Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604815

RESUMEN

BACKGROUND: Checkpoint inhibitors targeting the programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway are effective therapies in a range of immunogenic cancer types. Blocking this pathway with an oral therapy could benefit patients through greater convenience, particularly in combination regimens, and allow flexible management of immune-mediated toxicities. METHODS: PD-L1 binding activity was assessed in engineered dimerization and primary cell target occupancy assays. Preclinical antitumor activity was evaluated in ex vivo and in vivo human PD-L1-expressing tumor models. Human safety, tolerability, pharmacokinetics, and biomarker activity were evaluated in an open-label, multicenter, sequential dose-escalation study in patients with advanced solid tumors. Biomarkers evaluated included target occupancy, flow cytometric immunophenotyping, plasma cytokine measurements, and T-cell receptor sequencing. RESULTS: GS-4224 binding caused dimerization of PD-L1, blocking its interaction with PD-1 and leading to reversal of T-cell inhibition and increased tumor killing in vitro and in vivo. The potency of GS-4224 was dependent on the density of cell surface PD-L1, with binding being most potent on PD-L1-high cells. In a phase 1 dose-escalation study in patients with advanced solid tumors, treatment was well tolerated at doses of 400-1,500 mg once daily. Administration of GS-4224 was associated with a dose-dependent increase in plasma GS-4224 exposure and reduction in free PD-L1 on peripheral blood T cells, an increase in Ki67 among the PD-1-positive T-cell subsets, and elevated plasma cytokines and chemokines. CONCLUSIONS: GS-4224 is a novel, orally bioavailable small molecule inhibitor of PD-L1. GS-4224 showed evidence of expected on-target biomarker activity, including engagement of PD-L1 and induction of immune-related pharmacodynamic responses consistent with PD-L1 blockade. TRIAL REGISTRATION NUMBER: NCT04049617.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Neoplasias/tratamiento farmacológico , Linfocitos T/metabolismo
2.
J Immunother Cancer ; 12(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316518

RESUMEN

Treatment of hematologic malignancies with patient-derived anti-CD19 chimeric antigen receptor (CAR) T-cells has demonstrated long-term remissions for patients with otherwise treatment-refractory advanced leukemia and lymphoma. Conversely, CAR T-cell treatment of solid tumors, including advanced gastric cancer (GC), has proven more challenging due to on-target off-tumor toxicities, poor tumor T-cell infiltration, inefficient CAR T-cell expansion, immunosuppressive tumor microenvironments, and demanding preconditioning regimens. We report the exceptional results of autologous Claudin18.2-targeted CAR T cells (CT041) in a patient with metastatic GC, who had progressed on four lines of combined systemic chemotherapy and immunotherapy. After two CT041 infusions, the patient had target lesion complete response and sustained an 8-month overall partial response with only minimal ascites. Moreover, tumor-informed circulating tumor DNA (ctDNA) reductions coincided with rapid CAR T-cell expansion and radiologic response. No severe toxicities occurred, and the patient's quality of life significantly improved. This experience supports targeting Claudin18.2-positive GC with CAR T-cell therapy and helps to validate ctDNA as a biomarker in CAR T-cell therapy. Clinical Insight: Claudin18.2-targeted CAR T cells can safely provide complete objective and ctDNA response in salvage metastatic GC.


Asunto(s)
Leucemia , Receptores Quiméricos de Antígenos , Neoplasias Gástricas , Humanos , Receptores de Antígenos de Linfocitos T , Neoplasias Gástricas/terapia , Calidad de Vida , Linfocitos T , Respuesta Patológica Completa , Antígenos CD19 , Microambiente Tumoral
3.
J Immunother Cancer ; 12(1)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212127

RESUMEN

BACKGROUND: Patients with advanced melanoma who progress after treatment with immune checkpoint-inhibitors (ICI) and BRAF-/MEK-inhibitors (if BRAF V600 mutated) have no remaining effective treatment options. The presence of CD1c (BDCA-1)+ and CD141 (BDCA-3)+ myeloid dendritic cells (myDC) in the tumor microenvironment correlates with pre-existing immune recognition and responsiveness to immune checkpoint blockade. The synthetic saponin-based immune adjuvant AS01B enhances adaptive immunity through the involvement of myDC. METHODS: In this first-in-human phase I clinical trial, patients with metastatic melanoma refractory to ICI and BRAF-/MEK inhibitors (when indicated) were recruited. Patients received an intravenous administration of low-dose nivolumab (10 mg, every 2 weeks) plus an intratumoral (IT) administration of 10 mg ipilimumab and 50 µg (0.5 mL) AS01B (every 2 weeks). All myDC, isolated from blood, were injected on day 2 into the same metastatic lesion. Tumor biopsies and blood samples were collected at baseline and repeatedly on treatment. Multiplex immunohistochemistry (mIHC) was performed on biopsy sections to characterize and quantify the IT and peritumoral immune cell composition. RESULTS: Study treatment was feasible and well tolerated without the occurrence of unexpected adverse events in all eight patients. Four patients (50%) obtained a complete response (CR) in the injected lesions. Of these, two patients obtained an overall CR, and one patient a partial response. All responses are ongoing after more than 1 year of follow-up. One additional patient had a stable disease as best response. The disease control rate was 50%. Median progression-free survival and overall survival were 24.1 and 41.9 weeks, respectively. Baseline tumor biopsies from patients who responded to treatment had features of T-cell exclusion. During treatment, there was an increased T-cell infiltration, with a reduced mean distance between T cells and tumor cells. Peripheral blood immune cell composition did not significantly change during study treatment. CONCLUSIONS: Combining an intratumoral injection of CD1c (BDCA-1)+ and CD141 (BDCA-3)+ myDC with repeated IT administration of ipilimumab and AS01B and systemic low-dose nivolumab is safe, feasible with promising early results, worthy of further clinical investigation. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier NCT03707808.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Nivolumab/efectos adversos , Ipilimumab/farmacología , Ipilimumab/uso terapéutico , Adyuvantes Inmunológicos/efectos adversos , Proteínas Proto-Oncogénicas B-raf , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Administración Intravenosa , Quinasas de Proteína Quinasa Activadas por Mitógenos , Microambiente Tumoral
4.
J Immunother Cancer ; 11(11)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030303

