Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Diagnostics (Basel) ; 14(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39335688

RESUMEN

Objectives: Optical coherence tomography (OCT) has recently been used in gynecology to detect cervical lesions in vivo and proven more effective than colposcopy in clinical trials. However, most gynecologists are unfamiliar with this new imaging technique, requiring intelligent computer-aided diagnosis approaches to help them interpret cervical OCT images efficiently. This study aims to (1) develop a clinically-usable deep learning (DL)-based classification model of 3D OCT volumes from cervical tissue and (2) validate the DL model's effectiveness in detecting high-risk cervical lesions, including high-grade squamous intraepithelial lesions and cervical cancer. Method: The proposed DL model, designed based on the convolutional neural network architecture, combines a feature pyramid network (FPN) with texture encoding and deep supervision. We extracted, represent, and fused four-scale texture features to improve classification performance on high-risk local lesions. We also designed an auxiliary classification mechanism based on deep supervision to adjust the weight of each scale in FPN adaptively, enabling low-cost training of the whole model. Results: In the binary classification task detecting positive subjects with high-risk cervical lesions, our DL model achieved an 81.55% (95% CI, 72.70-88.51%) F1-score with 82.35% (95% CI, 69.13-91.60%) sensitivity and 81.48% (95% CI, 68.57-90.75%) specificity on the Renmin dataset, outperforming five experienced medical experts. It also achieved an 84.34% (95% CI, 74.71-91.39%) F1-score with 87.50% (95% CI, 73.20-95.81%) sensitivity and 90.59% (95% CI, 82.29-95.85%) specificity on the Huaxi dataset, comparable to the overall level of the best investigator. Moreover, our DL model provides visual diagnostic evidence of histomorphological and texture features learned in OCT images to assist gynecologists in making clinical decisions quickly. Conclusions: Our DL model holds great promise to be used in cervical lesion screening with OCT efficiently and effectively.

2.
Front Plant Sci ; 15: 1435613, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148623

RESUMEN

Chlorophyll monitoring is an important topic in phenotypic research. For fruit trees, chlorophyll content can reflect the real-time photosynthetic capacity, which is a great reference for nutrient status assessment. Traditional in situ estimation methods are labor- and time-consuming. Remote sensing spectral imagery has been widely applied in agricultural research. This study aims to explore a transferable model to estimate canopy SPAD across growth stages and tree species. Unmanned aerial vehicle (UAV) system was applied for multispectral images acquisition. The results showed that the univariate model yielded with Green Normalized Difference Vegetation Index (GNDVI) gave valuable prediction results, providing a simple and effective method for chlorophyll monitoring for single species. Reflection features (RF) and texture features (TF) were extracted for multivariate modeling. Gaussian Process Regression (GPR) models yielded better performance for mixed species research than other algorithm models, and the R 2 of the RF+TF+GPR model was approximately 0.7 in both single and mixed species. In addition, this method can also be used to predict canopy SPAD over various growth stages, especially in the third and fourth stages with R 2 higher than 0.6. This paper highlights the importance of using RF+TF for canopy feature expression and deep connection exploration between canopy features with GPR algorithm. This research provides a universal model for canopy SPAD inversion which can promote the growth status monitoring and management of fruit trees.

3.
J Biophotonics ; 17(10): e202400075, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103198

RESUMEN

Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.


Asunto(s)
Biopelículas , Otitis Media , Tomografía de Coherencia Óptica , Otitis Media/diagnóstico por imagen , Otitis Media/microbiología , Humanos , Aprendizaje Automático Supervisado , Procesamiento de Imagen Asistido por Computador/métodos
4.
Front Bioeng Biotechnol ; 12: 1338276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952667

RESUMEN

Phenotypic analysis has significant potential for aiding breeding efforts. However, there is a notable lack of studies utilizing phenotypic analysis in the field of edible fungi. Pleurotus geesteranus is a lucrative edible fungus with significant market demand and substantial industrial output, and early-stage phenotypic analysis of Pleurotus geesteranus is imperative during its breeding process. This study utilizes image recognition technology to investigate the phenotypic features of the mycelium of P. geesteranus. We aim to establish the relations between these phenotypic characteristics and mycelial quality. Four groups of mycelia, namely, the non-degraded and degraded mycelium and the 5th and 14th subcultures, are used as image sources. Two categories of phenotypic metrics, outline and texture, are quantitatively calculated and analyzed. In the outline features of the mycelium, five indexes, namely, mycelial perimeter, radius, area, growth rate, and change speed, are proposed to demonstrate mycelial growth. In the texture features of the mycelium, five indexes, namely, mycelial coverage, roundness, groove depth, density, and density change, are studied to analyze the phenotypic characteristics of the mycelium. Moreover, we also compared the cellulase and laccase activities of the mycelium and found that cellulase level was consistent with the phenotypic indices of the mycelium, which further verified the accuracy of digital image processing technology in analyzing the phenotypic characteristics of the mycelium. The results indicate that there are significant differences in these 10 phenotypic characteristic indices ( P < 0.001 ), elucidating a close relationship between phenotypic characteristics and mycelial quality. This conclusion facilitates rapid and accurate strain selection in the early breeding stage of P. geesteranus.

5.
Adv Neurobiol ; 36: 469-486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468048

RESUMEN

This chapter discusses multifractal texture estimation and characterization of brain lesions (necrosis, edema, enhanced tumor, nonenhanced tumor, etc.) in magnetic resonance (MR) images. This work formulates the complex texture of tumor in MR images using a stochastic model known as multifractional Brownian motion (mBm). Mathematical derivations of the mBm model and corresponding algorithm to extract the spatially varying multifractal texture feature are discussed. Extracted multifractal texture feature is fused with other effective features to enhance the tissue characteristics. Segmentation of the tissues is performed using a feature-based classification method. The efficacy of the mBm texture feature in segmenting different abnormal tissues is demonstrated using a large-scale publicly available clinical dataset. Experimental results and performance of the methods confirm the efficacy of the proposed technique in an automatic segmentation of abnormal tissues in multimodal (T1, T2, Flair, and T1contrast) brain MRIs.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología
6.
Brain Res ; 1830: 148819, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38403037

RESUMEN

This study used MRI brain image segmentation to identify novel magnetic resonance imaging (MRI) biomarkers to distinguish patients with schizophrenia (SCZ), major depressive disorder (MD), and healthy control (HC). Brain texture measurements, including entropy and contrast, were calculated to capture variability in adjacent MRI voxel intensity. These measures are then applied to group classification in deep learning techniques and combined with hierarchical correlations to locate results. Texture feature maps were extracted from segmented brain MRI scans of 141 patients with schizophrenia (SCZ), 103 patients with major depressive disorder (MD) and 238 healthy controls (HC). Gray scale coassociation matrix (GLCM) is a monomer matrix calculated in a voxel cube. Deep learning methods were evaluated to determine the application capability of texture feature mapping in binary classification (SCZ vs. HC, MD vs. HC, SCZ vs. MD). The method is implemented by repeated nesting and cross-validation for feature selection. Regions that show the highest correlation (positive or negative). In this study, the authors successfully classified SCZ, MD and HC. This suggests that texture analysis can be used as an effective feature extraction method to distinguish different disease states. Compared with other methods, texture analysis can capture richer image information and improve classification accuracy in some cases. The classification accuracy of SCZ and HC, MD and HC, SCZ and MD reached 84.6%, 86.4% and 76.21%, respectively. Among them, SCZ and HC are the most significant features with high sensitivity and specificity.


Asunto(s)
Trastorno Depresivo Mayor , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Depresión , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
7.
Recent Pat Anticancer Drug Discov ; 19(3): 383-395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38214322

RESUMEN

BACKGROUND: Glioma is characterized by a high recurrence rate, while the results of the traditional imaging methods (including magnetic resonance imaging, MRI) to distinguish recurrence from treatment-related changes (TRCs) are poor. Prostate-specific membrane antigen (PSMA) (US10815200B2, Deutsches Krebsforschungszentrum, German Cancer Research Center) is a type II transmembrane glycoprotein overexpressed in glioma vascular endothelium, and it is a promising target for imaging and therapy. OBJECTIVE: The study aimed to assess the performance of PSMA positron emission tomography/ magnetic resonance (PET/MR) for diagnosing recurrence and predicting prognosis in glioma patients. MATERIALS AND METHODS: Patients suspected of glioma recurrence who underwent 18F-PSMA-1007 PET/MR were prospectively enrolled. Eight metabolic parameters and fifteen texture features of the lesion were extracted from PSMA PET/MR. The ability of PSMA PET/MR to diagnose glioma recurrence was investigated and compared with conventional MRI. The diagnostic agreement was assessed using Cohen κ scores and the predictive parameters of PSMA PET/MR were obtained. Kaplan-Meier method and Cox proportional hazard model were used to analyze recurrence- free survival (RFS) and overall survival (OS). Finally, the expression of PSMA was analyzed by immunohistochemistry (IHC). RESULTS: Nineteen patients with a mean age of 48.11±15.72 were assessed. The maximum tumorto- parotid ratio (TPRmax) and texture features extracted from PET and T1-weighted contrast enhancement (T1-CE) MR showed differences between recurrence and TRCs (all p <0.05). PSMA PET/MR and conventional MRI exhibited comparable power in diagnosing recurrence with specificity and PPV of 100%. The interobserver concordance was fair between the two modalities (κ = 0.542, p = 0.072). The optimal cutoffs of metabolic parameters, including standardized uptake value (SUV, SUVmax, SUVmean, and SUVpeak) and TPRmax for predicting recurrence were 3.35, 1.73, 1.99, and 0.17 respectively, with the area under the curve (AUC) ranging from 0.767 to 0.817 (all p <0.05). In grade 4 glioblastoma (GBM) patients, SUVmax, SUVmean, SUVpeak, TBRmax, TBRmean, and TPRmax showed improved performance of AUC (0.833-0.867, p <0.05). Patients with SUVmax, SUVmean, or SUVpeak more than the cutoff value had significantly shorter RFS (all p <0.05). In addition, patients with SUVmean, SUVpeak, or TPRmax more than the cutoff value had significantly shorter OS (all p <0.05). PSMA expression of glioma vascular endothelium was observed in ten (10/11, 90.9%) patients with moderate-to-high levels in all GBM cases (n = 6/6, 100%). CONCLUSION: This primitive study shows multiparameter PSMA PET/MR to be useful in identifying glioma (especially GBM) recurrence by providing excellent tumor background comparison, tumor heterogeneity, recurrence prediction and prognosis information, although it did not improve the diagnostic performance compared to conventional MRI. Further and larger studies are required to define its potential clinical application in this setting.


Asunto(s)
Glioblastoma , Glioma , Adulto , Humanos , Persona de Mediana Edad , Glioma/diagnóstico por imagen , Glioma/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Tomografía de Emisión de Positrones , Pronóstico , Radiofármacos
8.
Digital Chinese Medicine ; (4): 3-12, 2024.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1031006

RESUMEN

@#Image-based intelligent diagnosis represents a trending research direction in the field of tongue diagnosis in traditional Chinese medicine (TCM). In recent years, machine learning techniques, including convolutional neural networks (CNNs) and Transformers, have been widely used in the analysis of medical images, such as computed tomography (CT) and nuclear magnetic resonance imaging (MRI). These techniques have significantly enhanced the efficiency and accuracy of decision-making in TCM practices. Advanced artificial intelligence (AI) technologies have also provided new opportunities for the research and development of medical equipment and TCM tongue diagnosis, resulting in improved standardization and intelligence of the tongue diagnostic procedures. Although traditional image analysis methods could transform tongue images into scientific and analyzable data, recognizing and analyzing images that capture complicated tongue features such as tooth-marked tongue, tongue spots and prickles, fissured tongue, variations in coating thickness, tongue texture (curdy and greasy), and tongue presence (peeled coating) continues posing significant challenges in contemporary tongue diagnosis research. Therefore, the employment of machine learning techniques in the analysis of tongue shape and texture features as well as their applications in TCM diagnosis is the focus of this study. In the study, both traditional and deep learning image analysis techniques were summarized and analyzed to figure out their value in predicting disease risks by observing the tongue shapes and textures, aiming to open a new chapter for the development and application of AI in TCM tongue diagnosis research. In short, the combination of TCM tongue diagnosis and AI technologies, will not only enhance the scientific basis of tongue diagnosis but also improve its clinical applicability, thereby advancing the modernization of TCM diagnostic and therapeutic practices.

9.
BMC Med Imaging ; 23(1): 205, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066434

RESUMEN

BACKGROUND: Prostate cancer (PCa) is one of the most common cancers in men worldwide, and its timely diagnosis and treatment are becoming increasingly important. MRI is in increasing use to diagnose cancer and to distinguish between non-clinically significant and clinically significant PCa, leading to more precise diagnosis and treatment. The purpose of this study is to present a radiomics-based method for determining the Gleason score (GS) for PCa using tumour heterogeneity on multiparametric MRI (mp-MRI). METHODS: Twenty-six patients with biopsy-proven PCa were included in this study. The quantitative T2 values, apparent diffusion coefficient (ADC) and signal enhancement rates (α) were calculated using multi-echo T2 images, diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI), for the annotated region of interests (ROI). After texture feature analysis, ROI range expansion and feature filtering was performed. Then obtained data were put into support vector machine (SVM), K-Nearest Neighbor (KNN) and other classifiers for binary classification. RESULTS: The highest classification accuracy was 73.96% for distinguishing between clinically significant (Gleason 3 + 4 and above) and non-significant cancers (Gleason 3 + 3) and 83.72% for distinguishing between Gleason 3 + 4 from Gleason 4 + 3 and above, which was achieved using initial ROIs drawn by the radiologists. The accuracy improved when using expanded ROIs to 80.67% using SVM and 88.42% using Bayesian classification for distinguishing between clinically significant and non-significant cancers and Gleason 3 + 4 from Gleason 4 + 3 and above, respectively. CONCLUSIONS: Our results indicate the research significance and value of this study for determining the GS for prostate cancer using the expansion of the ROI region.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Clasificación del Tumor , Teorema de Bayes , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Estudios Retrospectivos
10.
Res Sq ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961282

RESUMEN

Otitis media (OM) is primarily a bacterial middle-ear infection prevalent among children worldwide. In recurrent and/or chronic OM cases, antibiotic-resistant bacterial biofilms can develop in the middle ear. A biofilm related to OM typically contains one or multiple bacterial strains, the most common include Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, Pseudomonas aeruginosa, and Staphylococcus aureus. Optical coherence tomography (OCT) has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from primary bacterial biofilms in vitro and in vivo. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest (RF), and XGBoost) to classify and speciate multiclass bacterial biofilms from the texture features extracted from OCT B-Scan images obtained from in vitro cultures and from clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers can help distinguish bacterial biofilms by incorporating clinical knowledge into classification decisions. Furthermore, both classifiers achieved more than 95% of AUC (area under receiver operating curve), detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, which could provide additional clinically relevant data during real-time in vivo characterization of ear infections.

11.
Sensors (Basel) ; 23(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005501

RESUMEN

Coal gangue image recognition is a critical technology for achieving automatic separation in coal processing, characterized by its rapid, environmentally friendly, and energy-saving nature. However, the response characteristics of coal and gangue vary greatly under different illuminance conditions, which poses challenges to the stability of feature extraction and recognition, especially when strict illuminance requirements are necessary. This leads to fluctuating coal gangue recognition accuracy in industrial environments. To address these issues and improve the accuracy and stability of image recognition under variable illuminance conditions, we propose a novel coal gangue recognition method based on laser speckle images. Firstly, we studied the inter-class separability and intra-class compactness of the collected laser speckle images of coal and gangue by extracting gray and texture features from the laser speckle images, and analyzed the performance of laser speckle images in representing the differences between coal and gangue minerals. Subsequently, coal gangue recognition was achieved using an SVM classifier based on the extracted features from the laser speckle images. The fusion feature approach achieved a recognition accuracy of 94.4%, providing further evidence of the feasibility of this method. Lastly, we conducted a comparative experiment between natural images and laser speckle images for coal gangue recognition using the same features. The average accuracy of coal gangue laser speckle image recognition under various lighting conditions is 96.7%, with a standard deviation of the recognition accuracy of 1.7%. This significantly surpasses the recognition accuracy obtained from natural coal and gangue images. The results showed that the proposed laser speckle image features can facilitate more stable coal gangue recognition with illumination factors, providing a new, reliable method for achieving accurate classification of coal and gangue in the industrial environment of mines.

12.
Curr Genomics ; 24(2): 64-65, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37994326

RESUMEN

Biological sequence analysis is the most fundamental work in bioinformatics. Many research methods have been developed in the development of biological sequence analysis. These methods include sequence alignment-based methods and alignment-free methods. In addition, there are also some sequence analysis methods based on the feature definition and quantification of the sequence itself. This editorial introduces the methods of biological sequence analysis and explores the significance of defining features and quantitative research of biological sequences.

13.
J Med Signals Sens ; 13(4): 261-271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809020

RESUMEN

Background: Medical images of cancer patients are usually evaluated qualitatively by clinical specialists which makes the accuracy of the diagnosis subjective and related to the skills of clinicians. Quantitative methods based on the textural feature analysis may be useful to facilitate such evaluations. This study aimed to analyze the gray level co-occurrence matrix (GLCM)-based texture features extracted from T1-axial magnetic resonance (MR) images of glioblastoma multiform (GBM) patients to determine the distinctive features specific to treatment response or disease progression. Methods: 20 GLCM-based texture features, in addition to mean, standard deviation, entropy, RMS, kurtosis, and skewness were extracted from step I MR images (obtained 72 h after surgery) and step II MR images (obtained three months later). Responded and not responded patients to treatment were classified manually based on the radiological evaluation of step II images. Extracted texture features from Step I and Step II images were analyzed to determine the distinctive features for each group of responsive or progressive diseases. MATLAB 2020 was applied to feature extraction. SPSS version 26 was used for the statistical analysis. P value < 0.05 was considered statistically significant. Results: Despite no statistically significant differences between Step I texture features for two considered groups, almost all step II extracted GLCM-based texture features in addition to entropy M and skewness were significantly different between responsive and progressive disease groups. Conclusions: GLCM-based texture features extracted from MR images of GBM patients can be used with automatic algorithms for the expeditious prediction or interpretation of response to the treatment quantitatively besides qualitative evaluations.

14.
Front Plant Sci ; 14: 1265132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810376

RESUMEN

Plant potassium content (PKC) is a crucial indicator of crop potassium nutrient status and is vital in making informed fertilization decisions in the field. This study aims to enhance the accuracy of PKC estimation during key potato growth stages by using vegetation indices (VIs) and spatial structure features derived from UAV-based multispectral sensors. Specifically, the fraction of vegetation coverage (FVC), gray-level co-occurrence matrix texture, and multispectral VIs were extracted from multispectral images acquired at the potato tuber formation, tuber growth, and starch accumulation stages. Linear regression and stepwise multiple linear regression analyses were conducted to investigate how VIs, both individually and in combination with spatial structure features, affect potato PKC estimation. The findings lead to the following conclusions: (1) Estimating potato PKC using multispectral VIs is feasible but necessitates further enhancements in accuracy. (2) Augmenting VIs with either the FVC or texture features makes potato PKC estimation more accurate than when using single VIs. (3) Finally, integrating VIs with both the FVC and texture features improves the accuracy of potato PKC estimation, resulting in notable R 2 values of 0.63, 0.84, and 0.80 for the three fertility periods, respectively, with corresponding root mean square errors of 0.44%, 0.29%, and 0.25%. Overall, these results highlight the potential of integrating canopy spectral information and spatial-structure information obtained from multispectral sensors mounted on unmanned aerial vehicles for monitoring crop growth and assessing potassium nutrient status. These findings thus have significant implications for agricultural management.

15.
BMC Med Imaging ; 23(1): 104, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553619

RESUMEN

In this work, we propose a processing pipeline for the extraction and identification of meaningful radiomics biomarkers in skeletal muscle tissue as displayed using Dixon-weighted MRI. Diverse and robust radiomics features can be identified that may be of aid in the accurate quantification e.g. varying degrees of sarcopenia in respective muscles of large cohorts. As such, the approach comprises the texture feature extraction from raw data based on well established approaches, such as a nnU-Net neural network and the Pyradiomics toolbox, a subsequent selection according to adequate conditions for the muscle tissue of the general population, and an importance-based ranking to further narrow the amount of meaningful features with respect to auxiliary targets. The performance was investigated with respect to the included auxiliary targets, namely age, body mass index (BMI), and fat fraction (FF). Four skeletal muscles with different fiber architecture were included: the mm. glutaei, m. psoas, as well as the extensors and adductors of the thigh. The selection allowed for a reduction from 1015 available texture features to 65 for age, 53 for BMI, and 36 for FF from the available fat/water contrast images considering all muscles jointly. Further, the dependence of the importance rankings calculated for the auxiliary targets on validation sets (in a cross-validation scheme) was investigated by boxplots. In addition, significant differences between subgroups of respective auxiliary targets as well as between both sexes were shown to be present within the ten lowest ranked features by means of Kruskal-Wallis H-tests and Mann-Whitney U-tests. The prediction performance for the selected features and the ranking scheme were verified on validation sets by a random forest based multi-class classification, with strong area under the curve (AUC) values of the receiver operator characteristic (ROC) of 73.03 ± 0.70 % and 73.63 ± 0.70 % for the water and fat images in age, 80.68 ± 0.30 % and 88.03 ± 0.89 % in BMI, as well as 98.36 ± 0.03 % and 98.52 ± 0.09 % in FF.


Asunto(s)
Imagen por Resonancia Magnética , Sarcopenia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Sarcopenia/diagnóstico por imagen , Biomarcadores , Estudios Retrospectivos
16.
Front Physiol ; 14: 1201617, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528895

RESUMEN

Purpose: The main purpose of this study was to comprehensively investigate the potential of fractal dimension (FD) measures in discriminating brain gliomas into low-grade glioma (LGG) and high-grade glioma (HGG) by examining tumor constituents and non-tumorous gray matter (GM) and white matter (WM) regions. Methods: Retrospective magnetic resonance imaging (MRI) data of 42 glioma patients (LGG, n = 27 and HGG, n = 15) were used in this study. Using MRI, we calculated different FD measures based on the general structure, boundary, and skeleton aspects of the tumorous and non-tumorous brain GM and WM regions. Texture features, namely, angular second moment, contrast, inverse difference moment, correlation, and entropy, were also measured in the tumorous and non-tumorous regions. The efficacy of FD features was assessed by comparing them with texture features. Statistical inference and machine learning approaches were used on the aforementioned measures to distinguish LGG and HGG patients. Results: FD measures from tumorous and non-tumorous regions were able to distinguish LGG and HGG patients. Among the 15 different FD measures, the general structure FD values of enhanced tumor regions yielded high accuracy (93%), sensitivity (97%), specificity (98%), and area under the receiver operating characteristic curve (AUC) score (98%). Non-tumorous GM skeleton FD values also yielded good accuracy (83.3%), sensitivity (100%), specificity (60%), and AUC score (80%) in classifying the tumor grades. These measures were also found to be significantly (p < 0.05) different between LGG and HGG patients. On the other hand, among the 25 texture features, enhanced tumor region features, namely, contrast, correlation, and entropy, revealed significant differences between LGG and HGG. In machine learning, the enhanced tumor region texture features yielded high accuracy, sensitivity, specificity, and AUC score. Conclusion: A comparison between texture and FD features revealed that FD analysis on different aspects of the tumorous and non-tumorous components not only distinguished LGG and HGG patients with high statistical significance and classification accuracy but also provided better insights into glioma grade classification. Therefore, FD features can serve as potential neuroimaging biomarkers for glioma.

17.
Breast Cancer Res ; 25(1): 87, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488621

RESUMEN

Deep learning analysis of radiological images has the potential to improve diagnostic accuracy of breast cancer, ultimately leading to better patient outcomes. This paper systematically reviewed the current literature on deep learning detection of breast cancer based on magnetic resonance imaging (MRI). The literature search was performed from 2015 to Dec 31, 2022, using Pubmed. Other database included Semantic Scholar, ACM Digital Library, Google search, Google Scholar, and pre-print depositories (such as Research Square). Articles that were not deep learning (such as texture analysis) were excluded. PRISMA guidelines for reporting were used. We analyzed different deep learning algorithms, methods of analysis, experimental design, MRI image types, types of ground truths, sample sizes, numbers of benign and malignant lesions, and performance in the literature. We discussed lessons learned, challenges to broad deployment in clinical practice and suggested future research directions.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Imagen por Resonancia Magnética , Algoritmos , Espectroscopía de Resonancia Magnética
18.
Environ Sci Pollut Res Int ; 30(35): 83628-83642, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37349490

RESUMEN

Cyanobacterial blooms in lakes fueled by increasing eutrophication have garnered global attention, and high-precision remote sensing retrieval of chlorophyll-a (Chla) is essential for monitoring eutrophication. Previous studies have focused on the spectral features extracted from remote sensing images and their relationship with chlorophyll-a concentrations in water bodies, ignoring the texture features in remote sensing images which is beneficial to improve interpreting accuracy. This study explores the texture features in remote-sensing images. It proposes a retrieval method for estimating lake Chla concentration by combining spectral and texture features of remote sensing images. Remote sensing images from Landsat 5 TM and 8 OLI were used to extract spectral bands combination. The gray-level co-occurrence matrix (GLCM) of remote sensing images was used to obtain a total of 8 texture features; then, three texture indices were calculated using texture features. Finally, a random forest regression was used to establish a retrieval model of in situ Chla concentration from texture and spectral index. Results showed that texture features are significantly correlated with lake Chla concentration, and they can reflect the temporal and spatial distribution change of Chla. The retrieval model combining spectral and texture indices performs better (MAE = 15.22 µg·L-1, bias = 9.69%, MAPE = 47.09%) than the model without texture features (MAE = 15.76 µg·L-1, bias = 13.58%, MAPE = 49.44%). The proposed model performance varies in different Chla concentration ranges and is excellent in predicting higher concentrations. This study evaluates the potential of incorporating texture features of remote sensing images in lake water quality estimation and provides a novel remote sensing method to better estimate lake Chla concentration.


Asunto(s)
Lagos , Tecnología de Sensores Remotos , Clorofila A/análisis , Monitoreo del Ambiente/métodos , Clorofila/análisis , Eutrofización , China
19.
PeerJ Comput Sci ; 9: e1290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346590

RESUMEN

Multiscale segmentation (MSS) is crucial in object-based image analysis methods (OBIA). How to describe the underlying features of remote sensing images and combine multiple features for object-based multiscale image segmentation is a hotspot in the field of OBIA. Traditional object-based segmentation methods mostly use spectral and shape features of remote sensing images and pay less attention to texture and edge features. We analyze traditional image segmentation methods and object-based MSS methods. Then, on the basis of comparing image texture feature description methods, a method for remote sensing image texture feature description based on time-frequency analysis is proposed. In addition, a method for measuring the texture heterogeneity of image objects is constructed on this basis. Using bottom-up region merging as an MSS strategy, an object-based MSS algorithm for remote sensing images combined with texture feature is proposed. Finally, based on the edge feature of remote sensing images, a description method of remote sensing image edge intensity and an edge fusion cost criterion are proposed. Combined with the heterogeneity criterion, an object-based MSS algorithm combining spectral, shape, texture, and edge features is proposed. Experiment results show that the comprehensive features object-based MSS algorithm proposed in this article can obtain more complete segmentation objects when segmenting ground objects with rich texture information and slender shapes and is not prone to over-segmentation. Compare with the traditional object-based segmentation algorithm, the average accuracy of the algorithm is increased by 4.54%, and the region ratio is close to 1, which will be more conducive to the subsequent processing and analysis of remote sensing images. In addition, the object-based MSS algorithm proposed in this article can effectively obtain more complete ground objects and can be widely used in scenes such as building extraction.

20.
Front Plant Sci ; 14: 1158837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063231

RESUMEN

Leaf area index (LAI) is an essential indicator for crop growth monitoring and yield prediction. Real-time, non-destructive, and accurate monitoring of crop LAI is of great significance for intelligent decision-making on crop fertilization, irrigation, as well as for predicting and warning grain productivity. This study aims to investigate the feasibility of using spectral and texture features from unmanned aerial vehicle (UAV) multispectral imagery combined with machine learning modeling methods to achieve maize LAI estimation. In this study, remote sensing monitoring of maize LAI was carried out based on a UAV high-throughput phenotyping platform using different varieties of maize as the research target. Firstly, the spectral parameters and texture features were extracted from the UAV multispectral images, and the Normalized Difference Texture Index (NDTI), Difference Texture Index (DTI) and Ratio Texture Index (RTI) were constructed by linear calculation of texture features. Then, the correlation between LAI and spectral parameters, texture features and texture indices were analyzed, and the image features with strong correlation were screened out. Finally, combined with machine learning method, LAI estimation models of different types of input variables were constructed, and the effect of image features combination on LAI estimation was evaluated. The results revealed that the vegetation indices based on the red (650 nm), red-edge (705 nm) and NIR (842 nm) bands had high correlation coefficients with LAI. The correlation between the linearly transformed texture features and LAI was significantly improved. Besides, machine learning models combining spectral and texture features have the best performance. Support Vector Machine (SVM) models of vegetation and texture indices are the best in terms of fit, stability and estimation accuracy (R2 = 0.813, RMSE = 0.297, RPD = 2.084). The results of this study were conducive to improving the efficiency of maize variety selection and provide some reference for UAV high-throughput phenotyping technology for fine crop management at the field plot scale. The results give evidence of the breeding efficiency of maize varieties and provide a certain reference for UAV high-throughput phenotypic technology in crop management at the field scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA