Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.251
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1380528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720879

RESUMEN

Periodontal disease is the most common type of oral disease. Periodontal bone defect is the clinical outcome of advanced periodontal disease, which seriously affects the quality of life of patients. Promoting periodontal tissue regeneration and repairing periodontal bone defects is the ultimate treatment goal for periodontal disease, but the means and methods are very limited. Hydrogels are a class of highly hydrophilic polymer networks, and their good biocompatibility has made them a popular research material in the field of oral medicine in recent years. This paper reviews the current mainstream types and characteristics of hydrogels, and summarizes the relevant basic research on hydrogels in promoting periodontal tissue regeneration and bone defect repair in recent years. The possible mechanisms of action and efficacy evaluation are discussed in depth, and the application prospects are also discussed.

2.
Int J Biol Macromol ; : 132124, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723802

RESUMEN

Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38743380

RESUMEN

The integration of precision medicine principles into bone tissue engineering has ignited a wave of research focused on customizing intricate scaffolds through advanced 3D printing techniques. Bioceramics, known for their exceptional biocompatibility and osteoconductivity, have emerged as a promising material in this field. This article aims to evaluate the regenerative capabilities of a composite scaffold composed of 3D-printed gelatin combined with hydroxyapatite/tricalcium phosphate bioceramics (G/HA/TCP), incorporating human dental pulp-derived stem cells (hDPSCs). Using 3D powder printing, we created cross-shaped biphasic calcium phosphate scaffolds with a gelatin layer. The bone-regenerating potential of these scaffolds, along with hDPSCs, was assessed through in vitro analyses and in vivo studies with 60 rats and critical-sized calvarial defects. The assessment included analyzing cellular proliferation, differentiation, and alkaline phosphatase activity (ALP), and concluded with a detailed histological evaluation of bone regeneration. Our study revealed a highly favorable scenario, displaying not only desirable cellular attachment and proliferation on the scaffolds but also a notable enhancement in the ALP activity of hDPSCs, underscoring their pivotal role in bone regeneration. However, the histological examination of calvarial defects at the 12-wk mark yielded a rather modest level of bone regeneration across all experimental groups. The test and cell group exhibited significant bone formation compared to all other groups except the control and cell group. This underscores the complexity of the regenerative process and paves the way for further in-depth investigations aimed at improving the potential of the composite scaffolds.

4.
ACS Biomater Sci Eng ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748191

RESUMEN

Microfluidic spinning is emerging as a useful technique in the fabrication of alginate fibers, enabling applications in drug screening, disease modeling, and disease diagnostics. In this paper, by capitalizing on the benefits of aqueous two-phase systems (ATPS) to produce diverse alginate fiber forms, we introduce an ATPS-Spinning platform (ATPSpin). This ATPS-enabled method efficiently circumvents the rapid clogging challenges inherent to traditional fiber production techniques by regulating the interaction between alginate and cross-linking agents like Ba2+ ions. By varying system parameters under the guidance of a regime map, our system produces several fiber forms─solid, hollow, and droplet-filled─consistently and reproducibly from a single device. We demonstrate that the resulting alginate fibers possess distinct features, including biocompatibility. We also encapsulate HEK293 cells in the microfibers as a proof-of-concept that this versatile microfluidic fiber generation platform may have utility in tissue engineering and regenerative medicine applications.

5.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731563

RESUMEN

The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Humanos , Nanomedicina/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Inmunoterapia/métodos , Nanoestructuras/química , Nanoestructuras/uso terapéutico
6.
Foods ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731732

RESUMEN

Reducing production costs, known as scaling, is a significant obstacle in the advancement of cultivated meat. The cultivation process hinges on several key components, e.g., cells, media, scaffolds, and bioreactors. This study demonstrates an innovative approach, departing from traditional stainless steel or glass bioreactors, by integrating food-grade plant-based scaffolds and thermoplastic film bioreactors. While thermoplastic films are commonly used for constructing fluidic systems, conventional welding methods are cost-prohibitive and lack rapid prototyping capabilities, thus inflating research and development expenses. The developed laser welding technique facilitates contamination-free and leakproof sealing of polyethylene films, enabling the efficient fabrication of macrofluidic systems with various designs and dimensions. By incorporating food-grade plant-based scaffolds, such as rice seeded with bovine mesenchymal stem cells, into these bioreactors, this study demonstrates sterile cell proliferation on scaffolds within macrofluidic systems. This approach not only reduces bioreactor prototyping and construction costs but also addresses the need for scalable solutions in both research and industrial settings. Integrating single-use bioreactors with minimal shear forces and incorporating macro carriers such as puffed rice may further enhance biomass production in a scaled-out model. The use of food-grade plant-based scaffolds aligns with sustainable practices in tissue engineering and cultured-meat production, emphasizing its suitability for diverse applications.

7.
Sci Rep ; 14(1): 10798, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734777

RESUMEN

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos , Durapatita , Nanocompuestos , Silicatos , Durapatita/química , Nanocompuestos/química , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Silicatos/química , Materiales Biocompatibles/química , Compuestos de Calcio/química , Liberación de Fármacos , Dexametasona/química , Dexametasona/farmacología , Polímeros/química , Humanos , Difracción de Rayos X , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Animales
8.
Mater Today Bio ; 26: 101071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736612

RESUMEN

Although 2D cancer models have been the standard for drug development, they don't resemble in vivo properties adequately. 3D models can potentially overcome this. Bioprinting is a promising technique for more refined models to investigate central processes in tumor development such as proliferation, dormancy or metastasis. We aimed to analyze bioinks, which could mimic these different tumor stages in a cast vascularized arteriovenous loop melanoma model in vivo. It has the advantage to be a closed system with a defined microenvironment, supplied only with one vessel-ideal for metastasis research. Tested bioinks showed significant differences in composition, printability, stiffness and microscopic pore structure, which led to different tumor stages (Matrigel and Alg/HA/Gel for progression, Cellink Bioink for dormancy) and resulted in different primary tumor growth (Matrigel significantly higher than Cellink Bioink). Light-sheet fluorescence microscopy revealed differences in vascularization and hemorrhages with no additional vessels found in Cellink Bioink. Histologically, typical human melanoma with different stages was demonstrated. HMB-45-positive tumors in progression inks were infiltrated by macrophages (CD163), highly proliferative (Ki67) and metastatic (MITF/BRN2, ATX, MMP3). Stainings of lymph nodes revealed metastases even without significant primary tumor growth in Cellink Bioink. This model can be used to study tumor pathology and metastasis of different tumor stages and therapies.

9.
Front Bioeng Biotechnol ; 12: 1379679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737542

RESUMEN

Background: Diabetes mellitus is a systematic disease which exert detrimental effect on bone tissue. The repair and reconstruction of bone defects in diabetic patients still remain a major clinical challenge. This study aims to investigate the potential of bone tissue engineering approach to improve bone regeneration under diabetic condition. Methods: In the present study, decalcified bone matrix (DBM) scaffolds were seeded with allogenic fetal bone marrow-derived mesenchymal stem cells (BMSCs) and cultured in osteogenic induction medium to fabricate BMSC/DBM constructs. Then the BMSC/DBM constructs were implanted in both subcutaneous pouches and large femoral bone defects in diabetic (BMSC/DBM in DM group) and non-diabetic rats (BMSC/DBM in non-DM group), cell-free DBM scaffolds were implanted in diabetic rats to serve as the control group (DBM in DM group). X-ray, micro-CT and histological analyses were carried out to evaluate the bone regenerative potential of BMSC/DBM constructs under diabetic condition. Results: In the rat subcutaneous implantation model, quantitative micro-CT analysis demonstrated that BMSC/DBM in DM group showed impaired bone regeneration activity compared with the BMSC/DBM in non-DM group (bone volume: 46 ± 4.4 mm3 vs 58.9 ± 7.15 mm3, *p < 0.05). In the rat femoral defect model, X-ray examination demonstrated that bone union was delayed in BMSC/DBM in DM group compared with BMSC/DBM in non-DM group. However, quantitative micro-CT analysis showed that after 6 months of implantation, there was no significant difference in bone volume and bone density between the BMSC/DBM in DM group (199 ± 63 mm3 and 593 ± 65 mg HA/ccm) and the BMSC/DBM in non-DM group (211 ± 39 mm3 and 608 ± 53 mg HA/ccm). Our data suggested that BMSC/DBM constructs could repair large bone defects in diabetic rats, but with delayed healing process compared with non-diabetic rats. Conclusion: Our study suggest that biomaterial sacffolds seeded with allogenic fetal BMSCs represent a promising strategy to induce and improve bone regeneration under diabetic condition.

10.
Front Bioeng Biotechnol ; 12: 1381838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737541

RESUMEN

Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.

11.
Front Pharmacol ; 15: 1396975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725666

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.

12.
Ann Biomed Eng ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734845

RESUMEN

Regeneration of cartilage and bone tissues remains challenging in tissue engineering due to their complex structures, and the need for both mechanical support and delivery of biological repair stimuli. Therefore, the goal of this study was to develop a composite scaffold platform for anatomic chondral and osteochondral repair using heparin-based hydrogels to deliver small molecules within 3D-printed porous scaffolds that provide structure, stiffness, and controlled biologic delivery. We designed a mold-injection system to combine hydrolytically degradable hydrogels and 3D-printed scaffolds that could be employed rapidly (< 30 min) in operating room settings (~23 °C). Micro-CT analysis demonstrated the effectiveness of our injection system through homogeneously distributed hydrogel within the pores of the scaffolds. Hydrogels and composite scaffolds exhibited efficient loading (~94%) of a small positively charged heparin-binding molecule (crystal violet) with sustained release over 14 days and showed high viability of encapsulated porcine chondrocytes over 7 days. Compression testing demonstrated nonlinear viscoelastic behavior where tangent stiffness decreased with scaffold porosity (porous scaffold tangent stiffness: 70%: 4.9 MPa, 80%: 1.5 MPa, and 90%: 0.20 MPa) but relaxation was not affected. Lower-porosity scaffolds (70%) showed stiffness similar to lower ranges of trabecular bone (4-8 MPa) while higher-porosity scaffolds (80% and 90%) showed stiffness similar to auricular cartilage (0.16-2 MPa). Ultimately, this rapid composite scaffold fabrication method may be employed in the operating room and utilized to control biologic delivery within load-bearing scaffolds.

13.
ACS Appl Mater Interfaces ; 16(19): 25353-25365, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712527

RESUMEN

Tissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies─specifically, the absence of energy dissipation mechanisms and network uniformity─a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry. We systematically vary polymer concentration, constituent molar mass, and cross-linking protocols to understand the impact of architecture on hydrogel mechanical properties. The network architecture was resolved within the molecular model of Rubinstein-Panyukov to obtain the densities of chemical cross-links and entanglements. We employed both nucleophilic and radical pathways, uncovering notable differences in mechanical response, which highlight a remarkable degree of versatility achievable by tuning readily accessible parameters. Our approach yielded hydrogels with good cell viability and remarkably robust tensile and compression profiles. Finally, the hydrogels are shown to be amenable to advanced processing techniques by demonstrating injection- and extrusion-based 3D printing. Tuning the mechanism and network regularity during the cell-compatible formation of hydrogels is an emerging strategy to control the properties and processability of hydrogel biomaterials by making simple and rational design choices.

14.
Int J Biol Macromol ; 270(Pt 1): 132126, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723805

RESUMEN

Articular cartilage is an avascular and almost acellular tissue with limited self-regenerating capabilities. Although injectable hydrogels have garnered a lot of attention as a promising treatment, a biocompatible hydrogel with adequate mechanical properties is yet to be created. In this study, an interpenetrating network hydrogel comprised of chitosan and silk fibroin was created through electrostatic and hydrophobic bonds, respectively. The polymeric network of the scaffold combined an effective microenvironment for cell activity with enhanced mechanical properties to address the current issues in cartilage scaffolds. Furthermore, microspheres (MS) were utilized for a controlled release of methylprednisolone acetate (MPA), around ~75 % after 35 days. The proposed scaffolds demonstrated great mechanical stability with ~0.047 MPa compressive moduli and ~145 kPa compressive strength. Moreover, the degradation rate of the samples (~45 % after 35 days) was optimized to match neo-cartilage formation. Furthermore, the use of natural biomaterials yielded good biocompatibility with ~76 % chondrocyte viability after 7 days. According to gross observation after 12 weeks the defect site of the treated groups was filled with minimally discernible boundary. These results were confirmed by histopathology assays were the treated groups showed higher chondrocyte count and collagen type II expression.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124289, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692101

RESUMEN

Biphasic calcium phosphate (BCP), consisting of bioceramics such as HAp + ß-TCP and Ca10(PO4)6(OH)2 + Ca3(PO4)2, is a popular choice for optimizing performance due to its superior biological reabsorption and osseointegration. In this study, BCP was produced by calcining the bones of tilapia fish (Oreochromis niloticus) reared in net cages and slaughtered at an age ranging from 15 to 420 days. The bones were cleaned and dried, calcined at 900 °C for 8 h, and then subjected to high-energy grinding for 3 h to produce BCP powders. After the calcination process, the crystalline phase's hydroxyapatite (HAp) and/or beta-tricalcium phosphate (ß-TCP) were present in the composition of the bioceramic. The age-dependent variation in phase composition was confirmed by complementary vibrational spectroscopy techniques, revealing characteristic peaks and bands of the bioceramic. This variation was marked by an increase in HAp phase and a decrease in ß-TCP phase. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) from 25 to 1400 °C showed the characteristic mass losses of the material, with a greater loss observed for younger fish, indicating the complete removal of organic components at temperatures above 600 °C. Comparison of the results obtained by X-Ray Diffraction (XRD) and Rietveld refinement with Raman spectroscopy showed excellent agreement. These results showed that with temperature and environment control and adequate fish feeding, it is possible to achieve the desired amounts of each phase by choosing the ideal age of the fish. This bioceramic enables precise measurement of HAp and ß-TCP concentrations and Ca/P molar ratio, suitable for medical orthopedics and dentistry.


Asunto(s)
Huesos , Cerámica , Espectrometría Raman , Animales , Cerámica/química , Huesos/química , Tilapia/metabolismo , Difracción de Rayos X , Hidroxiapatitas/química , Espectroscopía Infrarroja por Transformada de Fourier , Fosfatos de Calcio/química , Termogravimetría
16.
ACS Nano ; 18(19): 12477-12488, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38699877

RESUMEN

Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.


Asunto(s)
Hidrogeles , Nanofibras , Péptidos , Nanofibras/química , Péptidos/química , Hidrogeles/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Anisotropía , Animales
17.
Biomater Adv ; 161: 213883, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38762928

RESUMEN

Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.

18.
Asian Cardiovasc Thorac Ann ; : 2184923241255720, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767039

RESUMEN

BACKGROUND: Valvular heart diseases (VHDs) have become prevalent in populations due to aging. Application of different biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of VHD. Aortic valve replacement using tissue-engineered xenografts is a considered approach, and the pericardium of different species such as porcine and bovine has been studied over the last few years. It has been suggested that the animal origin can affect the outcomes of replacement. METHODS: So, herein, we at first decellularized and characterized the camel pericardium (dCP), then characterized dCP with H&E staining, in vitro and in vivo biocompatibility and mechanical tests and compared it with decellularized bovine pericardium (dBP), to describe the potency of dCP as a new xenograft and bio scaffold. RESULTS: The histological assays indicated less decluttering and extracellular matrix damage in dCP after decellularization compared to the dBP also dCP had higher Young Modulus (105.11), and yield stress (1.57 ± 0.45). We observed more blood vessels and also less inflammatory cells in the dCP sections after implantation. CONCLUSIONS: In conclusion, the results of this study showed that the dCP has good capabilities not only for use in VHD treatment but also for other applications in tissue engineering and regenerative medicine.

19.
Biomater Adv ; 161: 213900, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772132

RESUMEN

This study investigates the safety and efficacy of 3D-printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for patient-specific cranioplasty surgeries, employing liquid deposition modeling (LDM) technology. This research is pioneering as it explores the impact of gamma radiation on PCL/HA scaffolds and utilizes printing ink with the highest content of HA known in the composite. The mechanical, morphological, and macromolecular stability of the gamma-sterilized scaffolds were verified before implantation. Subsequent research involving animal subjects was conducted to explore the effects of sterilized implants. Eventually, three clinical cases were selected for the implantation studies as part of a phase 1 non-randomized open-label clinical trial. It was shown that a 25 kGy gamma-ray dose for sterilizing the printed implants did not alter the required geometrical precision of the printed implants. The implants exhibited well-distributed HA and strength comparable to cancellous bone. Gamma radiation reduced hydrophobicity and water uptake capacity without inducing pyrogenic or inflammatory responses. Personalized PCL/HA substitutes successfully treated various craniomaxillofacial defects, including trauma-induced facial asymmetry and congenital deformities. HA nanoparticles in the ink stimulated significant osteoconductive responses within three months of implantation. Moreover, the results revealed that while larger implants may exhibit a slower bone formation response in comparison to smaller implants, they generally had an acceptable rate and volume of bone formation. This clinical trial suggests the application of a sterilized PCL/HA composite for craniomaxillofacial surgery is safe and could be considered as a substitute for autologous bone.

20.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732199

RESUMEN

Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers' diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation.


Asunto(s)
Nanofibras , Polivinilos , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Polivinilos/química , Humanos , Andamios del Tejido/química , Nanofibras/química , Materiales Biocompatibles/química , Células Cultivadas , Espectroscopía Infrarroja por Transformada de Fourier , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/metabolismo , Peso Molecular , Polímeros de Fluorocarbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...