RESUMEN

BACKGROUND: NIS793 is a human IgG2 monoclonal antibody that binds to transforming growth factor beta (TGF-ß). This first-in-human study investigated NIS793 plus spartalizumab treatment in patients with advanced solid tumors. METHODS: Patients received NIS793 (0.3-1 mg/kg every 3 weeks (Q3W)) monotherapy; following evaluation of two dose levels, dose escalation continued with NIS793 plus spartalizumab (NIS793 0.3-30 mg/kg Q3W and spartalizumab 300 mg Q3W or NIS793 20-30 mg/kg every 2 weeks [Q2W] and spartalizumab 400 mg every 4 weeks (Q4W)). In dose expansion, patients with non-small cell lung cancer (NSCLC) resistant to prior anti-programmed death ligand 1 or patients with microsatellite stable colorectal cancer (MSS-CRC) were treated at the recommended dose for expansion (RDE). RESULTS: Sixty patients were treated in dose escalation, 11 with NIS793 monotherapy and 49 with NIS793 plus spartalizumab, and 60 patients were treated in dose expansion (MSS-CRC: n=40; NSCLC: n=20). No dose-limiting toxicities were observed. The RDE was established as NIS793 30 mg/kg (2100 mg) and spartalizumab 300 mg Q3W. Overall 54 (49.5%) patients experienced ≥1 treatment-related adverse event, most commonly rash (n=16; 13.3%), pruritus (n=10; 8.3%), and fatigue (n=9; 7.5%). Three partial responses were reported: one in renal cell carcinoma (NIS793 30 mg/kg Q2W plus spartalizumab 400 mg Q4W), and two in the MSS-CRC expansion cohort. Biomarker data showed evidence of target engagement through increased TGF-ß/NIS793 complexes and depleted active TGF-ß in peripheral blood. Gene expression analyses in tumor biopsies demonstrated decreased TGF-ß target genes and signatures and increased immune signatures. CONCLUSIONS: In patients with advanced solid tumors, proof of mechanism of NIS793 is supported by evidence of target engagement and TGF-ß pathway inhibition. TRIAL REGISTRATION NUMBER: NCT02947165.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Renales , Neoplasias Pulmonares , Adulto , Humanos , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Factor de Crecimiento Transformador beta
5.
J Immunother Cancer ; 11(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37793853

RESUMEN

BACKGROUND: SGN-B7H4V is a novel investigational vedotin antibody-drug conjugate (ADC) comprising a B7-H4-directed human monoclonal antibody conjugated to the cytotoxic payload monomethyl auristatin E (MMAE) via a protease-cleavable maleimidocaproyl valine citrulline (mc-vc) linker. This vedotin linker-payload system has been clinically validated in multiple Food and Drug Administration approved agents including brentuximab vedotin, enfortumab vedotin, and tisotumab vedotin. B7-H4 is an immune checkpoint ligand with elevated expression on a variety of solid tumors, including breast, ovarian, and endometrial tumors, and limited normal tissue expression. SGN-B7H4V is designed to induce direct cytotoxicity against target cells by binding to B7-H4 on the surface of target cells and releasing the cytotoxic payload MMAE upon internalization of the B7-H4/ADC complex. METHODS: B7-H4 expression was characterized by immunohistochemistry across multiple solid tumor types. The ability of SGN-B7H4V to kill B7-H4-expressing tumor cells in vitro and in vivo in a variety of xenograft tumor models was also evaluated. Finally, the antitumor activity of SGN-B7H4V as monotherapy and in combination with an anti-programmed cell death-1 (PD-1) agent was evaluated using an immunocompetent murine B7-H4-expressing Renca tumor model. RESULTS: Immunohistochemistry confirmed B7-H4 expression across multiple solid tumors, with the highest prevalence in breast, endometrial, and ovarian tumors. In vitro, SGN-B7H4V killed B7-H4-expressing tumor cells by MMAE-mediated direct cytotoxicity and antibody-mediated effector functions including antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. In vivo, SGN-B7H4V demonstrated strong antitumor activity in multiple xenograft models of breast and ovarian cancer, including xenograft tumors with heterogeneous B7-H4 expression, consistent with the ability of vedotin ADCs to elicit a bystander effect. In an immunocompetent murine B7-H4-expressing tumor model, SGN-B7H4V drove robust antitumor activity as a monotherapy that was enhanced when combined with an anti-PD-1 agent. CONCLUSION: The immune checkpoint ligand B7-H4 is a promising molecular target expressed by multiple solid tumors. SGN-B7H4V demonstrates robust antitumor activity in preclinical models through multiple potential mechanisms. Altogether, these preclinical data support the evaluation of SGN-B7H4V as a monotherapy in the ongoing phase 1 study of SGN-B7H4V in advanced solid tumors (NCT05194072) and potential future clinical combinations with immunotherapies.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Inmunohistoquímica , Ligandos
6.
J Immunother Cancer ; 11(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37857528

RESUMEN

BACKGROUND: Ociperlimab, a novel, humanized monoclonal antibody (mAb), binds to T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) with high affinity and specificity. Tislelizumab is an anti-programmed cell death protein 1 mAb. We report results from a phase I, first-in-human, dose escalation study evaluating the safety, pharmacokinetics (PK), and preliminary antitumor activity of ociperlimab plus tislelizumab in patients with advanced solid tumors. METHODS: Eligible patients previously treated with standard systemic therapy, or for whom treatment was not available or tolerated, received ociperlimab intravenously on Cycle (C) 1 Day (D) 1 and tislelizumab 200 mg intravenously on C1 D8. If tolerated, patients received ociperlimab plus tislelizumab 200 mg sequentially on D29 and every 3 weeks (Q3W) thereafter until discontinuation. Dose escalation for ociperlimab was planned with four dose levels (50 mg, 150 mg, 450 mg, and 900 mg) according to a 3+3 design. An additional dose level of ociperlimab 1800 mg was also assessed. Primary endpoints were safety, determination of the maximum tolerated (or administered) dose, and the recommended phase II dose (RP2D). Secondary endpoints included overall response rate (ORR), duration of response (DoR), disease control rate (DCR) (Response Evaluation Criteria in Solid Tumors version 1.1), PK, and biomarker analysis. RESULTS: At data cut-off (September 29, 2022), 32 patients had received ≥1 dose of ociperlimab plus tislelizumab 200 mg Q3W. The maximum administered dose was ociperlimab 1800 mg plus tislelizumab 200 mg Q3W. The median age of enrolled patients was 59.5 years (range: 31-79). Most patients (96.9%) experienced ≥1 treatment-emergent adverse event (TEAE); 62.5% of patients experienced ≥grade 3 TEAEs and 50.0% of patients experienced serious TEAEs. No dose limiting toxicity events were reported. The maximum tolerated dose was not reached. The RP2D was ociperlimab 900 mg plus tislelizumab 200 mg Q3W. Overall, ORR was 10.0%, median DoR was 3.6 months, and DCR was 50.0%. CONCLUSIONS: Ociperlimab plus tislelizumab was well tolerated in patients with advanced solid tumors, and preliminary antitumor activity was observed with 450 mg, 900 mg, and 1800 mg ociperlimab. Phase II/III trials of ociperlimab 900 mg plus tislelizumab 200 mg Q3W are underway in a range of solid tumors. TRIAL REGISTRATION NUMBER: NCT04047862.


Asunto(s)
Antineoplásicos , Neoplasias , Adulto , Anciano , Humanos , Persona de Mediana Edad , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Receptores Inmunológicos
7.
J Immunother Cancer ; 11(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37678918

RESUMEN

BACKGROUND: Immunosuppressive drugs such as tacrolimus have revolutionized our ability to transplant organs between individuals. Tacrolimus acts systemically to suppress the activity of T-cells within and around transplanted organs. However, tacrolimus also suppresses T-cell function in the skin, contributing to a high incidence of skin cancer and associated mortality and morbidity in solid organ transplant recipients. Here, we aimed to identify a compound capable of re-establishing antitumor T-cell control in the skin despite the presence of tacrolimus. METHODS: In this study, we performed time-resolved fluorescence resonance energy transfer to identify molecules capable of antagonizing the interaction between tacrolimus and FKBP12. The capacity of these molecules to rescue mouse and human T-cell function in the presence of tacrolimus was determined in vitro, and the antitumor effect of the lead compound, Q-2361, was assessed in "regressor" models of skin cancer in immunosuppressed mice. Systemic CD8 T-cell depletion and analyses of intratumoral T-cell activation markers and effector molecule production were performed to determine the mechanism of tumor rejection. Pharmacokinetic studies of topically applied Q-2361 were performed to assess skin and systemic drug exposure. RESULTS: Q-2361 potently blocked the interaction between tacrolimus and FKBP12 and reversed the inhibition of the nuclear factor of activated T cells activation by tacrolimus following T-cell receptor engagement in human Jurkat cells. Q-2361 rescued T-cell function in the presence of tacrolimus, rapamycin, and everolimus. Intratumoral injection of Q-2361-induced tumor regression in mice systemically immune suppressed with tacrolimus. Mechanistically, Q-2361 treatment permitted T-cell activation, proliferation, and effector function within tumors. When CD8 T cells were depleted, Q-2361 could not induce tumor regression. A simple solution-based Q-2361 topical formulation achieved high and sustained residence in the skin with negligible drug in the blood. CONCLUSIONS: Our findings demonstrate that the local application of Q-2361 permits T-cells to become activated driving tumor rejection in the presence of tacrolimus. The data presented here suggests that topically applied Q-2361 has great potential for the reactivation of T-cells in the skin but not systemically, and therefore represents a promising strategy to prevent or treat skin malignancies in immunosuppressed organ transplant recipients.


Asunto(s)
Neoplasias Cutáneas , Tacrolimus , Humanos , Animales , Ratones , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Proteína 1A de Unión a Tacrolimus , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Huésped Inmunocomprometido
8.
J Immunother Cancer ; 11(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37661097

RESUMEN

BACKGROUND: ONCOS-102, an oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor, can alter the tumor microenvironment to an immunostimulatory state. Combining ONCOS-102 with standard-of-care chemotherapy for malignant pleural mesothelioma (MPM) may improve treatment outcomes. METHODS: In this open-label, randomized study, patients with unresectable MPM received intratumoral ONCOS-102 (3×1011 virus particles on days 1, 4, 8, 36, 78, and 120) and pemetrexed plus cisplatin/carboplatin (from day 22), or pemetrexed plus cisplatin/carboplatin alone. The primary endpoint was safety. Overall survival (OS), progression-free survival, objective response rate, and tumor immunologic activation (baseline and day 36 biopsies) were also assessed. RESULTS: In total, 31 patients (safety lead-in: n=6, randomized: n=25) were enrolled. Anemia (15.0% and 27.3%) and neutropenia (40.0% and 45.5%) were the most frequent grade ≥3 adverse events (AEs) in the ONCOS-102 (n=20) and chemotherapy-alone (n=11) cohorts. No patients discontinued ONCOS-102 due to AEs. No statistically significant difference in efficacy endpoints was observed. There was a numerical improvement in OS (30-month OS rate 34.1% vs 0; median OS 20.3 vs 13.5 months) with ONCOS-102 versus chemotherapy alone in chemotherapy-naïve patients (n=17). By day 36, ONCOS-102 was associated with increased T-cell infiltration and immune-related gene expression that was not observed in the control cohort. Substantial immune activation in the tumor microenvironment was associated with survival at month 18 in the ONCOS-102 cohort. CONCLUSIONS: ONCOS-102 plus pemetrexed and cisplatin/carboplatin was well tolerated by patients with MPM. In injected tumors, ONCOS-102 promoted a proinflammatory environment, including T-cell infiltration, which showed association with survival at month 18.


Asunto(s)
Mesotelioma Maligno , Platino (Metal) , Humanos , Pemetrexed/farmacología , Pemetrexed/uso terapéutico , Cisplatino , Microambiente Tumoral , Carboplatino
9.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553181

RESUMEN

With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Epigénesis Genética , Antígenos de Neoplasias , Terapia Combinada , Microambiente Tumoral
10.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37290924

RESUMEN

BACKGROUND: Immunologically cold tumors with an 'immune desert' phenotype lack tumor-infiltrating lymphocytes (TILs) and are typically impervious to systemic immune checkpoint blockade (ICB). Intratumoral treatment of tumors with immunomodulatory agents can promote local tumor inflammation leading to improved T cell responses in injected tumors. Addition of systemic ICB increases response frequency and immune-mediated clearance of injected and distal non-injected lesions, and this promising approach is being widely investigated clinically. In this work, we evaluate and characterize the local and systemic antitumor immunotherapeutic activity of VAX014, a novel non-viral targeted oncolytic agent based on recombinant bacterial minicells, following intratumoral administration and in combination with systemic ICB. METHODS: The immunotherapeutic activity of VAX014 following weekly intratumoral administration was investigated in multiple preclinical tumor models with B16F10 murine melanoma serving as the primary model for evaluation of immune desert tumors. Mice bearing a single intradermal tumor were used to evaluate tumor response and overall survival (OS), assess changes in immune cell populations, and explore global changes to immunotranscriptomes of injected tumors. Mice bearing bilateral intradermal tumors were then used to evaluate non-injected tumors for changes in TIL populations and phenotypes, compare immunotranscriptomes across treatment groups, and assess distal non-injected tumor response in the context of monotherapy or in combination with ICB. RESULTS: VAX014 demonstrated strong immune-mediated tumor clearance of injected tumors coinciding with significantly elevated CD8+ TILs and upregulation of multiple immune pathways essential for antitumor immune responses. Modest activity against distal non-injected immune desert tumors was observed despite elevated levels of systemic antitumor lymphocytes. Combination with systemic CTLA-4 blockade improved survival and elevated TILs but did not improve clearance rates of non-injected tumors. Immunotranscriptomes of non-injected tumors from this treatment combination group exhibited upregulation of multiple immune pathways but also identified upregulation of PD-1. Further addition of systemic PD-1 blockade led to rapid clearance of non-injected tumors, enhanced OS, and provided durable protective immunological memory. CONCLUSIONS: Intratumoral administration of VAX014 stimulates local immune activation and robust systemic antitumor lymphocytic responses. Combination with systemic ICB deepens systemic antitumor responses to mediate clearance of injected and distal non-injected tumors.


Asunto(s)
Antineoplásicos , Melanoma , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Inmunización
11.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321663

RESUMEN

BACKGROUND: Locally advanced/recurrent head and neck squamous cell carcinoma (HNSCC) is associated with significant morbidity and mortality. To target upregulated ErbB dimer expression in this cancer, we developed an autologous CD28-based chimeric antigen receptor T-cell (CAR-T) approach named T4 immunotherapy. Patient-derived T-cells are engineered by retroviral transduction to coexpress a panErbB-specific CAR called T1E28ζ and an IL-4-responsive chimeric cytokine receptor, 4αß, which allows IL-4-mediated enrichment of transduced cells during manufacture. These cells elicit preclinical antitumor activity against HNSCC and other carcinomas. In this trial, we used intratumoral delivery to mitigate significant clinical risk of on-target off-tumor toxicity owing to low-level ErbB expression in healthy tissues. METHODS: We undertook a phase 1 dose-escalation 3+3 trial of intratumoral T4 immunotherapy in HNSCC (NCT01818323). CAR T-cell batches were manufactured from 40 to 130 mL of whole blood using a 2-week semiclosed process. A single CAR T-cell treatment, formulated as a fresh product in 1-4 mL of medium, was injected into one or more target lesions. Dose of CAR T-cells was escalated in 5 cohorts from 1×107-1×109 T4+ T-cells, administered without prior lymphodepletion. RESULTS: Despite baseline lymphopenia in most enrolled subjects, the target cell dose was successfully manufactured in all cases, yielding up to 7.5 billion T-cells (67.5±11.8% transduced), without any batch failures. Treatment-related adverse events were all grade 2 or less, with no dose-limiting toxicities (Common Terminology Criteria for Adverse Events V.4.0). Frequent treatment-related adverse events were tumor swelling, pain, pyrexias, chills, and fatigue. There was no evidence of leakage of T4+ T-cells into the circulation following intratumoral delivery, and injection of radiolabeled cells demonstrated intratumoral persistence. Despite rapid progression at trial entry, stabilization of disease (Response Evaluation Criteria in Solid Tumors V.1.1) was observed in 9 of 15 subjects (60%) at 6 weeks post-CAR T-cell administration. Subsequent treatment with pembrolizumab and T-VEC oncolytic virus achieved a rapid complete clinical response in one subject, which was durable for over 3 years. Median overall survival was greater than for historical controls. Disease stabilization was associated with the administration of an immunophenotypically fitter, less exhausted, T4 CAR T-cell product. CONCLUSIONS: These data demonstrate the safe intratumoral administration of T4 immunotherapy in advanced HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Receptores Quiméricos de Antígenos , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Interleucina-4 , Recurrencia Local de Neoplasia , Inmunoterapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
12.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37220953

RESUMEN

In the past decade, treatments targeting the immune system have revolutionized the cancer treatment field. Therapies such as immune checkpoint inhibitors have been approved as first-line treatment in a variety of solid tumors such as melanoma and non-small cell lung cancer while other therapies, for instance, chimeric antigen receptor (CAR) lymphocyte transfer therapies, are still in development. Although promising results are obtained in a small subset of patients, overall clinical efficacy of most immunotherapeutics is limited due to intertumoral heterogeneity and therapy resistance. Therefore, prediction of patient-specific responses would be of great value for efficient use of costly immunotherapeutic drugs as well as better outcomes. Because many immunotherapeutics operate by enhancing the interaction and/or recognition of malignant target cells by T cells, in vitro cultures using the combination of these cells derived from the same patient hold great promise to predict drug efficacy in a personalized fashion. The use of two-dimensional cancer cell lines for such cultures is unreliable due to altered phenotypical behavior of cells when compared with the in vivo situation. Three-dimensional tumor-derived organoids, better mimic in vivo tissue and are deemed a more realistic approach to study the complex tumor-immune interactions. In this review, we present an overview of the development of patient-specific tumor organoid-immune co-culture models to study the tumor-specific immune interactions and their possible therapeutic infringement. We also discuss applications of these models which advance personalized therapy efficacy and understanding the tumor microenvironment such as: (1) Screening for efficacy of immune checkpoint inhibition and CAR therapy screening in a personalized manner. (2) Generation of tumor reactive lymphocytes for adoptive cell transfer therapies. (3) Studying tumor-immune interactions to detect cell-specific roles in tumor progression and remission. Overall, these onco-immune co-cultures might hold a promising future toward developing patient-specific therapeutic approaches as well as increase our understanding of tumor-immune interactions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Técnicas de Cocultivo , Inmunoterapia , Complejo Antígeno-Anticuerpo , Inhibidores de Puntos de Control Inmunológico , Organoides , Microambiente Tumoral
13.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37156551

RESUMEN

BACKGROUND: The tumor antigen NY-ESO-1 has been shown to be an effective target for transgenic adoptive cell therapy (ACT) for the treatment of sarcoma and melanoma. However, despite frequent early clinical responses, many patients ultimately develop progressive disease. Understanding the mechanisms underlying treatment resistance is crucial to improve future ACT protocols. Here, we describe a novel mechanism of treatment resistance in sarcoma involving loss of expression of NY-ESO-1 in response to transgenic ACT with dendritic cell (DC) vaccination and programmed cell death protein-1 (PD-1) blockade. METHODS: A HLA-A*02:01-positive patient with an NY-ESO-1-positive undifferentiated pleomorphic sarcoma was treated with autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes, NY-ESO-1 peptide-pulsed DC vaccination, and nivolumab-mediated PD-1 blockade. RESULTS: Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid in vivo expansion. There was initial tumor regression, and immunophenotyping of the peripheral transgenic T cells showed a predominantly effector memory phenotype over time. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsy via both TCR sequencing-based and RNA sequencing-based immune reconstitution, and nivolumab binding to PD-1 on transgenic T cells was confirmed at the tumor site. At the time of disease progression, the promoter region of NY-ESO-1 was found to be extensively methylated, and tumor NY-ESO-1 expression was completely lost as measured by RNA sequencing and immunohistochemistry. CONCLUSIONS: ACT of NY-ESO-1 transgenic T cells given with DC vaccination and anti-PD-1 therapy resulted in transient antitumor activity. NY-ESO-1 expression was lost in the post-treatment sample in the setting of extensive methylation of the NY-ESO-1 promoter region. BIOLOGICAL/CLINICAL INSIGHT: Antigen loss represents a novel mechanism of immune escape in sarcoma and a new point of improvement in cellular therapy approaches. TRIAL REGISTRATION NUMBER: NCT02775292.


Asunto(s)
Melanoma , Sarcoma , Humanos , Nivolumab , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
14.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37094988

RESUMEN

BACKGROUND: Novel combination therapies to overcome anti-PD-1 resistance are required. Enadenotucirev, a tumor-selective blood stable adenoviral vector, has demonstrated a manageable safety profile and ability to increase tumor immune-cell infiltration in phase I studies in solid tumors. METHODS: We conducted a phase I multicenter study of intravenous enadenotucirev plus nivolumab in patients with advanced/metastatic epithelial cancer not responding to standard therapy. Co-primary objectives were safety/tolerability and maximum tolerated dose and/or maximum feasible dose (MTD/MFD) of enadenotucirev plus nivolumab. Additional endpoints included response rate, cytokine responses, and anti-tumor immune responses. RESULTS: Overall, 51 heavily pre-treated patients were treated, 45/51 (88%) of whom had colorectal cancer (35/35 patients with information available were microsatellite instability-low/microsatellite stable) and 6/51 (12%) had squamous cell carcinoma of the head and neck. The MTD/MFD of enadenotucirev plus nivolumab was not reached, with the highest dose level tested (1×1012 vp day 1; 6×1012 vp days 3 and 5) shown to be tolerable. Overall, 31/51 (61%) patients experienced a grade 3-4 treatment-emergent adverse event (TEAE), most frequently anemia (12%), infusion-related reaction (8%), hyponatremia (6%), and large intestinal obstruction (6%). Seven (14%) patients experienced serious TEAEs related to enadenotucirev; the only serious TEAE related to enadenotucirev occurring in >1 patient was infusion-related reaction (n=2). Among the 47 patients included in efficacy analyses, median progression-free survival was 1.6 months, objective response rate was 2% (one partial response for 10 months), and 45% of patients achieved stable disease. Median overall survival was 16.0 months; 69% of patients were alive at 12 months. Persistent increases in Th1 and related cytokines (IFNγ, IL-12p70, IL-17A) were seen from ~day 15 in two patients, one of whom had a partial response. Among the 14 patients with matching pre-tumor and post-tumor biopsies, 12 had an increase in intra-tumoral CD8+ T-cell infiltration and 7 had increased markers of CD8 T-cell cytolytic activity. CONCLUSIONS: Intravenously dosed enadenotucirev plus nivolumab demonstrated manageable tolerability, an encouraging overall survival and induced immune cell infiltration and activation in patients with advanced/metastatic epithelial cancer. Studies of next-generation variants of enadenotucirev (T-SIGn vectors) designed to further re-program the tumor microenvironment by expressing immune-enhancer transgenes are ongoing. TRIAL REGISTRATION NUMBER: NCT02636036.


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias , Humanos , Nivolumab/uso terapéutico , Neoplasias/tratamiento farmacológico , Adenoviridae , Terapia Combinada , Citocinas , Neoplasias Primarias Secundarias/tratamiento farmacológico , Microambiente Tumoral
15.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36878534

RESUMEN

BACKGROUND: Emerging evidence suggests that the mechanism of chemotherapy-induced cell death may influence the antitumor immune response in patients with cancer. Unlike immunologically silent apoptosis, pyroptosis is a lytic and inflammatory form of programmed cell death characterized by pore formation in the cell membrane and release of proinflammatory factors. Gasdermin E (GSDME) has recently gained attention after cleavage of GSDME by certain chemotherapeutics has been shown to elicit pyroptosis. This study investigated the immunomodulatory effects of a mesothelin-targeting antibody drug conjugate (ADC) in mouse models of breast and colon cancer. METHODS: The antitumor effects of the ADC were studied in EMT6 breast cancer and CT26 colon cancer syngeneic mouse models. The immunomodulatory effects of the ADC were assessed by analysis of tumor-infiltrating immune cells using flow cytometry. ADC mechanism of action was evaluated by morphology, biological assays, ADC-mediated cleavage of key effector proteins, and CRISPR/Cas9-mediated knockout (KO). Finally, the antitumor effect of ADC and Fms-like tyrosine kinase-3 ligand (Flt3L) combination therapy was evaluated in tumors expressing GSDME as well as in GSDME-silenced tumors. RESULTS: The data demonstrated that the ADC controlled tumor growth and stimulated anticancer immune responses. Investigation of the mechanism of action revealed that tubulysin, the cytotoxic payload of the ADC, induced cleavage of GSDME and elicited pyroptotic cell death in GSDME-expressing cells. Using GSDME KO, we showed that GSDME expression is critical for the effectiveness of the ADC as a monotherapy. Combining the ADC with Flt3L, a cytokine that expands dendritic cells in both lymphoid and non-lymphoid tissues, restored control of GSDME KO tumors. CONCLUSIONS: Together, these results show for the first time that tubulysin and a tubulysin containing ADC can elicit pyroptosis, and that this fiery cell death is critical for antitumor immunity and therapeutic response.


Asunto(s)
Neoplasias del Colon , Inmunoconjugados , Animales , Ratones , Piroptosis , Anticuerpos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Apoptosis , Modelos Animales de Enfermedad
16.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36948505

RESUMEN

BACKGROUND: This phase 1 study evaluated PF-06753512, a vaccine-based immunotherapy regimen (PrCa VBIR), in two clinical states of prostate cancer (PC), metastatic castration-resistant PC (mCRPC) and biochemical recurrence (BCR). METHODS: For dose escalation, patients with mCRPC received intramuscular PrCa VBIR (adenovirus vector and plasmid DNA expressing prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA), and prostate stem cell antigen (PSCA)) with or without immune checkpoint inhibitors (ICIs, tremelimumab 40 or 80 mg with or without sasanlimab 130 or 300 mg, both subcutaneous). For dose expansion, patients with mCRPC received recommended phase 2 dose (RP2D) of PrCa VBIR plus tremelimumab 80 mg and sasanlimab 300 mg; patients with BCR received PrCa VBIR plus tremelimumab 80 mg (Cohort 1B-BCR) or tremelimumab 80 mg plus sasanlimab 130 mg (Cohort 5B-BCR) without androgen deprivation therapy (ADT). The primary endpoint was safety. RESULTS: Ninety-one patients were treated in dose escalation (mCRPC=38) and expansion (BCR=35, mCRPC=18). Overall, treatment-related and immune-related adverse events occurred in 64 (70.3%) and 39 (42.9%) patients, with fatigue (40.7%), influenza-like illness (30.8%), diarrhea (23.1%), and immune-related thyroid dysfunction (19.8%) and rash (15.4%), as the most common. In patients with mCRPC, the objective response rate (ORR, 95% CI) was 5.6% (1.2% to 15.4%) and the median radiographic progression-free survival (rPFS) was 5.6 (3.5 to not estimable) months for all; the ORR was 16.7% (3.6% to 41.4%) and 6-month rPFS rate was 45.5% (24.9% to 64.1%) for those who received RP2D with measurable disease (n=18). 7.4% of patients with mCRPC achieved a ≥50% decline in baseline PSA (PSA-50), with a median duration of 4.6 (1.2-45.2) months. In patients with BCR, 9 (25.7%) achieved PSA-50; the median duration of PSA response was 3.9 (1.9-4.2) and 10.1 (6.9-28.8) months for Cohorts 5B-BCR and 1B-BCR. Overall, antigen specific T-cell response was 88.0% to PSMA, 84.0% to PSA, and 80.0% to PSCA. CONCLUSIONS: PrCa VBIR overall demonstrated safety signals similar to other ICI combination trials; significant side effects were seen in some patients with BCR. It stimulated antigen-specific immunity across all cohorts and resulted in modest antitumor activity in patients with BCR without using ADT. TRIAL REGISTRATION NUMBER: NCT02616185.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Vacunas , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Docetaxel/uso terapéutico , Antígeno Prostático Específico , Antagonistas de Andrógenos/uso terapéutico , Inmunoterapia , Hormonas/uso terapéutico
17.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36750253

RESUMEN

Cancer immunotherapy with immune-checkpoint blockade has improved the outcomes of patients with various malignancies, yet a majority do not benefit or develop resistance. To address this unmet need, efforts across the field are targeting additional coinhibitory receptors, costimulatory proteins, and intracellular mediators that could prevent or bypass anti-PD1 resistance mechanisms. The CD28 costimulatory pathway is necessary for antigen-specific T cell activation, though prior CD28 agonists did not translate successfully to clinic due to toxicity. Casitas B lymphoma-b (Cbl-b) is a downstream, master regulator of both CD28 and CTLA-4 signaling. This E3 ubiquitin ligase regulates both innate and adaptive immune cells, ultimately promoting an immunosuppressive tumor microenvironment (TME) in the absence of CD28 costimulation. Recent advances in pharmaceutical screening and computational biology have enabled the development of novel platforms to target this once 'undruggable' protein. These platforms include DNA encoded library screening, allosteric drug targeting, small-interfering RNA inhibition, CRISPR genome editing, and adoptive cell therapy. Both genetic knock-out models and Cbl-b inhibitors have been shown to reverse immunosuppression in the TME, stimulate cytotoxic T cell activity, and promote tumor regression, findings augmented with PD1 blockade in experimental models. In translating Cbl-b inhibitors to clinic, we propose specific gene expression profiles that may identify patient populations most likely to benefit. Overall, novel Cbl-b inhibitors provide antigen-specific immune stimulation and are a promising therapeutic tool in the field of immuno-oncology.


Asunto(s)
Linfoma , Neoplasias , Humanos , Antígenos CD28/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Inmunoterapia , Microambiente Tumoral
18.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36808075

RESUMEN

BACKGROUND: Some patients with locally advanced/metastatic non-small cell lung cancer (NSCLC) respond poorly to anti-programmed cell death protein 1 (PD-1)/anti-programmed death-ligand 1 (PD-L1) treatments. Combination with other agents may improve the outcomes. This open-label, multicenter, phase 1b trial investigated the combination of sitravatinib, a spectrum-selective tyrosine kinase inhibitor, plus anti-PD-1 antibody tislelizumab. METHODS: Patients with locally advanced/metastatic NSCLC were enrolled (Cohorts A, B, F, H, and I; N=22-24 per cohort). Cohorts A and F included patients previously treated with systemic therapy, with anti-PD-(L)1-resistant/refractory non-squamous (cohort A) or squamous (cohort F) disease. Cohort B included patients previously treated with systemic therapy, with anti-PD-(L)1-naïve non-squamous disease. Cohorts H and I included patients without prior systemic therapy for metastatic disease, no prior anti-PD-(L)1/immunotherapy, with PD-L1-positive non-squamous (cohort H) or squamous (cohort I) histology. Patients received sitravatinib 120 mg orally one time per day plus tislelizumab 200 mg intravenously every 3 weeks, until study withdrawal, disease progression, unacceptable toxicity, or death. The primary endpoint was safety/tolerability among all treated patients (N=122). Secondary endpoints included investigator-assessed tumor responses and progression-free survival (PFS). RESULTS: Median follow-up was 10.9 months (range: 0.4-30.6). Treatment-related adverse events (TRAEs) occurred in 98.4% of the patients, with ≥Grade 3 TRAEs in 51.6%. TRAEs led to discontinuation of either drug in 23.0% of the patients. Overall response rate was 8.7% (n/N: 2/23; 95% CI: 1.1% to 28.0%), 18.2% (4/22; 95% CI: 5.2% to 40.3%), 23.8% (5/21; 95% CI: 8.2% to 47.2%), 57.1% (12/21; 95% CI: 34.0% to 78.2%), and 30.4% (7/23; 95% CI: 13.2% to 52.9%) in cohorts A, F, B, H, and I, respectively. Median duration of response was not reached in cohort A and ranged from 6.9 to 17.9 months across other cohorts. Disease control was achieved in 78.3-90.9% of the patients. Median PFS ranged from 4.2 (cohort A) to 11.1 months (cohort H). CONCLUSIONS: In patients with locally advanced/metastatic NSCLC, sitravatinib plus tislelizumab was tolerable for most patients, with no new safety signals and overall safety profiles consistent with known profiles of these agents. Objective responses were observed in all cohorts, including in patients naïve to systemic and anti-PD-(L)1 treatments, or with anti-PD-(L)1 resistant/refractory disease. Results support further investigation in selected NSCLC populations. TRIAL REGISTRATION NUMBER: NCT03666143.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Crocus , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Antígeno B7-H1 , Crocus/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico
20.
J Immunother Cancer ; 10(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36202556

RESUMEN

Anaplastic thyroid cancer represents a rare, highly aggressive form of thyroid cancer with a poor prognosis and an overall survival ranging from 5 to 12 months. Unfortunately, treatment options remain limited, even for patients with a targetable driver mutation. Here, we present a case of a patient with a BRAF V600E-mutated, PD-L1 positive (tumor proportion score of 95%) anaplastic thyroid cancer refractory to standard therapies, including debulking surgery, followed by chemoradiation, who had further progressed on PD-1 monotherapy, and was unable to tolerate BRAF/MEK inhibition. Ongoing treatment with FS118, a bispecific LAG-3/PD-L1 antagonist, has afforded 3 years of disease control, including a late confirmed partial response, with excellent tolerability. Given this response, further investigation is required to delineate the mechanism by which dual PD-L1/LAG-3 blockade by FS118 overcomes initial PD-1 pathway resistance, and therefore, identify which patients are most likely to benefit. Simultaneously, expanded use should be considered for those with refractory disease, especially if PD-L1 positive. Insights Dual PD-L1/LAG-3 blockade may be an effective treatment strategy for refractory metastatic tumors, including anaplastic thyroid cancer.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Anticuerpos Biespecíficos/uso terapéutico , Antineoplásicos/uso terapéutico , Antígeno B7-H1 , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Receptor de Muerte Celular Programada 1 , Proteínas Proto-Oncogénicas B-raf , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...