Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(1): e0175222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602368

RESUMEN

Interleukin-27 (IL-27) is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs), macrophages, and dendritic cells. Here, we identify that IL-27 can produce opposing effects on HIV-1 replication in PBMCs and that the HIV-1 restriction factor BST-2/Tetherin is involved in both inhibitory and enhancing effects on HIV-1 infection induced by IL-27. IL-27 inhibited HIV-1 replication when added to cells 2 h after infection, promoting the prototypical BST-2/Tetherin-induced virion accumulation at the cell membrane of HIV-1-infected PBMCs. BST-2/Tetherin gene expression was significantly upregulated in the IL-27-treated PBMCs, with a simultaneous increase in the number of BST-2/Tetherin+ cells. The silencing of BST-2/Tetherin diminished the anti-HIV-1 effect of IL-27. In contrast, IL-27 increased HIV-1 production when added to infected cells 4 days after infection. This enhancing effect was prevented by BST-2/Tetherin gene knockdown, which also permitted IL-27 to function again as an HIV-1 inhibitory factor. These contrasting roles of IL-27 were associated with the dynamic of viral production, since the IL-27-mediated enhancement of virus replication was prevented by antiretroviral treatment of infected cells, as well as by keeping cells under agitation to avoid cell-to-cell contact. Likewise, inhibition of CD11a, an integrin associated with HIV-1 cell-to-cell transmission, abrogated the IL-27 enhancement of HIV-1 production. Our findings illustrate the complexity of the HIV-1-host interactions and may impact the potential therapeutic use of IL-27 and other soluble mediators that induce BST-2/Tetherin expression for HIV-1 infection. IMPORTANCE Here, we describe new findings related to the ability of the cytokine IL-27 to regulate the growth of HIV-1 in CD4+ T lymphocytes. IL-27 has long been considered a potent inhibitor of HIV-1 replication, a notion based on several reports showing that this cytokine controls HIV-1 infection in peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages, and dendritic cells. However, our present results are contrary to the current knowledge that IL-27 acts only as a powerful downregulator of HIV-1 replication. We observed that IL-27 can either prevent or enhance viral growth in PBMCs, an outcome dependent on when this cytokine is added to the infected cells. We detected that the increase of HIV-1 dissemination is due to enhanced cell-to-cell transmission with the involvement of the interferon-induced HIV-1 restriction factor BST-2/Tetherin and CD11a (LFA-1), an integrin that participates in formation of virological synapse.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , Infecciones por VIH , Interleucina-27 , Humanos , Integrinas , Leucocitos Mononucleares/metabolismo , Proteínas Reguladoras y Accesorias Virales
2.
Infect Genet Evol ; 80: 104216, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32006707

RESUMEN

Bone marrow stromal cell antigen 2 (BST2 or tetherin) is a host-encoded, interferon-inducible antiviral restriction factor which blocks the release of enveloped viruses. Few studies have assessed the role of BST2 polymorphisms on HIV-1 acquisition or disease progression in sub-Saharan Africa. This study investigated the frequency of four HIV-1-associated BST2 variants rs3217318, rs12609479, rs10415893 and rs113189798 in uninfected and HIV-1 infected black South Africans. Homozygosity for the rs12609479-A minor allele, previously associated with decreased HIV-1 acquisition risk, was underrepresented in HIV-1 uninfected black South Africans (2%) compared to reference African (9%) and in particular European populations (61%) (p = .047 and p < .0001, respectively). To determine if any of these gene variants influenced HIV-1 control in the absence of antiretroviral treatment (ART), we compared HIV-1 infected ART-naïve progressors [n = 72] and controllers [n = 71], the latter includes elite controllers [EC: n = 23; VL < 50 RNA copies/ml]. Heterozygosity for the rs12609479 SNP (G/A) was enriched in progressors compared to ECs (47.2% vs 21.7%, OR = 3.50 [1.16-10.59], p = .03), while rs113189798 heterozygosity (A/G) showed a strong trend of overrepresentation in ECs compared to progressors (47.8% vs 26.4%, OR = 0.39 [0.14-1.04], p = .07). Heterozygosity for the promoter indel rs3217318 (i19/Δ19) was associated with a faster rate of CD4+ T-cell decline in progressors (p = .0134). Carriage of the rs3217318 (i19/Δ19), rs12609479 (G/G), rs10415893(G/A) and rs113189798 (A/G) combined genotype, denoted as i19Δ19 GG GA AG, was associated with significantly higher CD4+ T-cell counts in progressors (p = .03), a finding predominantly driven by the _GG_AG combination. Our data suggest that the possession of select BST2 genotype combinations may be implicated in HIV-1 disease progression and natural spontaneous control.


Asunto(s)
Antígenos CD/genética , Población Negra/genética , Susceptibilidad a Enfermedades , Variación Genética , Infecciones por VIH/etiología , VIH-1 , Adulto , Anciano , Alelos , Femenino , Proteínas Ligadas a GPI/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , América del Sur/epidemiología , Adulto Joven
3.
Traffic ; 17(9): 976-96, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27161574

RESUMEN

The Nef protein of the human immunodeficiency virus is a crucial determinant of viral pathogenesis and disease progression. Nef is abundantly expressed early in infection and is thought to optimize the cellular environment for viral replication. Nef controls expression levels of various cell surface molecules that play important roles in immunity and virus life cycle, by directly interfering with the itinerary of these proteins within the endocytic and late secretory pathways. To exert these functions, Nef physically interacts with host proteins that regulate protein trafficking. In recent years, considerable progress was made in identifying host-cell-interacting partners for Nef, and the molecular machinery used by Nef to interfere with protein trafficking has started to be unraveled. Here, we briefly review the knowledge gained and discuss new findings regarding the mechanisms by which Nef modifies the intracellular trafficking pathways to prevent antigen presentation, facilitate viral particle release and enhance the infectivity of HIV-1 virions.


Asunto(s)
Infecciones por VIH/virología , VIH-1/metabolismo , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Regulación hacia Abajo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/patogenicidad , Humanos , Lisosomas/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Unión Proteica , Transporte de Proteínas , Virulencia , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA