Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277783

RESUMEN

Bacterial communities in river sediments are shaped by a trade-off between dispersal from upstream or nearby land and selection by the local environmental conditions. In temporary rivers (i.e., those characterized by long drying periods and subsequent rewetting) seasonal hydrological dynamics shape bacterial communities by connecting or disconnecting different river habitats. In this study, we tracked and compared the temporal and spatial changes in the composition of bacterial communities in streambed sediments and floodplain habitats across both permanent and intermittent river segments. Our findings revealed that environmental selection played a key role in assembling bacterial communities in both segments. We argue that distinct environmental features act as filters at the local scale, favoring specific bacterial taxa in isolated pools and promoting some typically terrestrial taxa in dry areas. Considering the prospective extension of drying intervals due to climate change, our results suggest an emerging trend wherein bacterial assemblages in temporary streams progressively incorporate microorganisms of terrestrial origin, well-adapted to tolerate desiccation phases. This phenomenon may constitute an integral facet of the broader adaptive dynamics of temporary river ecosystems in response to the impacts of climate change.

2.
Ecography ; 44(10): 1511-1523, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34720401

RESUMEN

The current erosion of biodiversity is a major concern that threatens the ecological integrity of ecosystems and the ecosystem services they provide. Due to global change, an increasing proportion of river networks are drying and changes from perennial to non-perennial flow regimes represent dramatic ecological shifts with potentially irreversible alterations of community and ecosystem dynamics. However, there is minimal understanding of how biological communities respond functionally to drying. Here, we highlight the taxonomic and functional responses of aquatic macroinvertebrate communities to flow intermittence across river networks from three continents, to test predictions from underlying trait-based conceptual theory. We found a significant breakpoint in the relationship between taxonomic and functional richness, indicating higher functional redundancy at sites with flow intermittence higher than 28%. Multiple strands of evidence, including patterns of alpha and beta diversity and functional group membership, indicated that functional redundancy did not compensate for biodiversity loss associated with increasing intermittence, contrary to received wisdom. A specific set of functional trait modalities, including small body size, short life span and high fecundity, were selected with increasing flow intermittence. These results demonstrate the functional responses of river communities to drying and suggest that on-going biodiversity reduction due to global change in drying river networks is threatening their functional integrity. These results indicate that such patterns might be common in these ecosystems, even where drying is considered a predictable disturbance. This highlights the need for the conservation of natural drying regimes of intermittent rivers to secure their ecological integrity.

3.
Biology (Basel) ; 10(4)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918970

RESUMEN

Intermittent rivers and ephemeral streams (IRES) are increasingly studied because of their often-unique aquatic and terrestrial biodiversity, biogeochemical processes and associated ecosystem services. This study is the first to examine the hydrological, physicochemical and taxonomic variability during the dry-wet transition of an intermittent river in the Chilean Mediterranean Zone. Based on 30-years of river monitoring data and the TREHS tool, the hydrology of the river was characterised. Overall, the river shows a significant reduction in streamflow (-0.031 m3/s per year) and a substantial increase of zero flow days (+3.5 days per year). During the transition of hydrological states, variations were observed in the environmental conditions and invertebrate communities. During the drying phase, abundance, richness, and diversity were highest, while species turn-over was highest during base flow conditions. The disconnected pools and the flow resumption phases were characterised by high proportions of lentic taxa and non-insects, such as the endemic species of bivalves, gastropods, and crustaceans, highlighting the relevance of disconnected pools as refuges. Future climatic change scenarios are expected to impact further the hydrology of IRES, which could result in the loss of biodiversity. Biomonitoring and conservation programmes should acknowledge these important ecosystems.

4.
Water Res ; 173: 115550, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32035279

RESUMEN

River restoration with the use of in-stream structures has been widely implemented to maintain/improve physical habitats. However, the response of aquatic biota has often been too weak to justify the high costs of restoration projects. The ecological effectiveness of river restoration has thus been much debated over claims that large-scale environmental drivers often overshadow the potential positive ecological effects of locally placed in-stream structures. In this study, we used a two-dimensional hydrodynamic-habitat model to evaluate the ecological effectiveness of habitat restoration with the use of in-stream structures in various water discharges, ranging from near-dry to environmental flows. The habitat suitability of benthic macroinvertebrates and of three cyprinid fish species was simulated for six restoration schemes and at four discharge scenarios, and was compared with a reference model, without in-stream structures. We found that the ecological response to habitat restoration varied by species and life stages, it strongly depended on the reach-scale flow conditions, it was often negative at near-environmental flows, and when positive, mostly at near-dry flows, it was too low to justify the high costs of river restoration. Flow variation was the major environmental driver that our local habitat restoration schemes attempted -but mostly failed-to fine-tune. We conclude that traditional river restoration, based on trial and error, will likely fail and should be ecologically pre-optimized before field implementation. Widespread use of in-stream structures for ecological restoration is not recommended. However, at near-dry flows, the response of all biotic elements except for macroinvertebrates, was positive. In combination with the small habitat-suitability differences observed among structure types and densities, we suggest that sparse/moderate in-stream structure placement can be used for cost-effective river restoration, but it will only be ecologically effective -thus justifying the high implementation costs-when linked to very specific purposes: (i) to conserve endangered species and (ii) to increase/improve habitat availability/suitability during dry periods, thus proactively preventing/reducing the current and future ecological impacts of climate change.


Asunto(s)
Monitoreo del Ambiente , Ríos , Animales , Ecología , Ecosistema , Peces
5.
Neotrop. ichthyol ; 18(4): e200063, 2020. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1143343

RESUMEN

Among Neotropical freshwater ecoregions, the Mid-Northeastern Caatinga (MNCE) is a fish knowledge gap. Its temporary drainages are receptors of the São Francisco interbasin water transfer project (SFR-IWT) in the Brazilian semiarid. We provide a comprehensive baseline of fish richness of the five SFR-IWT basins. Species richness, shared, endemic, threatened and non-native species were obtained using sampling, ichthyologic collections, literature and online repositories (306 localities). In total 121, species were recorded, 111 of them native, and 16 (14.41%) listed for all basins. Higher richness of native species (78, 70.27%) was recorded in the São Francisco lower-middle stretch (SFRE), including 23 endemic, 61 (54.95%) in MNCE basins (13 endemic), and 28 (25.23%) shared between both ecoregions. In the MNCE, 50 species were recorded in Jaguaribe (JAG), 39 in Piranhas-Açu, 36 in Paraíba do Norte, and 32 in Apodi-Mossoró (APO). The number of species shared between the SFRE and each receptor basin varied from 24 (23.08%, JAG) to 20 (22.22%, APO). JAG contains 81.97% of the receptor basins' species. Its higher richness and endemism deserve special attention regarding the ongoing hydrological changes. This study will help detect possible modifications in the ichthyofauna of the main MNCE drainages.(AU)


Dentre as ecorregiões dulcícolas neotropicais, a Nordeste Médio-Oriental (MNCE) é uma lacuna de conhecimento sobre peixes. Suas drenagens temporárias são receptoras do projeto de transposição do São Francisco (SFR-IWT) no semiárido brasileiro. Fornecemos uma linha de base abrangente da riqueza de peixes das cinco bacias do SFR-IWT. Riqueza de espécies, espécies compartilhadas, endêmicas, ameaçadas e não-nativas foram obtidas através de amostragem, coleções ictiológicas, literatura e repositórios online (306 localidades). No total, foram registradas 121 espécies, 111 nativas e 16 (14,41%) listadas para todas as bacias. A maior riqueza de espécies nativas (78, 70,27%) foi registrada no trecho sub-médio do São Francisco (SFRE), incluindo 23 endêmicas e 61 (54,95%) nas bacias da MNCE (13 endêmicas), e 28 (25,23 %) compartilhadas entre ambas ecorregiões. Na MNCE, foram registradas 50 espécies na Jaguaribe (JAG), 39 na Piranhas-Açu, 36 na Paraíba do Norte e 32 na Apodi-Mossoró (APO). O número de espécies compartilhadas entre SFRE e cada bacia receptora variou de 24 (23,08%, JAG) a 20 (22,22%, APO). JAG contém 81,97% das espécies das bacias receptoras. Sua maior riqueza e endemismo merecem atenção especial em relação às mudanças hidrológicas em curso. Este estudo ajudará a detectar possíveis modificações na ictiofauna das principais drenagens da MNCE.(AU)


Asunto(s)
Animales , Biodiversidad , Characiformes , Agua Dulce , Peces
6.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30628191

RESUMEN

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Asunto(s)
Nutrientes/análisis , Compuestos Orgánicos/análisis , Ríos/química , Biopelículas/crecimiento & desarrollo , Disponibilidad Biológica , Clima , Cambio Climático , Sedimentos Geológicos/química , Nitratos/análisis , Hojas de la Planta/química
7.
Sci Total Environ ; 647: 561-569, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30089278

RESUMEN

The contamination patterns and fate of pharmaceutically active compounds (PhACs) were investigated in the Evrotas River (Southern Greece). This is a temporary river with differing levels of water stress and water quality impairment in a number of its reaches. Three sampling campaigns were conducted in order to capture different levels of water stress and water quality. Four sampling sites located on the main channel of the Evrotas River were sampled in July 2015 (moderate stream flow), and June and September 2016 (low stream flow). Discharge of urban wastewater has been determined as the main source of pollution, with PhACs, nutrients and other physicochemical parameters considerably increasing downstream the wastewater treatment plant (WWTP) of Sparta city. Due to the pronounced hydrological variation of the Evrotas River, generally, the highest concentrations of PhACs have been detected during low flow conditions. Simultaneously, low flow resulted in an increased water travel time and consequently longer residence time that accounted for the higher attenuation of most PhACs. The average decrease in total concentration of PhACs within the studied waterbody segment (downstream of Sparta city) increased from 22% in July 2015 to 25% in June 2016 and 77% in September 2016. The PhACs with the highest average concentration decrease throughout the sampling campaigns were hydrochlorothiazide, followed by sotalol, carbamazepine, valsartan, and naproxen.


Asunto(s)
Monitoreo del Ambiente , Preparaciones Farmacéuticas/análisis , Contaminantes Químicos del Agua/análisis , Ciudades , Grecia , Ríos/química , Aguas Residuales
8.
Sci Total Environ ; 618: 1096-1113, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074240

RESUMEN

Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the 'reference conditions' that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Ríos , Conservación de los Recursos Naturales , Ecología , Europa (Continente)
9.
Environ Sci Pollut Res Int ; 24(16): 13950-13966, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27397027

RESUMEN

Temporary streams are characterised by specific hydrological regimes, which influence ecosystem processes, groundwater and surface water interactions, sediment regime, nutrient delivery, water quality and ecological status. This paper presents a methodology to characterise and classify the regime of a temporary river in Southern Italy based on hydrological indicators (HIs) computed with long-term daily flow records. By using a principal component analysis (PCA), a set of non-redundant indices were identified describing the main characteristics of the hydrological regime in the study area. The indicators identified were the annual maximum 30- and 90-day mean (DH4 and DH5), the number of zero flow days (DL6), flow permanence (MF) and the 6-month seasonal predictability of dry periods (SD6). A methodology was also tested to estimate selected HIs in ungauged river reaches. Watershed characteristics such as catchment area, gauging station elevation, mean watershed slope, mean annual rainfall, land use, soil hydraulic conductivity and available water content were derived for each site. Selected indicators were then linked to the catchment characteristics using a regression analysis. Finally, MF and SD6 were used to classify the river reaches on the basis of their degree of intermittency. The methodology presented in this paper constitutes a useful tool for ecologists and water resource managers in the Water Framework Directive implementation process, which requires a characterisation of the hydrological regime and a 'river type' classification for all water bodies.


Asunto(s)
Ríos , Calidad del Agua , Hidrología , Italia , Movimientos del Agua
10.
Sci Total Environ ; 572: 390-403, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27513735

RESUMEN

Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Sequías , Contaminantes Químicos del Agua/efectos adversos , Contaminación Química del Agua/efectos adversos , Biota/efectos de los fármacos , Medición de Riesgo
11.
Neotrop. ichthyol ; 14(1): e150098, 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-776487

RESUMEN

Abstract Parotocinclus spilurus (Fowler) was originally described as a species of Plecostomus based on six specimens collected in the rio Salgado, Icó Municipality, Ceará State, northeastern Brazil. Because the original description of P. spilurus is brief and uninformative, a detailed redescription of this endangered species based on the type series and on freshly collected topotypes was made. Data on osteology, intraspecific variation, sexual dimorphism and color pattern in life are presented for the first time, aiming at providing the necessary characters to differentiate the species from its congeners, as well as providing data on the distribution, habitat and conservation.


Resumo Parotocinclus spilurus (Fowler)foi descrita originalmente como uma espécie do gênero Plecostomus combase em seis espécimes coletados no rio Salgado, Município de Icó, Estado do Ceará. Devido à descrição original de P. spilurus ser breve e pouco informativa, uma redescrição detalhada desta espécieameaçada combase na série tipo e em topótipos recentemente coletados foi feita. Dados de osteologia, variação ontogenética, dimorfismo sexual e padrão de coloração em vida são apresentados pela primeira vez, com o objetivo de fornecer caracteres necessários para distinguir a espécie das suas demais congêneres, assim como fornecer dados de distribuição, habitat e conservação.


Asunto(s)
Animales , Bagres/clasificación , Bagres/genética
12.
Sci Total Environ ; 508: 354-65, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25497675

RESUMEN

The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the sediment yield within the catchment with the highest annual sediment yield (3.5 t ha(-1)yr(-1)) to be generated from the western part of the watershed. The developed methodology facilitated the simulation of hydrology and sediment transport of the catchment providing consistent results and suggesting its usefulness as a tool for temporary rivers management.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Modelos Químicos , Ríos/química , Contaminantes del Agua/análisis , Contaminación del Agua/estadística & datos numéricos , Grecia
13.
Mol Phylogenet Evol ; 80: 281-96, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25132127

RESUMEN

Genetic factors have direct and indirect impacts in the viability of endangered species. Assessing their genetic diversity levels and population structure is thus fundamental for conservation and management. In this paper we use mitochondrial and nuclear markers to address phylogeographic and demographic data on the critically endangered Anaecypris hispanica, using a broad sampling set which covered its known distribution area in the Iberian Peninsula. Our results showed that the populations of A. hispanica are strongly differentiated (high and significant ФST and FST values, corroborated by the results from AMOVA and SAMOVA) and genetically diversified. We suggest that the restricted gene flow between populations may have been potentiated by ecological, hydrological and anthropogenic causes. Bayesian skyline plots revealed a signal for expansion for all populations (tMRCA between 68kya and 1.33Mya) and a genetic diversity latitudinal gradient was detected between the populations from the Upper (more diversified) and the Lower (less diversified) Guadiana river basin. We postulate a Pleistocenic westwards colonization route for A. hispanica in the Guadiana river basin, which is in agreement with the tempo and mode of paleoevolution of this drainage. The colonization of River Guadalquivir around 60kya with migrants from the Upper Guadiana, most likely by stream capture, is also suggested. This study highlights the view that critically endangered species facing range retreats (about 47% of its known populations have disappeared in the last 15years) are not necessarily small and genetically depleted. However, the extinction risk is not negligible since A. hispanica faces the combined effect of several deterministic and stochastic negative factors and, moreover, recolonization events after localized extinctions are very unlikely to occur due to the strong isolation of populations and to the patchily ecologically-conditioned distribution of fish. The inferred species distribution models highlight the significant contribution of temperature seasonality and isothermality to A. hispanica occurrence in Guadiana environments and emphasize the importance of stable climatic conditions for the preservation of this species. Given the strong population structure, high percentage of private haplotypes and virtual absence of inter-basin gene flow we suggest that each A. hispanica population should be considered as an independent Operational Conservation Unit and that ex-situ and in-situ actions should be conducted in parallel to allow for the long-term survival of the species and the preservation of the genetic integrity of its populations.


Asunto(s)
Cyprinidae/genética , Sequías , Especies en Peligro de Extinción , Inundaciones , Variación Genética , Animales , Teorema de Bayes , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Flujo Génico , Haplotipos , Modelos Genéticos , Filogenia , Filogeografía , Dinámica Poblacional , Ríos , Análisis de Secuencia de ADN , España
14.
J Hum Evol ; 77: 117-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25017504

RESUMEN

Aquatic food resources are important components of many modern human hunter-gatherer diets and yet evidence attesting to the widespread exploitation of this food type appears rather late in the archaeological record. While there are times when, for example, the capture of fish and shellfish requires sophisticated technology, there are other cases when the exact ecological attributes of an individual species and the particulars of its environment make it possible for these foods to be incorporated into the human diet with little or no tool use and only a minimal time investment. In order to better understand the full set of variables that are considered in these sorts of foraging decisions, it is necessary to detail the attributes of each particular aquatic environment. We discuss here some of the characteristics of the trunk tributaries of the Nile and Blue Rivers in the Horn of Africa. Unlike typical perennial rivers, these 'temporary' rivers flow only during a brief but intense wet season; during the much longer dry season, the rivers are reduced to a series of increasingly disconnected waterholes, and the abundant and diverse fish and mollusk populations are trapped in ever smaller evaporating pools. The local human population today utilizes a number of diverse capture methods that range from simple to complex, and vary according to the size and depth of the waterhole and the time of the year. When we view the particular characteristics of an individual river system, we find that each river is 'unique' in its individual attributes. The Horn of Africa is believed to be along the route that modern humans followed on their migration out of Africa, and it is likely that the riverine-based foraging behaviors of these populations accompanied our species on its movement into the rest of the Old World.


Asunto(s)
Dieta , Ecosistema , Peces , Ríos , Alimentos Marinos , Mariscos , Animales , Evolución Biológica , Etiopía , Humanos , Lluvia , Estaciones del Año
15.
Neotrop. ichthyol ; 11(4): 787-796, 2013. tab, graf
Artículo en Inglés | LILACS | ID: lil-697868

RESUMEN

A new species of Parotocinclus is described from the upper rio Piranhas-Açu basin, northeastern Brazil. The new species differs from all its congeners, except P. bidentatus, P. muriaensis (both from rio Paraíba do Sul basin, southeastern Brazil), and P. spilurus (rio Jaguaribe basin, northeastern Brazil) by presenting the adipose fin rudimentary or absent. The new species differs from P. bidentatus, P. muriaensis, and P. spilurus mainly by presenting the abdomen region extensively naked, with few reduced rounded dermal platelets between the pectoral girdle and the anus. Parotocinclus seridoensis is probably an endemic species of the semi-arid Caatinga, region where the genus presents high species richness.


Uma espécie nova de Parotocinclus é descrita da bacia do alto rio Piranhas-Açu, nordeste do Brasil. A espécie nova difere de todas as congêneres, exceto P. bidentatus, P. muriaensis (ambas da bacia do rio Paraíba do Sul, sudeste do Brasil) e P. spilurus (bacia do rio Jaguaribe, nordeste do Brasil), por apresentar nadadeira adiposa rudimentar ou ausente. A espécie nova difere de P. bidentatus, P. muriaensis e P. spilurus principalmente por apresentar no abdômen extensas áreas nuas, com poucas placas dérmicas reduzidas e arredondadas entre a cintura peitoral e o ânus. Parotocinclus seridoensis é provavelmente uma espécie endêmica da Caatinga semi-árida, região onde o gênero apresenta elevada riqueza de espécies.


Asunto(s)
Animales , Cuencas Hidrográficas/análisis , Clasificación , Especificidad de la Especie , Peces/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA