes. CONCLUSIONS: Post-H1N1(largely Pandemrix®-vaccinated) NT1 patients have significantly thinner cortex in temporal brain regions compared to controls. We speculate that this effect can be partly attributed to the hypothalamic neuronal change in NT1, including loss of function of the widely projecting hypocretin-producing neurons and secondary effects of the abnormal sleep-wake pattern in NT1 or could be specific for post-H1N1 (largely Pandemrix®-vaccinated) NT1 patients.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Narcolepsia , Femenino , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Orexinas , Estudios de Casos y Controles , Narcolepsia/etiología , Imagen por Resonancia Magnética , Encéfalo
4.
Front Neuroanat ; 17: 1240545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090110

RESUMEN

The temporal pole (TP) is considered one of the major paralimbic cortical regions, and is involved in a variety of functions such as sensory perception, emotion, semantic processing, and social cognition. Based on differences in cytoarchitecture, the TP can be further subdivided into smaller regions (dorsal, ventrolateral and ventromedial), each forming key nodes of distinct functional networks. However, the brain structural connectivity profile of TP subregions is not fully clarified. Using diffusion MRI data in a set of 31 healthy subjects, we aimed to elucidate the comprehensive structural connectivity of three cytoarchitectonically distinct TP subregions. Diffusion tensor imaging (DTI) analysis suggested that major association fiber pathways such as the inferior longitudinal, middle longitudinal, arcuate, and uncinate fasciculi provide structural connectivity to the TP. Further analysis suggested partially overlapping yet still distinct structural connectivity patterns across the TP subregions. Specifically, the dorsal subregion is strongly connected with wide areas in the parietal lobe, the ventrolateral subregion with areas including constituents of the default-semantic network, and the ventromedial subregion with limbic and paralimbic areas. Our results suggest the involvement of the TP in a set of extensive but distinct networks of cortical regions, consistent with its functional roles.

5.
Creat Res J ; 35(3): 471-480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576950

RESUMEN

Studies suggest that internally oriented cognitive processes are central to creativity. Here, we distinguish between intentional and unintentional forms of mind wandering and explore their behavioral and neural correlates. We used a sample of 155 healthy adults from the mind-brain-body dataset, all of whom completed resting-state fMRI scans and trait-level measures of mind wandering. We analyzed intentional and unintentional mind wandering tendencies using self-report measures. Next, we explored the relationship between mind wandering tendencies and creativity, as measured by a divergent thinking task. Finally, we describe patterns of resting-state network connectivity associated with mind wandering, using graph theory analysis. At the behavioral level, results showed a significant positive association between creativity and both intentional and unintentional mind wandering. Neuroimaging analysis revealed higher weighted degree connectivity associated with both forms of mind wandering, implicating core regions of the default network and the left temporal pole. We observed topological connectivity differences within the default network: intentional mind wandering was associated with degree connectivity in posterior regions, whereas unintentional mind wandering showed greater involvement of prefrontal areas. Overall, the findings highlight patterns of resting-state network connectivity associated with intentional and unintentional mind wandering, and provide novel evidence of a link between mind wandering and creativity.

6.
Brain ; 146(1): 20-41, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36331542

RESUMEN

Following prolonged neglect during the formative decades of behavioural neurology, the temporopolar region has become a site of vibrant research on the neurobiology of cognition and conduct. This turnaround can be attributed to increasing recognition of neurodegenerative diseases that target temporopolar regions for peak destruction. The resultant syndromes include behavioural dementia, associative agnosia, semantic forms of primary progressive aphasia and semantic dementia. Clinicopathological correlations show that object naming and word comprehension are critically dependent on the language-dominant (usually left) temporopolar region, whereas behavioural control and non-verbal object recognition display a more bilateral representation with a rightward bias. Neuroanatomical experiments in macaques and neuroimaging in humans show that the temporoparietal region sits at the confluence of auditory, visual and limbic streams of processing at the downstream (deep) pole of the 'what' pathway. The functional neuroanatomy of this region revolves around three axes, an anterograde horizontal axis from unimodal to heteromodal and paralimbic cortex; a radial axis where visual (ventral), auditory (dorsal) and paralimbic (medial) territories encircle temporopolar cortex and display hemispheric asymmetry; and a vertical depth-of-processing axis for the associative elaboration of words, objects and interoceptive states. One function of this neural matrix is to support the transformation of object and word representations from unimodal percepts to multimodal concepts. The underlying process is likely to start at canonical gateways that successively lead to generic (superordinate), specific (basic) and unique levels of recognition. A first sign of left temporopolar dysfunction takes the form of taxonomic blurring where boundaries among categories are preserved but not boundaries among exemplars of a category. Semantic paraphasias and coordinate errors in word-picture verification tests are consequences of this phenomenon. Eventually, boundaries among categories are also blurred and comprehension impairments become more profound. The medial temporopolar region belongs to the amygdalocentric component of the limbic system and stands to integrate exteroceptive information with interoceptive states underlying social interactions. Review of the pertinent literature shows that word comprehension and conduct impairments caused by temporopolar strokes and temporal lobectomy are far less severe than those seen in temporopolar atrophies. One explanation for this unexpected discrepancy invokes the miswiring of residual temporopolar neurons during the many years of indolently progressive neurodegeneration. According to this hypothesis, the temporopolar regions become not only dysfunctional but also sources of aberrant outputs that interfere with the function of areas elsewhere in the language and paralimbic networks, a juxtaposition not seen in lobectomy or stroke.


Asunto(s)
Accidente Cerebrovascular , Lóbulo Temporal , Humanos , Lóbulo Temporal/patología , Encéfalo/diagnóstico por imagen , Corteza Cerebral/patología , Lenguaje , Semántica , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética/métodos
7.
Brain Dev ; 45(1): 82-86, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36115749

RESUMEN

BACKGROUND: Meningoencephalocele (ME) of the temporal lobe through a bone defect in the middle cranial fossa is a rare known cause of refractory temporal lobe epilepsy (TLE). ME-induced drug-resistant TLE has been described in adults; however, its incidence in children is very rare. CASE REPORT: A 7-year-old girl presented at our hospital with brief episodes of impaired consciousness and enuresis. Initial brain MRI results were interpreted as normal. Her seizures could not be controlled even with multiple anti-seizure medications. She was diagnosed with drug-resistant TLE, which presented with prolonged impaired awareness seizures for 30-60 s and secondary bilateral tonic seizures. At 9 years of age, brain MRI revealed a left temporal anteroinferior ME with a congenital bone defect in the left middle cranial fossa. She was referred for presurgical epilepsy evaluation. Long-term video electroencephalography (EEG) failed to reveal regional abnormality in the left temporal lobe; invasive evaluation using stereoelectroencephalography (SEEG) was thus indicated. Ictal onset SEEG was identified in the temporal pole near the ME which was rapidly propagated to the mesial temporal structures and other cortical regions. The left temporal pole including the ME was micro-surgically disconnected while preserving the hippocampus and amygdala. The patient's seizures have been completely controlled for 1 year and 6 months post-operatively. CONCLUSION: SEEG revealed rapid propagation of ictal activity in this patient's case, confirming that the ME was epileptogenic. Since the majority of patients with refractory epilepsy caused by ME have favorable postoperative seizure outcomes, it is important to carefully check for ME in drug-resistant TLE patients with apparently normal MRI.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Niño , Adulto , Femenino , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/etiología , Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/cirugía , Electroencefalografía/métodos , Imagen por Resonancia Magnética , Resultado del Tratamiento
8.
Front Psychiatry ; 13: 1072272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532174

RESUMEN

Background: Children with autism spectrum disorder (ASD) and developmental delay (DD; ASD + DD) have more severe clinical symptoms than those with ASD without DD (ASD-only). However, little is known about the underlying neuroimaging mechanisms. The aim of this study was to explore the volumetric difference between patients with ASD + DD and ASD-only and investigate the relationship between brain alterations and clinical manifestations. Materials and methods: A total of 184 children with ASD aged 2-6 years were included in this study, who were divided into two groups according to their cognitive development: ASD + DD and ASD-only. Clinical symptoms and language development were assessed using the Autism Diagnostic Observation Schedule (ADOS), Childhood Autism Rating Scale (CARS), and the Putonghua Communicative Development Inventory. Of the 184 children, 60 age-matched males (30 ASD + DD and 30 ASD-only patients) with high-resolution structural neuroimaging scans were included for further voxel-based morphometry analysis to examine the relationship between clinical symptoms and gray matter volumes. Results: The ASD + DD group had higher CARS and ADOS scores, lower gesture scores, and poorer performance in "responding to joint attention" (RJA) and "initiating joint attention" than the ASD-only group. Larger gray matter volumes in the temporal poles of the right and left middle temporal gyri were associated with the co-occurrence of DD in patients with ASD. Moreover, temporopolar volumes were correlated with CARS and ADOS scores, gesture scores, and RJA ability. Pre-language development significantly mediated the relationship between temporopolar volumes and both CARS and ADOS scores; RJA ability, but not gesture development, contributed to this mediating effect. Conclusion: In this study, we found that temporopolar volumes were enlarged in patients with ASD who had comorbid DD, and these patients showed an association between symptom severity and language ability during the pre-language stage. Offering early interventions focused on RJA and the temporal pole may help improve clinical symptoms.

9.
Neurocase ; 28(5): 439-447, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548912

RESUMEN

While there is strong evidence from lesion and functional imaging studies implicating the left anterior temporal pole (LTP) in naming unique entities, less is known about white matter tracts in category-specific naming. We present evidence that implicates the uncinate fasciculus (UF) in proper noun naming. First, we describe two patients with left LTP gliomas who developed category specific worsening in proper noun naming in real time during awake surgery when the UF was surgically involved . We then describe a third case involving targeted electrical stimulation of the UF using stereo-electroencephalography (sEEG) that resulted in category specific naming disturbance for proper nouns..


Asunto(s)
Neoplasias Encefálicas , Sustancia Blanca , Humanos , Neoplasias Encefálicas/patología , Fascículo Uncinado/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Sustancia Blanca/patología , Vigilia , Electroencefalografía , Estimulación Eléctrica
10.
Neuroimage Clin ; 36: 103201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36126518

RESUMEN

This study aimed to evaluate the use of diffusion kurtosis imaging (DKI) to detect microstructural abnormalities within the temporal pole (TP) and its temporopolar cortex in temporal lobe epilepsy (TLE) patients. DKI quantitative maps were obtained from fourteen lesional TLE and ten non-lesional TLE patients, along with twenty-three healthy controls. Data collected included mean (MK); radial (RK) and axial kurtosis (AK); mean diffusivity (MD) and axonal water fraction (AWF). Automated fiber quantification (AFQ) was used to quantify DKI measurements along the inferior longitudinal (ILF) and uncinate fasciculus (Unc). ILF and Unc tract profiles were compared between groups and tested for correlation with disease duration. To characterize temporopolar cortex microstructure, DKI maps were sampled at varying depths from superficial white matter (WM) towards the pial surface. Patients were separated according to the temporal lobe ipsilateral to seizure onset and their AFQ results were used as input for statistical analyses. Significant differences were observed between lesional TLE and controls, towards the most temporopolar segment of ILF and Unc proximal to the TP within the ipsilateral temporal lobe in left TLE patients for MK, RK, AWF and MD. No significant changes were observed with DKI maps in the non-lesional TLE group. DKI measurements correlated with disease duration, mostly towards the temporopolar segments of the WM bundles. Stronger differences in MK, RK and AWF within the temporopolar cortex were observed in the lesional TLE and noticeable differences (except for MD) in non-lesional TLE groups compared to controls. This study demonstrates that DKI has potential to detect subtle microstructural alterations within the temporopolar segments of the ILF and Unc and the connected temporopolar cortex in TLE patients including non-lesional TLE subjects. This could aid our understanding of the extrahippocampal areas, more specifically the temporal pole role in seizure generation in TLE and might inform surgical planning, leading to better seizure outcomes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Sustancia Blanca , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Lóbulo Temporal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Convulsiones
11.
Handb Clin Neurol ; 187: 263-275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35964976

RESUMEN

In this chapter, the literature concerning the dissociation between concrete and abstract words is reviewed, with a specific focus on the role of the temporal lobes. A number of studies have demonstrated the so-called "concreteness effect," that is, the superior processing of concrete versus abstract words. However, some neuropsychological patients have been described with a reversal of concreteness effect, namely, a better performance with abstract than concrete words. Available data suggest that the most frequent causes of this reversed effect are herpes simplex encephalitis and semantic dementia, which typically affect bilaterally anterior temporal regions. Direct electrical stimulation of the left temporal pole further supports this correlation, while the neuroimaging literature is more controversial. In fact, data from neuroimaging studies show either that abstract and concrete noun processing at least partly relies on the activation of a common left-lateralized network, or that abstract word processing is supported by the activation of networks within the left inferior frontal gyrus and the middle temporal gyrus. In between abstract and concrete concepts are idioms, which are represented by concrete actions conveying abstract mental states and events. The involvement of the temporal lobes in processing this particular figure of language is discussed.


Asunto(s)
Mapeo Encefálico , Lóbulo Temporal , Humanos , Neuroimagen , Corteza Prefrontal , Tiempo de Reacción/fisiología , Lóbulo Temporal/fisiología
12.
Handb Clin Neurol ; 187: 287-302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35964978

RESUMEN

The present chapter reviews the body of knowledge acquired so far about the role of the temporal lobe in representing and processing proper names and individual identity information. This body of knowledge has been collected with the contribution of several methodologies, including neuroimaging, electrophysiological techniques, and, critically, clinical observations. All this evidence converges in showing that proper names and related information are processed in at least partially independent neural networks mainly placed in the anterior areas of the left temporal lobe. A description of the properties distinguishing proper names from common names is provided. These properties, it will be claimed, made a different anatomical organization necessary and, possibly, determined the evolution of the brain to support this advantageous distinction in meeting environmental demands.


Asunto(s)
Nombres , Encéfalo/fisiología , Humanos , Neuroimagen , Lóbulo Temporal/fisiología
13.
Handb Clin Neurol ; 187: 303-317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35964980

RESUMEN

The anterior temporal lobes (ATLs) have been shown to be crucial for recognition and naming of unique entities such as persons and places. In this chapter, we review previous research that identified the neural underpinnings of these processes, and discuss the convergence zone theory of conceptual knowledge and proper name retrieval. Lesion-deficit and neuroimaging studies have found that the temporal poles are essential for recognition and naming of unique persons and places. Research has shown laterality, in that the right anterior temporal pole is specialized for recognition and the left for naming. Here, we analyzed recognition and naming of persons and landmarks in a large neurologic sample (N=244) using the Iowa Famous Faces and Famous Landmarks tests. For both categories, education had a significant effect on recognition and naming performances, but age and gender did not. Lesion-symptom maps revealed lower naming scores for both Faces and Landmarks associated with lesions to the anterior and mesial left temporal lobe. Lower recognition scores were also linked to left temporal lobe damage, possibly due to the method we used for measuring recognition (verbally based). Overall, the results demonstrate the importance of the temporal lobes for recognition and naming of unique persons and places.


Asunto(s)
Personajes , Nombres , Humanos , Pruebas Neuropsicológicas , Reconocimiento en Psicología , Lóbulo Temporal/patología
14.
Front Aging Neurosci ; 14: 826672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431898

RESUMEN

The number of older adults is increasing globally. Aging is associated with cognitive and sensory decline. Additionally, declined auditory performance and cognitive function affect the quality of life of older adults. Therefore, it is important to develop an intervention method to improve both auditory and cognitive performances. The current study aimed to investigate the beneficial effects of auditory and cognitive training on auditory ability and cognitive functions in healthy older adults. Fifty healthy older adults were randomly divided into four training groups-an auditory-cognitive training group (AC training; n = 13), an auditory training group (A training; n = 13), a cognitive training group (C training; n = 14), and an active control group (n = 12). During the training period, we reduced the sound intensity level in AC and A training groups and increase training task difficulty in AC, A, and C training groups based on participants' performance. Cognitive function measures [digit-cancelation test (D-CAT); logical memory (LM); digit span (DS)], auditory measures [pure-tone audiometry (PTA)], and magnetic resonance imaging (MRI) scans were performed before and after the training periods. We found three key findings. First, the AC training group showed difference between other training groups (A, C, and active control training groups) in regional gray matter volume (rGMV) in the right dorsolateral prefrontal cortex, the left inferior temporal gyrus (L. ITG), the left superior frontal gyrus, the left orbitofrontal cortex, the right cerebellum (lobule 7 Crus 1). Second, the auditory training factor groups (ATFGs, the AC and A training groups) improved auditory measures and increased the rGMV and functional connectivity (FC) in the left temporal pole compared to the non-ATFGs (the C training group and active control group). Third, the cognitive training factor groups (CTFGs; the AC and C training groups) showed statistically significant improvement in cognitive performances in LM and D-CAT compared to the non-CTFGs (the A training group and active control group). Therefore, the auditory training factor and cognitive training factor would be useful in enhancing the quality of life of older adults. The current AC training study, the plasticity of the brain structure was observed after 4 weeks of training.

15.
Alzheimers Res Ther ; 14(1): 50, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382868

RESUMEN

BACKGROUND: The ability to understand emotions is often disturbed in patients with cognitive impairments. Right temporal lobe structures play a crucial role in emotional processing, especially the amygdala, temporal pole (TP), superior temporal sulcus (STS), and anterior cingulate (AC). Those regions are affected in early stages of Alzheimer´s disease (AD). The aim of our study was to evaluate emotional prosody recognition (EPR) in participants with amnestic mild cognitive impairment (aMCI) due to AD, AD dementia patients, and cognitively healthy controls and to measure volumes or thickness of the brain structures involved in this process. In addition, we correlated EPR score to cognitive impairment as measured by MMSE. The receiver operating characteristic (ROC) analysis was used to assess the ability of EPR tests to differentiate the control group from the aMCI and dementia groups. METHODS: Eighty-nine participants from the Czech Brain Aging Study: 43 aMCI due to AD, 36 AD dementia, and 23 controls, underwent Prosody Emotional Recognition Test. This experimental test included the playback of 25 sentences with neutral meaning each recorded with different emotional prosody (happiness, sadness, fear, disgust, anger). Volume of the amygdala and thickness of the TP, STS, and rostral and caudal parts of AC (RAC and CAC) were measured using FreeSurfer algorithm software. ANCOVA was used to evaluate EPR score differences. ROC analysis was used to assess the ability of EPR test to differentiate the control group from the aMCI and dementia groups. The Pearson's correlation coefficients were calculated to explore relationships between EPR scores, structural brain measures, and MMSE. RESULTS: EPR was lower in the dementia and aMCI groups compared with controls. EPR total score had high sensitivity in distinguishing between not only controls and patients, but also controls and aMCI, controls and dementia, and aMCI and dementia. EPR decreased with disease severity as it correlated with MMSE. There was a significant positive correlation of EPR and thickness of the right TP, STS, and bilateral RAC. CONCLUSIONS: EPR is impaired in AD dementia and aMCI due to AD. These data suggest that the broad range of AD symptoms may include specific deficits in the emotional sphere which further complicate the patient's quality of life.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/psicología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Emociones , Humanos , Pruebas Neuropsicológicas , Calidad de Vida , Reconocimiento en Psicología
16.
Hum Brain Mapp ; 43(11): 3461-3468, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35420729

RESUMEN

Human neuroimaging studies have demonstrated that exercise influences the cortical structural plasticity as indexed by gray or white matter volume. It remains elusive, however, whether exercise affects cortical changes at the finer-grained myelination structure level. To answer this question, we scanned 28 elite golf players in comparison with control participants, using a novel neuroimaging technique-quantitative magnetic resonance imaging (qMRI). The data showed myeloarchitectonic plasticity in the left temporal pole of the golf players: the microstructure of this brain region of the golf players was better proliferated than that of control participants. In addition, this myeloarchitectonic plasticity was positively related to golfing proficiency. Our study has manifested that myeloarchitectonic plasticity could be induced by exercise, and thus, shed light on the potential benefits of exercise on brain health and cognitive enhancement.


Asunto(s)
Golf , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Sustancia Blanca/diagnóstico por imagen
17.
Brain Sci ; 12(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35326271

RESUMEN

Individuals often anticipate an unrealistically favorable future for themselves (personal optimism bias) or others (social optimism bias). While such biases are well established, little is known about their neuroanatomy. In this study, participants engaged in a soccer task and estimated the likelihood of successful passes in personal and social scenarios. Voxel-based morphometry revealed that personal optimism bias varied as a positive function of gray matter volume (GMV) in the putamen, frontal pole, hippocampus, temporal pole, inferior temporal gyrus, visual association areas, and mid-superior temporal gyrus. Social optimism bias correlated positively with GMV in the temporoparietal junction and negatively with GMV in the inferior temporal gyrus and pre-supplementary motor areas. Together, these findings suggest that parts of our optimistic outlook are biologically rooted. Moreover, while the two biases looked similar at the behavioral level, they were related to distinct gray matter structures, proposing that their underlying mechanisms are not identical.

18.
Soc Neurosci ; 17(2): 117-126, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35130823

RESUMEN

Shame and guilt are distinct negative moral emotions, although they are usually regarded as overlapping affective experiences. Of these two emotions, shame is more closely related to concerns about other people's judgment, whereas guilt is more related to concerns about one's own judgment. Although some studies have tried to identify the psychological process underlying shame as opposed to guilt, there is no clear evidence of brain regions that are specifically relevant to the experience of shame rather than guilt and, more generally, self-blame. We therefore investigated associations between individual differences in shame- and guilt-proneness and the gray and white matter structures of the brain using magnetic resonance imaging and voxel-based morphometry while controlling for associations with guilt- or shame-proneness. To accomplish this goal, we enrolled 590 healthy, right-handed individuals (338 men and 252 women; age, 20.6 ± 1.8 years). We administered a questionnaire to assess shame proneness and guilt proneness. Based on our hypothesis, we found that high shame proneness was associated with decreased regional white matter density only in the right inferior temporal pole, whereas no significant region was associated with guilt. The function of this area may be important for the underlying processes differentiating shame from guilt.


Asunto(s)
Individualidad , Sustancia Blanca , Adolescente , Adulto , Emociones , Femenino , Culpa , Humanos , Masculino , Vergüenza , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
19.
Neuroradiol J ; : 19714009211067404, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989268

RESUMEN

While abnormalities of the hippocampus have been well characterized in temporal lobe epilepsy, various additional temporal lobe abnormalities have also been described. One poorly understood entity, the so-called temporal pole blurring (TPB), is one of the more frequently described neocortical abnormalities in TLE and is thought to represent dysmyelination and axonal loss due to chronic electrical perturbations in early age-onset temporal lobe epilepsy. In this study, we describe the first reported cases of TPB diagnosed by a recently described MRI sequence known as 3D Edge-Enhancing Gradient Echo (3D-EDGE), which has an effective "myelin weighting" making it exquisitely sensitive to this temporal pole dysmyelination. The value of detection of TPB lies in lateralizing seizure onset, as well as predicting a lower baseline neuropsychological performance compared to temporal lobe epilepsy without TPB. Additionally, it is critical to not mistake TPB for alternative diagnoses, such as focal cortical dysplasia or neoplasm.

20.
Epileptic Disord ; 24(1): 1-8, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34796882

RESUMEN

We present an illustrative case to address anterior temporal lobe atrophy with poor delineation of the temporopolar gray-white matter interface based on T2-weighted and fluid-attenuated inversion recovery (FLAIR) images in patients with temporal lobe epilepsy associated with hippocampal sclerosis (TLE-HS). A 52-year-old woman with pharmacoresistant seizures since the age of six months underwent a previous MRI scan using a suboptimal protocol which was reported as unremarkable. MRI performed according to an epilepsy protocol showed classic signs of left HS and ipsilateral temporal polar atrophy with blurring of the gray-white matter boundary on FLAIR images. She underwent a left amygdalohippocampectomy and anterior temporal resection and remains seizure-free after 24 months. Histopathological analyses showed HS and no signs of focal cortical dysplasia (FCD). Blurring and atrophy of the ipsilateral temporal pole are common in TLE-HS and often misinterpreted as FCD. This relates to delayed myelination in patients with seizures before the age of two, is more pronounced on FLAIR sequences, and gives a false impression of cortical thickening. However, the T1-weighted images show a relatively well-demarcated cortical-subcortical transition and normal cortical thickness. By contrast, the cortical thickening in FCD is observed on both T1-weighted and FLAIR images. Since FCD also occurs in temporal lobe regions, it is important to differentiate the extra-hippocampal MRI abnormalities in TLE-HS from those likely to be FCD. This case highlights the importance of evaluation based on detailed imaging, which should always be conducted considering the EEG, seizure semiology, and other clinical information.


Asunto(s)
Sustancia Gris , Hipocampo , Sustancia Blanca , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Esclerosis , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA