Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.789
Filtrar
1.
Oncol Lett ; 28(2): 379, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939623

RESUMEN

The aim of the present study was to explore the effects of dexmedetomidine (DEX) combined with ketorolac on postoperative patient-controlled analgesia (PCA), the balance of Th1/Th2 and the level of vascular endothelial growth factor (VEGF) in patients with cervical cancer following laparoscopic radical surgery. A total of 70 women with cervical cancer undergoing laparoscopic radical hysterectomy were enrolled in the study to randomly receive postoperative dexmedetomidine combined with ketorolac analgesia (DK group) and postoperative sufentanil analgesia (SUF group). The primary outcomes were the serum levels of interleukin-4 (IL-4), interferon-γ (IFN-γ) and VEGF, and the IFN-γ/IL-4 ratio 30 min before induction (T0), and 24 and 48 h after surgery. Secondary outcomes included numerical rating scale scores at 0 h (T0), 4 h (T1), 12 h (T2), 24 h (T3) and 48 h (T4) postoperatively, cumulative times of rescue analgesia, as well as the incidence of postoperative side effects within 48 h from surgery. Patients in the DK group reported similar analgesic effects as patients in the SUF group at T2, T3 and T4, and the incidence of postoperative nausea and vomiting was significantly lower in the DK group. In the DK group, the serum concentration of IFN-γ and IFN-γ/IL-4 ratio at 24 and 48 h after surgery were higher compared with those in the SUF group. Conversely, the serum concentrations of IL-4 at 24 h after surgery and VEGF at 24 and 48 h after surgery were significantly lower. The results indicated that the combination of DEX and ketorolac for PCA significantly improved postoperative pain and decreased the serum level of VEGF, which are associated with tumor angiogenesis. In addition, it maintained the homeostasis of postoperative immune dysfunction of patients with cervical cancer by shifting the balance between type 1 T helper cells and type 2 T helper cell (Th1/Th2 balance) to Th1 (registration no. ChiCTR1900027979; December 7, 2019).

2.
Cells ; 13(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38920670

RESUMEN

Proinflammatory T-lymphocytes recruited into the brain and spinal cord mediate multiple sclerosis (MS) and currently there is no cure for MS. IFN-γ-producing Th1 cells induce ascending paralysis in the spinal cord while IL-17-producing Th17 cells mediate cerebellar ataxia. STAT1 and STAT3 are required for Th1 and Th17 development, respectively, and the simultaneous targeting of STAT1 and STAT3 pathways is therefore a potential therapeutic strategy for suppressing disease in the spinal cord and brain. However, the pharmacological targeting of STAT1 and STAT3 presents significant challenges because of their intracellular localization. We have developed a STAT-specific single-domain nanobody (SBT-100) derived from camelids that targets conserved residues in Src homolog 2 (SH2) domains of STAT1 and STAT3. This study investigated whether SBT-100 could suppress experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We show that SBT-100 ameliorates encephalomyelitis through suppressing the expansion of Th17 and Th1 cells in the brain and spinal cord. Adoptive transfer experiments revealed that lymphocytes from SBT-100-treated EAE mice have reduced capacity to induce EAE, indicating that the immunosuppressive effects derived from the direct suppression of encephalitogenic T-cells. The small size of SBT-100 makes this STAT-specific nanobody a promising immunotherapy for CNS autoimmune diseases, including multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Anticuerpos de Dominio Único , Células Th17 , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/uso terapéutico , Ratones , Células Th17/inmunología , Células Th17/efectos de los fármacos , Femenino , Camélidos del Nuevo Mundo , Factor de Transcripción STAT3/metabolismo , Células TH1/inmunología , Células TH1/efectos de los fármacos , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Factor de Transcripción STAT1/metabolismo , Médula Espinal/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología
3.
Wiad Lek ; 77(4): 640-645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865616

RESUMEN

OBJECTIVE: Aim: To investigate the possible effect of COVID-19 disease on cytokine profile and some circulating growth factors in patients with multiple sclerosis (MS). PATIENTS AND METHODS: Materials and Methods: Serum cytokine levels as well as growth factors content were assessed be means of a solid phase enzyme linked­immunosorbent assay in 97 MS patients of which 41 had and 56 did not have confirmed COVID-19 in the past 4-6-month period, and 30 healthy individuals who were age­, and gender­matched. RESULTS: Results: Some proinflammatory cytokine (such as TNFα, IFNγ) levels were higher while anti-inflammatory cytokine, namely IL­4, was lower in MS patients compared to controls indicating Th1/Th2 imbalance. Our findings revealed that the imbalance of circulating Th1/Th2 cytokines in MS patients after SARS-CoV-2 infection became even more pronounced, thus, might be a reason for the disease deterioration. Furthermore, nuclear factor κB level in MS patients after COVID-19 was found significantly elevated from that with no history of SARS-CoV-2 infection, and could be the cause of proinflammatory cytokines overexpression. CONCLUSION: Conclusions: Our findings revealed that immunopathology of MS is associated with a Th1/Th2 imbalance, furthermore, SARS-CoV-2 infection can lead to the deterioration of this condition in MS patients, causing even more pronounced overexpression of proinflammatory cytokines and decrease in anti-inflammatory cytokines. Our results also indicated that studied growth factors can be involved in MS development but exact mechanism is not clearly understood and requires further research.


Asunto(s)
COVID-19 , Citocinas , Esclerosis Múltiple , Humanos , COVID-19/inmunología , COVID-19/sangre , Femenino , Masculino , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Adulto , Citocinas/sangre , Persona de Mediana Edad , SARS-CoV-2/inmunología , Estudios de Casos y Controles
4.
Chin J Nat Med ; 22(6): 530-540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38906600

RESUMEN

Although various anti-inflammatory medications, such as ephedrine, are employed to manage cough-variant asthma, their underlying mechanisms are yet to be fully understood. Recent studies suggest that exosomes derived from airway epithelial cells (AECs) contain components like messenger RNAs (mRNAs), micro-RNAs (miRNAs), and long noncoding RNA (lncRNA), which play roles in the occurrence and progression of airway inflammation. This study investigates the influence of AEC-derived exosomes on the efficacy of ephedrine in treating cough-variant asthma. We established a mouse model of asthma and measured airway resistance and serum inflammatory cell levels. Real-time polymerase chain reaction (RT-qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) analyses were used to assess gene and protein expression levels. Exosomes were isolated and characterized. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted to examine the interaction between hnRNPA2B1 and lnc-TRPM2-AS1. In the ovalbumin (OVA)-challenged mouse model, ephedrine treatment reduced inflammatory responses, airway resistance, and Th1/Th2 cell imbalance. Exosomes from OVA-treated AECs showed elevated levels of lnc-TRPM2-AS1, which were diminished following ephedrine treatment. The exosomal lnc-TRPM2-AS1 mediated the Th1/Th2 imbalance in CD4+ T cells, with its packaging into exosomes being facilitated by hnRNPA2B1. This study unveils a novel mechanism by which ephedrine ameliorates OVA-induced CD4+ T cell imbalance by suppressing AEC-derived exosomal lnc-TRPM2-AS1. These findings could provide a theoretical framework for using ephedrine in asthma treatment.


Asunto(s)
Asma , Efedrina , Células Epiteliales , Exosomas , Ratones Endogámicos BALB C , Ovalbúmina , Células Th2 , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Efedrina/farmacología , Exosomas/metabolismo , Ratones , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Th2/inmunología , Células Th2/efectos de los fármacos , Femenino , ARN Largo no Codificante/genética , Humanos , Células TH1/efectos de los fármacos , Células TH1/inmunología , Modelos Animales de Enfermedad
5.
Immunology ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38887097

RESUMEN

The activation of CD4+ T-cells in a T cell receptor (TCR)-dependent antigen-specific manner is a central characteristic of the adaptive immune response. In addition to ensuring that CD4+ T-cells recognise their cognate antigen during activation, TCR-mediated signalling can also direct the outcome of differentiation. In both in vivo and in vitro model systems, strong TCR signalling has been demonstrated to drive Th1 differentiation, whereas weak TCR signalling drives Th2 responses. During the process of differentiation, TCR signal strength acts as a quantitative component in combination with the qualitative effects imparted by cytokines to polarise distinct T-helper lineages. Here, we investigated the role of interleukin 2 (IL-2) signalling in determining the outcome of TCR-dependent differentiation. IL-2 production was initiated as an early response to TCR-induced activation and was regulated by the strength of TCR signalling initially received. In the absence of IL-2, TCR dependent differentiation was found to be abolished. However, proliferative responses and early markers of activation were maintained, including the upregulation of GATA3, Tbet and Foxp3 at 24 h post-stimulation. Demonstrating that IL-2 signalling has a key role in stabilising and amplifying lineage-specific transcirption factor expression during differentiation. Further, activation of IL-2-deficient T-cells in the presence of exogenous cytokines was sufficient to restore differentiation whilst maintaining transcriptional signatures imparted during initial TCR signalling. Combined, our data demonstrate that the integration of quantitative TCR-dependent signalling and qualitative IL-2 signalling is essential for determining the fate of CD4+ T-cells during differentiation.

6.
Cells ; 13(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891095

RESUMEN

Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are high-incidence, non-melanoma skin cancers (NMSCs). The success of immune-targeted therapies in advanced NMSCs led us to anticipate that NMSCs harbored significant populations of tumor-infiltrating lymphocytes with potential anti-tumor activity. The main aim of this study was to characterize T cells infiltrating NMSCs. Flow cytometry and immunohistochemistry were used to assess, respectively, the proportions and densities of T cell subpopulations in BCCs (n = 118), SCCs (n = 33), and normal skin (NS, n = 30). CD8+ T cells, CD4+ T cell subsets, namely, Th1, Th2, Th17, Th9, and regulatory T cells (Tregs), CD8+ and CD4+ memory T cells, and γδ T cells were compared between NMSCs and NS samples. Remarkably, both BCCs and SCCs featured a significantly higher Th1/Th2 ratio (~four-fold) and an enrichment for Th17 cells. NMSCs also showed a significant enrichment for IFN-γ-producing CD8+T cells, and a depletion of γδ T cells. Using immunohistochemistry, NMSCs featured denser T cell infiltrates (CD4+, CD8+, and Tregs) than NS. Overall, these data favor a Th1-predominant response in BCCs and SCCs, providing support for immune-based treatments in NMSCs. Th17-mediated inflammation may play a role in the progression of NMSCs and thus become a potential therapeutic target in NMSCs.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Linfocitos Infiltrantes de Tumor , Neoplasias Cutáneas , Células TH1 , Células Th17 , Humanos , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Células Th17/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células TH1/inmunología , Carcinoma Basocelular/inmunología , Carcinoma Basocelular/patología , Femenino , Masculino , Anciano , Estudios Transversales , Persona de Mediana Edad , Linfocitos T CD8-positivos/inmunología , Anciano de 80 o más Años , Adulto
7.
Int Immunopharmacol ; 137: 112540, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908080

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) with autoimmune mechanism of development. The investigation of neuroimmune interaction is one of the most developing directions in MS pathogenesis study. Catecholamines are direct mediators of this interaction and can be involved in the pathogenesis of MS by modulating cells of both innate and adaptive immune systems. The aim of this study was to investigate the influence of dopamine and norepinephrine on the ability of monocytes of patients with relapsing-remitting MS, to induce Th17- and Th1-immune response, which play a crucial role in the autoimmunity of the CNS. We found, that both dopamine and norepinephrine modulate the production of Th17- (IL-23, IL-1ß, and IL-6) and Th1-promoting (IL-12p70) cytokines by activated peripheral blood mononuclear cells or CD14+ monocytes in patients with MS and in healthy subjects. We also found the inhibitory effect of dopamine and norepinephrine on monocyte-induced production of IL-17 and IFN-γ by autologous CD4+ T-cells in both groups. Finally, the multidirectional role of D1- and D2-like dopaminergic receptors in the modulatory effect of dopamine on the ability of CD14+ monocytes to activate CD4+ T-cells was established, expanding the potential role of dopamine in the neuroimmune interaction.

8.
Clin Exp Immunol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864482

RESUMEN

Familial mediterranean fever (FMF) is characterized by inflammatory attacks due to overactivation of pyrin inflammasome. This study aimed to investigate the reliability of S100A8/A9, neopterin, and matrix metalloproteinase 3 (MMP3) at monitoring subclinical inflammation and disease activity, and at differentiating FMF attacks from appendicitis, the most common misdiagnosis among FMF patients. Blood samples (n=75), comprising from FMF patients during an attack (n=20), the same FMF patients during the attack-free period (n=14), patients with appendicitis (n=24), and healthy volunteers (n=17) were obtained. Duplicate determinations of S100A8/A9, neopterin, and MMP-3 levels were conducted using the enzyme-linked immunosorbent assay (ELISA). FMF patients with and without attack and patients with appendicitis had significantly elevated S100A8/A9 levels compared to healthy volunteers (p-values: <0.001, 0.036, 0.002, respectively). Patients with appendicitis and FMF patients with and without attack had significantly increased serum neopterin levels compared to healthy volunteers (p-value: <0.001). MMP3 levels were significantly higher among patients with appendicitis and FMF patients during attack compared to healthy controls (p-values: <0.001, 0.001). Serum levels of S100A8/A9, neopterin, and MMP3 were increased significantly during attacks compared to attack-free periods among FMF patients (p-values: 0.03, 0.047, 0.007). S100A8/A9 emerges as a valuable marker for monitoring disease activity. Neopterin and S100A8/A9 might help physicians to monitor subclinical inflammation during the attack-free periods of FMF patients. MMP3 might aid in diagnosing FMF attacks when distinguishing between attack and attack-free periods is challenging.

9.
Microbiol Spectr ; : e0044524, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874403

RESUMEN

In 2016, a distinct branch of H3N2 canine influenza virus (CIV) emerged, which has mutations related to mammalian adaptation and has replaced previously prevalent strains. This branch poses a risk of zoonotic infection. To prevent and control H3N2 CIV, an H3N2 virus-like particle (VLP) vaccine based on the insect cell baculovirus expression system has been developed in the study. The H3N2 VLP vaccine induced high titers of hemagglutination inhibition (HI) antibodies in nasal and muscular immunized beagle dogs. Meanwhile, the VLP vaccine provided effective protection against homologous virus challenge comparable to inactivated H3N2 canine influenza virus. In addition, the intranasal H3N2 VLP vaccine induced significantly higher Th1, Th2, and Th17 immune responses, respectively (p,0.05). Importantly, intramuscular injection of VLP and inactivated H3N2 virus has complete protective effects against homologous H3N2 virus attacks. Nasal immunization with H3N2 VLP can partially protect beagles from H3N2 influenza. IMPORTANCE: A new antigenically and genetically distinct canine influenza virus (CIV) H3N2 clade possessing mutations associated with mammalian adaptation emerged in 2016 and substituted previously circulating strains. This clade poses a risk for zoonotic infection. In our study, intramuscular injection of the H3N2 virus-like particle (VLP) vaccine and inactivated H3N2 CIV confer completely sterilizing protection against homologous H3N2 canine influenza virus challenge. Our results provide further support for the possibility of developing VLP vaccines that can reliably induce immunity in animal species.

10.
Biologics ; 18: 147-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859969

RESUMEN

Introduction: Osteoimmunology recognizes the relationship between bone cells and immune cells. Chronic osteoimmune dysregulation is present in bone marrow defects of the jaw (BMDJ) as fatty-degenerative osteonecrosis (FDOJ). In comparison to samples from healthy jaw bone, the cytokine analysis of samples of BMDJ/FDOJ from 128 patients showed downregulated TNF-α and IL-6 expression and the singular overexpression of the chemokine RANTES/CCL5. Aim and Objectives: This paper raises the question of whether the osteoimmune defects due to incomplete wound healing in BMDJ/FDOJ in 128 patients are related to dysregulation of the Th1/Th2 ratio and regulatory T cell (T-reg) expression in a control group of 197 BMDJ/FDOJ patients, each presenting with BMDJ/FJOD and one of seven different immune disorders. Material and Methods: In the control group, serum concentrations of the cytokines IFN-y and IL-4 were determined after stimulated cytokine release and displayed as Th1/Th2 ratios. Results: Data show a shift in Th2 in more than 80% (n = 167) of the control cohort of 197 chronically ill patients with concomitant BMDJ/FDOJ. In these 167 subjects, the Th1/Th2 ratio was <6.1 demonstrating impaired immune regulation. Forty-seven subjects or 30% showed not only a shift in Th2 but also excessive T-reg overactivation with levels of >1.900 pg/mL, indicating strongly downregulated immune activity. Discussion: BMDJ/FDOJ is characterized by a lack of Th1 cytokines and an excessive expression of RANTES/CCL5 and IL-1ra and, thus, the inversion of an acute inflammatory cytokine pattern. In contrast, abdominal fat contains a very high proportion of regulatory Th1 cells and produces an inflammatory immune response through the high overexpression of TNF-α and IL-6. The lack of Th1 activation in BMDJ/FDOJ areas inhibits normal wound healing and supports the persistence of BMDJ/FDOJ. Conclusion: The Th1/Th2 ratio requires greater consideration, especially with respect to wound healing following dental surgical interventions, such as jaw surgery, implantation and augmentation, to avoid the emergence of the osteoimmune situation that is characteristic of BMDJ/FDOJ.

11.
Neuroscience ; 552: 65-75, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885894

RESUMEN

Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.

12.
Int Immunopharmacol ; 138: 112566, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943968

RESUMEN

BACKGROUND: T cell infiltration and differentiation play a central part in the development of lupus nephritis (LN). Our prior research has indicated that protein, the primary active component of cordyceps (WCP), a traditional Chinese medicine, possesses properties that can enhance renal fibrosis and provide kidney protection. Nonetheless, the connection between WCP and T cell infiltration and differentiation in LN remains poorly understood. OBJECTIVE: The objective of this research was to assess the immunomodulatory impacts of WCP in LN mice and elucidate the underlying mechanism through in vivo and in vitro investigations. METHODS: To investigate the impact and mechanism of WCP in MRL/lpr lupus-prone mice, WCP (1.5 g/kg/d), Bailing capsules (BC, 0.75 g/kg/d), and saline in equivalent quantities were administered to the mice over a period of 8 weeks. The therapeutic effects, T cell infiltration and differentiation of WCP on MRL/lpr mice were verified through ELISA, Hematoxylin-eosin (H&E), Periodic Acid Schiff (PAS) staining, immunofluorescence, Luminex analysis and flow cytometry. The mechanism by which WCP alleviates LN was investigated using tissues of mice, T cells and Mouse Podocyte Clone-5 (MPC-5) cells by transcriptomics, Western blot (WB), and Real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: We found that WCP improved LN in MRL/lpr mice by reducing urinary protein, creatinine, and serum auto antibodies, increasing complement 3 (C3) level, improving renal immunopathology and downregulating serum cytokines, including IFN-γ, IL-12, and RANTES. Notably, the infiltration of CD4+ and CD8+ T cells in the kidney was reduced by WCP. Similarly, the cell transwell co-culturation study showed that the WCP treated MPC-5 cells were weaker in inducing T cell migration. Consistent with this finding, our observations revealed that WCP could inhibit T cell-related chemokine expression in kidney and MPC-5 cells, as well as reduce the levels of TLR4, MYD88, phosphorylated-p38, phosphorylated-ERK, and phosphorylated-JNK. On the other hand, WCP was found to greatly inhibit the Th1 cells differentiation in vivo and in vitro. Cytokine-receptor induced Th1 cell differentiation pathway and PI3K-AKT pathway were the most enriched pathways based on differentially expressed genes (DEGs) enrichment analysis among different cell groups. Results from RT-qPCR and WB showed that WCP notably reduced the levels of IL-12, p-STAT4, IFN-γ, p-STAT1, p-PI3K, and p-AKT in T cells. CONCLUSION: WCP demonstrated positive immunomodulatory effects on LN disease, by decreasing the T cells infiltration through TLR4/MYD88/MAPK signaling pathway and inhibiting Th1 cells differentiation via IL-12-STAT4 and IFN-γ-STAT1 pathways, in addition to the PI3K-AKT pathway.

13.
ACS Nano ; 18(26): 16589-16609, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885198

RESUMEN

Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.


Asunto(s)
Nanopartículas , Compuestos de Amonio Cuaternario , Células TH1 , Animales , Células TH1/inmunología , Células TH1/efectos de los fármacos , Nanopartículas/química , Ratones , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Femenino , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Lípidos/química , Ratones Endogámicos BALB C , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/química , Adyuvantes de Vacunas/química , Adyuvantes de Vacunas/farmacología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/química , COVID-19/prevención & control , COVID-19/inmunología , Liposomas
14.
Front Immunol ; 15: 1345046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827732

RESUMEN

Introduction: Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods: To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results: IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1ß generation, and thereby further amplifying Th1 response. Discussion: Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.


Asunto(s)
Diferenciación Celular , Interferón gamma , Melanoma Experimental , Ratones Endogámicos C57BL , Células TH1 , Animales , Células TH1/inmunología , Ratones , Interferón gamma/metabolismo , Diferenciación Celular/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Crioterapia/métodos , Línea Celular Tumoral , Femenino
15.
Front Pharmacol ; 15: 1332036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835658

RESUMEN

We previously revealed that Cang-ai volatile oil (CAVO) regulates T-cell activity, enhancing the immune response in people with chronic respiratory diseases. However, the effects of CAVO on allergic rhinitis (AR) have not been investigated. Herein, we established an ovalbumin (OVA)-induced AR rat model to determine these effects. Sprague-Dawley (SD) rats were exposed to OVA for 3 weeks. CAVO or loratadine (positive control) was given orally once daily for 2 weeks to OVA-exposed rats. Behavior modeling nasal allergies was observed. Nasal mucosa, serum, and spleen samples of AR rats were analyzed. CAVO treatment significantly reduced the number of nose rubs and sneezes, and ameliorated several hallmarks of nasal mucosa tissue remodeling: inflammation, eosinophilic infiltration, goblet cell metaplasia, and mast cell hyperplasia. CAVO administration markedly upregulated expressions of interferon-γ, interleukin (IL)-2, and IL-12, and downregulated expressions of serum tumor necrosis factor-α, IL-4, IL-5, IL-6, IL-13, immunoglobulin-E, and histamine. CAVO therapy also increased production of IFN-γ and T-helper type 1 (Th1)-specific T-box transcription factor (T-bet) of the cluster of differentiation-4+ T-cells in splenic lymphocytes, and protein and mRNA expressions of T-bet in nasal mucosa. In contrast, levels of the Th2 cytokine IL-4 and Th2-specific transcription factor GATA binding protein-3 were suppressed by CAVO. These cumulative findings demonstrate that CAVO therapy can alleviate AR by regulating the balance between Th1 and Th2 cells.

16.
Microbiome Res Rep ; 3(2): 16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841405

RESUMEN

Objectives: Bifidobacterium longum subsp. infantis is a dominant bacterium in infant gut, which plays a critical role in maintaining the health and development of infants. This study investigated the abilities of eight different strains of B. longum subsp. infantis to regulate the T helper (Th)1/Th2 balance. Methods: Eight B. longum subsp. infantis strains, including I2MI (FJSWXI2MIM1), I4MI [FJSWXI4MI (CCFM1270)], I4MNI (FJSWXI4MNIM1), I5TI (FJSWXI5TIM1), I6TI (FJSWXI6TIM1), I8TI [FJSWXI8TI (CCFM1271)], I10TI [FJSWXI10TI (CCFM1272)], and B6MNI [BJSWXB6MNIM1 (CCFM1269)], were gavaged to BALB/C pups in both female (n = 8) and male (n = 8) mice starting from 1 to 3 weeks old (1 × 109 CFU/day/mice). Selected immune cells were assessed by immunofluorescence and flow cytometry. Cytokines and immunoglobulins were determined by ELISA. Bacterial and bifidobacterial communities were determined by 16S rRNA gene sequencing and bifidobacterial groEL sequencing. Results: B. longum subsp. infantis I4MI and I8TI were shown to increase the ration of colonic IgG2a/IgE in male mice (P < 0.05). B6MNI was demonstrated to significantly increase the levels of colonic IFN-γ and IgG2a, as well as the ratio of IgG2a/IgE in female mice (P < 0.05). It was also shown to significantly increase the ratio of colonic IgG2a/IgE (P < 0.05) and reduce the level of colonic IL-4 in male mice (P < 0.05). Furthermore, B6MNI was demonstrated to regulate colonic JAK/STAT pathway in both male and female mice. I4MI, I5TI, and B6MNI were shown to increase the relative abundance of Bifidobacterium and B. longum subsp. infantis in both male and female mice, whereas I8TI was only shown to increase the relative abundance of Bifidobacterium and B. longum subsp. infantis in male mice (P < 0.05). Conclusion: These results indicated supplementation with B. longum subsp. infantis in early infancy may regulate the Th1/Th2 immune balance, which may prevent the development of related diseases.

17.
Int Immunol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895753

RESUMEN

The generation and maintenance of memory T cells are regulated by various factors, including cytokines. Previous studies have shown that IL-27 is produced during the early acute phase of Plasmodium chabaudi chabaudi AS (Pcc) infection and inhibits the development of Th1-type memory CD4+ T cells. However, whether IL-27 acts directly on its receptor on Plasmodium-specific CD4+ T cells or indirectly via its receptor on other immune cells remains unclear. We aimed to determine the role of IL-27 receptor signaling in different immune cell types in regulating the generation and phenotype of memory CD4+ T cells during Plasmodium infection. We utilized Plasmodium-specific TCR transgenic mice, PbT-II, and Il27rα-/- mice to assess the direct and indirect effects of IL-27 signaling on memory CD4+ T-cell generation. Mice were transferred with PbT-II or Il27rα-/- PbT-II cells and infected with Pcc. Conditional knockout mice lacking the IL-27 receptor in T cells or dendritic cells were employed to discern the specific immune cell types involved in IL-27 receptor signaling. High levels of memory in PbT-II cells with Th1-shift occurred only when both PbT-II and host cells lacked the IL-27 receptor, suggesting the predominant inhibitory role of IL-27 signaling in both cell types. Furthermore, IL-27 receptor signaling in T cells limited the number of memory CD4+ T cells, while signaling in both T and dendritic cells contributed to the Th1 dominance of memory CD4+ T cells. These findings underscore the complex cytokine signaling network regulating memory CD4+ T cells during Plasmodium infection.

18.
Int Immunopharmacol ; 137: 112479, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901246

RESUMEN

Shen chan decoction (SCD) as a significant Traditional Chinese medicine (TCM) to treat atopic dermatitis (AD), but its mechanism of action has not been clarified, so we started the present study, first possible effects of SCD on AD were predicted using network pharmacology. Next, dinitrochlorobenzene was used to establish a mouse model of AD. After successful modelling, the SCD were administered intragastrically to treat the mice. Eventually, the KEGG pathway enrichment analysis indicated that SCD improved AD mainly through effects on inflammation and the gut microbiota. The experimental findings revealed that SCD treatment attenuated AD symptoms and downregulate the characteristic immune factors, namely IL-4, IL-6 and IgE. Moreover, it promoted a balance between Th1/Th2 cells. Furthermore, the itch signaling pathways involving H1R/PAR-2/TRPV1 were inhibited. The 16S rRNA sequencing results indicated that SCD administration influenced the Firmicutes/Bacteroidetes ratio at the phylum level by augmenting the relative proportions of Lactobacillaceae and Muribaculaceae at the family and genus levels, while decreasing the abundances of Lactococcus and Ruminococcus. These findings suggest that internal administration of SCD is an effective therapeutic approach for AD. We suggest that SCD may be an alternative therapy for the treatment of AD.Additionally, it could offer valuable insights into the pathogenesis of AD and the development of innovative therapeutic agents.

19.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697116

RESUMEN

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Asunto(s)
Factor de Unión a CCCTC , Diferenciación Celular , Interferón gamma , Interleucina-22 , Interleucinas , Células TH1 , Animales , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Células TH1/inmunología , Ratones , Diferenciación Celular/inmunología , Interferón gamma/metabolismo , Sitios de Unión , Interleucinas/metabolismo , Interleucinas/genética , Elementos de Facilitación Genéticos/genética , Ratones Endogámicos C57BL , Cromatina/metabolismo , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Toxoplasmosis/genética , Regulación de la Expresión Génica , Toxoplasma/inmunología , Citocinas/metabolismo , Linaje de la Célula , Células Th17/inmunología
20.
Exp Eye Res ; 244: 109937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782179

RESUMEN

Sjögren's syndrome (SS) dry eye can cause ocular surface inflammation and lacrimal gland (LG) damage, leading to discomfort and potential vision problems. The existing treatment options for SS dry eye are currently constrained. We investigated the possible therapeutic effect and the underlying mechanism of AS101 in autoimmune dry eye. AS101 was injected subconjunctivally into a rabbit model of autoimmune dacryoadenitis and its therapeutic effects were determined by evaluating clinical and histological scores. The expressions of effector T cells (Teff)/regulatory T cells (Treg)-related transcription factors and cytokines, inflammation mediators, and transcription factor NFATc2 were measured by quantitative real-time PCR and/or Western blot both in vivo and in vitro. Additionally, the role of NFATc2 in the immunomodulatory effects of AS101 on T cells was explored by co-culturing activated peripheral blood lymphocytes (PBLs) transfected with NFATc2 overexpression lentiviral plasmid with AS101. AS101 treatment potently ameliorated the clinical severity and reduced the inflammation of LG. Further investigation revealed that AS101 treatment led to decreased expression of Th1-related genes (T-bet and IFN-γ) and Th17-related genes (RORC, IL-17A, IL-17F, and GM-CSF) and increased expression of Treg-related gene Foxp3 in vivo and in vitro. Meanwhile, AS101 suppressed the expression of TNF-α, IL-1ß, IL-23, IL-6, MMP-2, and MMP-9. Mechanistically, AS101 downregulated the expression of NFATc2 in inflamed LGs. Overexpression of NFATc2 in activated PBLs partially blunted the effect of AS101 on Teff suppression and Treg promotion. In conclusion, AS101 is a potential regulator of Teff/Treg cell balance and could be an effective treatment agent for SS dry eye.


Asunto(s)
Dacriocistitis , Modelos Animales de Enfermedad , Factores de Transcripción NFATC , Linfocitos T Reguladores , Animales , Conejos , Linfocitos T Reguladores/inmunología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Dacriocistitis/tratamiento farmacológico , Dacriocistitis/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/metabolismo , Femenino , Western Blotting , Aparato Lagrimal/metabolismo , Aparato Lagrimal/patología , Citocinas/metabolismo , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...