Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Insect Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126165

RESUMEN

Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method. We also considered how current abiotic factors may affect recapture rates and interact with thermal history. We found that acclimation at 20 or 30 °C for 4 d prior to release reduced the number of recaptures in comparison with the 25 °C control group, but with no differences between groups in the willingness to disperse upon release. However, the deleterious effects of acclimation were only detectable in the first week following release, whereafter only the recent abiotic conditions explained recapture rates. In addition, we found that recent field conditions contributed more than thermal history to explain patterns of recaptures. The two most important variables affecting the number of recaptures were the maximum temperature and the average relative humidity experienced in the 24 h preceding trapping. Our results add to the handful of studies that have considered the effect of thermal acclimation on insect field performance, but notably lend support to the deleterious acclimation hypothesis among the various hypotheses that have been proposed. Finally, this study shows that there are specific abiotic conditions (cold/hot and dry) in which recaptures will be reduced, which may therefore bias estimates of wild population size.

2.
J Econ Entomol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121386

RESUMEN

Sterile insect technique (SIT) is a useful strategy for preventing and mitigative establishment of invasive insect species. SIT of the pest tephritid Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824)WiedemannWiedemann, has been effective in preventing population establishment in vulnerable agricultural areas of the United States. However, irradiation-induced sterilization can have detrimental impacts resulting in reduced performance metrics. Mediterranean fruit fly males reared for SIT have been shown to have differences in their microbiomes relative to other population sources, which has been postulated to be a factor in how well flies compete with wild conspecifics. To identify baseline performance metrics on the effects of irradiation on the gut microbiome of mass-reared flies in Hawai'i, a study was performed to assess performance metrics and microbiome (bacterial 16S rRNA) variation across multiple timepoints. Mediterranean fruit fly pupae were selected from mass-reared trays intended for release, and paired samples were either irradiated or remained as controls and transported to the laboratory for evaluation. Irradiated flies exhibited fewer successful fliers, more rapid mortality rates, and were less active relative to control nonirradiated flies. Contrary to initial expectations, irradiation did not exert substantial impacts on the composition or diversity of bacterial reads. Samples were primarily comprised of sequences classified as Klebsiella and there were low levels of both read and taxonomic diversity relative to other 16S surveys of medfly. Although this study does not demonstrate a strong effect of irradiation alone on the Mediterranean fruit fly microbiome, there are several explanations for this discrepancy.

3.
Ecol Evol ; 14(8): e70170, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139912

RESUMEN

Phytophagous insects differ in their degree of specialization to their host plants. It ranges from monophagous or oligophagous species that can only develop on a single host plant, or family of host plants, to extremely polyphagous species that can develop on plants from many distinct botanical families. The aim of this study was to compare the larval performance and adult preference of a highly generalist species, the Queensland fruit fly (Bactrocera tryoni) and a highly specialist species, the breadfruit fruit fly (B. umbrosa) among several fruits covering both species' host range. (i) larval performance was tested on 16 fruit species, and (ii) a female preference was tested on a subset of five fruit species. In addition, (iii) a field survey was carried out on 11 fruit species. B. umbrosa infested only Artocarpus fruits in the field. Accordingly, B. umbrosa larvae survived and developed only on fruits belonging to the Artocarpus genus. Female B. umbrosa did not lay their eggs on non-Artocarpus fruits, except Terminalia catappa. Female B. tryoni, on the other hand, made little selection between the fruits tested, and its larvae developed on 13 of the 16 fruit species tested. The larval performance of both species, adjusted when tested by female preference, predicted in large part the fruit infestation in the field. These data are essential to better estimate invasion risk where the species are not established.

4.
Front Plant Sci ; 15: 1401669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077508

RESUMEN

Agroclimatic variables may affect insect and plant phenology, with unpredictable effects on pest populations and crop losses. Bactrocera oleae Rossi (Diptera: Tephritidae) is a specific pest of Olea europaea plants that can cause annual economic losses of more than one billion US dollars in the Mediterranean region. In this study, we aimed at understanding the effect of olive tree phenology and other agroclimatic variables on B. oleae infestation dynamics in the Umbria region (Central Italy). Analyses were carried out on B. oleae infestation data collected in 79 olive groves during a 7-year period (from 2015 to 2021). In July-August, B. oleae infestation (1% attack) was negatively affected by altitude and spring mean daily temperatures and positively by higher winter mean daily temperatures and olive tree cumulative degree days. In September-October, infestation was negatively affected by a positive soil water balance and high spring temperatures. High altitude and cumulative plant degree days were related to delayed attacks. In contrast, high winter and spring temperatures accelerated them. Our results could be helpful for the development of predictive models and for increasing the reliability of decision support systems currently used in olive orchards.

5.
Mol Ecol Resour ; 24(6): e13987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38956928

RESUMEN

The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.


Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones , Animales , Código de Barras del ADN Taxonómico/métodos , Complejo IV de Transporte de Electrones/genética , Filogenia , Análisis de Secuencia de ADN/métodos , Tephritidae/genética , Tephritidae/clasificación
6.
Pest Manag Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994798

RESUMEN

BACKGROUND: Insecticide resistance among invasive tephritid fruit flies poses a great risk to national food security and has the potential to disrupt quarantine and eradication programs, which rely on the efficacy of Spinosad to prevent widespread establishment in North America. During 2022 to 2023 we surveyed the extent of Spinosad resistance of two key species, oriental fruit fly Bactrocera dorsalis, and melon fly Zeugodacus cucurbitae, from 20 sites across five Hawaiian Islands including Kaua'i, O'ahu, Maui, Molokai and the "Big Island" (Hawai'i). RESULTS: We used topical thoracic applications of eight concentrations of Spinosad ranging from 0.028 to 3.6 mg/mL to evaluate the lethal concentration (LC50 and LC99) required to kill wild-caught males. Resistance ratios (RR) were calculated by comparing the LC50 of wild flies to laboratory susceptible lines maintained in colony. Our results identified at least two new sites of concern for melon fly resistance on the Big Island, and at least four sites of concern for oriental fruit fly, all of which were located on the Big Island. At these locations RRs were >5. On O'ahu, melon fly RRs were >10. CONCLUSIONS: The persistence of Spinosad resistance is concerning, yet it is a reduction compared to the values reported previously and before changes to Spinosad use recommendations by local extension agents beginning in 2017. For oriental fruit fly, these RR values are the highest levels that have been detected in wild Hawai'i populations. These data suggest that expanded Spinosad reduction and replacement programs are warranted given the ongoing issues with Spinosad resistance in Hawai'i and expansion in the number of species affected. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

7.
Curr Res Insect Sci ; 5: 100084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798278

RESUMEN

Why are some species sexually dimorphic while other closely related species are not? While all females in genus Strauzia share a multiply-banded wing pattern typical of many other true fruit flies, males of four species have noticeably elongated wings with banding patterns "coalesced" into a continuous dark streak across much of the wing. We take an integrative phylogenetic approach to explore the evolution of this dimorphism and develop general hypotheses underlying the evolution of wing dimorphism in flies. We find that the origin of coalesced and other darkened male wing patterns correlate with the inferred origin of host plant sharing in Strauzia. While wing shape among non-host-sharing species tended to be conserved across the phylogeny, shapes of male wings for Strauzia species sharing the same host plant were more different from one another than expected under Brownian models of evolution and overall rates of wing shape change differed between non-host-sharing species and host-sharing species. A survey of North American Tephritidae finds just three other genera with specialist species that share host plants. Host-sharing species in these genera also have wing patterns unusual for each genus. Only genus Eutreta is like Strauzia in having the unusual wing patterns only in males, and of genera that have multiple species sharing hosts, only in Eutreta and Strauzia do males hold territories while females search for mates. We hypothesize that in species that share host plants, those where females actively search for males in the presence of congeners may be more likely to evolve sexually dimorphic wing patterns.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38695678

RESUMEN

In this present study, new chalcone derivatives were synthesized from 4-aminoacetophenone, which were confirmed by spectroscopic methods. The toxic risks of chalcones to humans and the environment were investigated by a web-based platform called ADMETlab. With this program, the possible toxic effects of the compounds on liver, respiratory system, and eyes were evaluated. For the topical insecticidal activity, adult female Caribbean fruit fly, Anastrepha suspensa, was targeted. Results of the toxicity tests showed that chalcone derivatives are effective against female A. suspensa. Among the synthesized chalcones, 1-(4-cinnamoylphenyl)-3-(p-tolyl)urea (2) exhibited the greatest insecticidal activity, resulting in 73 % mortality at 100 µg/fly after 24 h, whereas other derivatives showed less than 30 % mortality. Our results demonstrate that insecticidal activity may be modulated by the presence of a certain phenyl ring in the structure of derivative 2 and, therefore, has potential for design of efficient chemicals for tephritid fruit fly management.

9.
Front Microbiol ; 15: 1362089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756732

RESUMEN

Entomopathogenic fungi (EPF) are economical and environmentally friendly, forming an essential part of integrated pest management strategies. We screened six strains of Beauveria bassiana (B1-B6) (Hypocreales: Cordycipitaceae), of which B4 was the most virulent to Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further assessed the biological characteristics of strain B4 and the environmental factors influencing its ability to infect B. dorsalis. We also evaluated the effects of B4 on two of the natural predators of B. dorsalis. We found that strain B4 was the most virulent to 3rd instar larvae, pupae, and adult B. dorsalis, causing mortality rates of 52.67, 61.33, and 90.67%, respectively. B4 was not toxic to B. dorsalis eggs. The optimum B4 effects on B. dorsalis were achieved at a relative humidity of 91-100% and a temperature of 25°C. Among the six insecticides commonly used for B. dorsalis control, 1.8% abamectin emulsifiable concentrate had the strongest inhibitory effect on B4 strain germination. B4 spraying affected both natural enemies (Amblyseius cucumeris and Anastatus japonicus), reducing the number of A. cucumeris and killing A. japonicus adults. We found a valuable strain of EPF (B4) that is virulent against many life stages of B. dorsalis and has great potential for the biological control of B. dorsalis. We also provide an important theoretical and practical base for developing a potential fungicide to control B. dorsalis.

10.
J Invertebr Pathol ; 204: 108117, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679365

RESUMEN

Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.


Asunto(s)
Virus ARN , Tephritidae , Animales , Virus ARN/genética , Tephritidae/virología , Tephritidae/genética , India , Genoma Viral , Transcriptoma , Viroma/genética
11.
Heliyon ; 10(8): e29233, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681631

RESUMEN

Carpomya pardalina is known for its potential invasiveness, which poses a significant and alarming threat to Cucurbitaceae crops. It is considered a highly perilous pest species that requires immediate attention for quarantine and prevention. Due to the challenges in distinguishing pests of the Tephritidae family based on morphological characteristics, it is imperative to elucidate the mitochondrial genomic information of C. pardalina. In this study, the mitochondrial genome sequence of C. pardalina was determined and analyzed using next-generation sequencing. The results revealed that the mitogenome sequence had a total length of 16,257 bp, representing a typical circular molecule. It consisted of 13 PCGs, two rRNA genes, 22 tRNA genes and a non-coding region. The structure and organization of the mitochondrial genome of C. pardalina were found to be typical and similar to the published homologous sequences of other fruit flies in the Tephritidae family. Phylogenetic analysis confirmed that C. pardalina belongs to the Carpomya genus, which is consistent with traditional morphological taxonomy. Additionally, Carpomya and Rhagoletis were identified as sister groups. This study presents the first report of the complete mitochondrial genome of C. pardalina, which can serve as a valuable resource for future investigations in species diagnosis, evolutionary biology, prevention and control measures.

12.
Sci Rep ; 14(1): 6010, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472384

RESUMEN

The Mediterranean fruit fly (medfly) (Ceratitis capitata, Diptera: Tephritidae), is an extremely polyphagous pest that threatens the fruit production and trading industry worldwide. Monitoring C. capitata populations and analysing its dynamics and phenology is considered of outmost importance for designing and implementing sound management approaches. The aim of this study was to investigate the factors regulating the population dynamics of the C. capitata in a coastal and semi-mountainous area. We focused on effects of topography (e.g. elevation), host presence and seasonal patterns of ripening on the phenological patterns considering data collected in 2008. The experimental area is characterized by mixed fruit orchards, and Mediterranean climate with mild winters. Two trap types were used for population monitoring. The female targeted McPhail type and the male targeted Jackson type. Traps were placed in farms located at different elevations and landscape morphology (coastal and semi-mountainous areas). The main crops included citrus, apples, peaches, plums, pears, figs, quinces and apricots. Adult captures were first recorded in May, peaked in mid-summer and mid-autumn and almost ceased at the end of the season (January 2008). Captures in the coastal areas preceded that of highlands by 15 days. Most of the adults detected during the fruit ripening of late stone fruit cultivars (first peak) and citrus (second peak). The probability of capturing the first adults preceded almost three weeks the peak of adult captures either considering the elevation or host focus analyses. The results provide valuable information on the seasonal population trend of C. capitata in mixed fruit Mediterranean orchards and can support the set-up of IPM systems in areas with various landscapes and different hosts throughout the fruit growing season.


Asunto(s)
Ceratitis capitata , Citrus , Malus , Tephritidae , Femenino , Masculino , Animales , Ceratitis capitata/fisiología , Estaciones del Año , Clima
13.
Pestic Biochem Physiol ; 199: 105763, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458663

RESUMEN

The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.


Asunto(s)
Insecticidas , Ivermectina/análogos & derivados , Tephritidae , Animales , Insecticidas/farmacología , Malatión/toxicidad , Ciclooxigenasa 2 , Resistencia a los Insecticidas/genética , Tephritidae/genética
14.
Int J Biol Macromol ; 263(Pt 1): 130607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447848

RESUMEN

Bactrocera dorsalis is a notorious pest widely distributed across most Asian countries. With the rapid development of pesticide resistance, new pest control methods are urgently needed. RNAi-based sterile insect technique (SIT) is a species-specific pest management strategy for B. dorsalis control. It is of great significance to identify more target genes from B. dorsalis, and improve the RNAi efficiency. In this study, microinjection-based RNAi results showed that six 20E response genes were necessary for male fertility of B. dorsalis, of which E75 was identified as the key target according to the lowest egg-laying number and hatching rate after E75 knockdown. Three nanoparticles chitosan (CS), chitosan­sodium tripolyphosphate (CS-TPP), and star polycation (SPc) were used to encapsulate dsE75 expressed by HT115 strain. Properties analysis of nanoparticle-dsRNA complexes showed that both CS-TPP-dsRNA and SPc-dsRNA exhibited better properties (smaller size and polydispersity index) than CS-dsRNA. Moreover, oral administration of CS-TPP-dsE75 and SPc-dsE75 by males resulted in more abnormal testis and significantly lower fertility than feeding naked dsE75. Semi-field trials further confirmed that the number of hatched larvae was dramatically reduced in these two groups. Our study not only provides more valuable targets for RNAi-based SIT, but also promotes the application of environment-friendly management against B. dorsalis in the field.


Asunto(s)
Quitosano , Infertilidad , Nanopartículas , Tephritidae , Animales , Masculino , Interferencia de ARN , Ecdisona , Insectos , Control de Plagas
15.
J Insect Physiol ; 154: 104632, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38531436

RESUMEN

The maxillary palp is an auxiliary olfactory organ in insects, which, different from the antennae, is equipped with only a few olfactory sensory neuron (OSN) types. We postulated that these derived mouthpart structures, positioned at the base of the proboscis, may be particularly important in mediating feeding behaviors. As feeding is spatio-temporally segregated from oviposition in most Tephritidae, this taxonomic group appears quite suitable to parse out sensory breadth and potential functional divergence of palps and antennae. Scanning electron microscopy and anterograde staining underlined the limited palpal olfactory circuit in Tephritidae: only three morphological subtypes of basiconic sensilla were found, each with two neurons, and project to a total of six antennal lobe glomeruli in Bactrocera dorsalis. Accordingly, the palps detected only few volatiles from the headspace of food (fermentation and protein lures) and fruit (guava and mango) compared to the antennae (17 over 77, using gas-chromatography coupled electrophysiology). Interestingly, functionally the antennae were more tuned to fruit volatiles, detecting eight times more fruit than food volatiles (63 over 8), whereas the number of fruit and food volatile detection was more comparable in the palps (14 over 8). As tephritids diverge in oviposition preferences, but converge on food substrates, we postulated that the receptive ranges of palpal circuits would be more conserved compared to the antennae. However, palpal responses of three tephritid species that differed in phylogenetic relatedness and ecologically niche, diverged across ecological rather than phylogenetic rifts. Two species with strongly overlapping ecology, B. dorsalis and Ceratitis capitata, showed inseparable response profiles, whereas the cucurbit specialist Zeugodacus cucurbitae strongly diverged. As Z. cucurbitae is phylogenetically placed between B. dorsalis and C. capitata, the results indicate that ecology overrides phylogeny in the evolution of palpal tuning, in spite of being predisposed to detecting food volatiles.


Asunto(s)
Ceratitis capitata , Tephritidae , Femenino , Animales , Filogenia , Tephritidae/fisiología , Sensilos
16.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301265

RESUMEN

The West Indian fruit fly, Anastrepha obliqua, is a major pest of mango in Central and South America and attacks more than 60 species of host fruits. To support current genetic and genomic research on A. obliqua, we sequenced the genome using high-fidelity long-read sequencing. This resulted in a highly contiguous contig assembly with 90% of the genome in 10 contigs. The contig assembly was placed in a chromosomal context using synteny with a closely related species, Anastrepha ludens, as both are members of the Anastrepha fraterculus group. The resulting assembly represents the five autosomes and the X chromosome which represents 95.9% of the genome, and 199 unplaced contigs representing the remaining 4.1%. Orthology analysis across the structural annotation sets of high quality tephritid genomes demonstrates the gene annotations are robust, and identified genes unique to Anastrepha species that may help define their pestiferous nature that can be used as a starting point for comparative genomics. This genome assembly represents the first of this species and will serve as a foundation for future genetic and genomic research in support of its management as an agricultural pest.


Asunto(s)
Tephritidae , Animales , Tephritidae/genética , Especificidad de la Especie , Drosophila , Frutas , Cromosoma X
17.
BMC Biotechnol ; 24(1): 7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302991

RESUMEN

BACKGROUND: The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, constructed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suitable markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investigates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes. RESULTS: An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhibited complete lethality when embryos were exposed at 36 °C. CONCLUSIONS: Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease vectors.


Asunto(s)
Ceratitis capitata , Animales , Masculino , Ceratitis capitata/genética , Edición Génica , Temperatura , Mutación , Fenotipo , Control Biológico de Vectores/métodos
18.
Front Physiol ; 15: 1263475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304114

RESUMEN

The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.

19.
Insects ; 15(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38249062

RESUMEN

The application of the sterile insect technique (SIT) requires the adaptation of insects to mass-rearing conditions. It is generally accepted that this adaptation may include a reduction in genetic diversity and an associated loss of desirable characteristics for the effective performance of sterile insects in the field. Here, we compare the genetic diversity of two mass-reared strains of the Mexican fruit fly, Anastrepha ludens, and a wild (WIL) population collected near Tapachula, Mexico, using seven DNA microsatellites as molecular genetic markers. The mass-reared strains were a bisexual laboratory strain (LAB) with approximately 130 generations under mass-rearing and a genetic sexing strain, Tapachula-7 (TA7), also under mass-rearing for 100 generations. Our results revealed an overall low level of genetic differentiation (approximately 15%) among the three strains, with the LAB and WIL populations being genetically most similar and TA7 most genetically differentiated. Although there were some differences in allele frequencies between strains, our results show that overall, the adaptation to mass-rearing conditions did not reduce genetic variability compared to the wild sample in terms of heterozygosity or allelic richness, nor did it appear to alter the level of inbreeding with respect to the wild populations. These results are contrary to the general idea that mass-rearing always results in a reduction in genetic diversity. Overall, our findings can contribute to a better understanding of the impact that adaptation to mass-rearing conditions may have on the genetic make-up of strains.

20.
Pest Manag Sci ; 80(3): 935-952, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37794312

RESUMEN

Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.


Asunto(s)
Oviposición , Tephritidae , Animales , Femenino , Cortejo , Conducta Sexual Animal , Reproducción , Drosophila
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA