Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124464, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38768538

RESUMEN

This work addresses the long-standing debate surrounding the origin of color variation in fluorite (CaF2) through a novel quantitative approach. By examining eight carefully selected fluorite samples having different hue of colors from the Amba Dongar mine in Gujarat, India, a rigorous quantitative analysis was conducted. This approach combined chemical compositional data and optical spectroscopic features to elucidate the relationship between elemental composition, concentration, and color variation in fluorite. Precise elemental concentration data for trace transition metals, alkali metals, and rare earth elements (REEs) were obtained through inductively coupled plasma mass spectroscopy (ICP-MS) analysis of powdered fluorite samples. Optical spectroscopic techniques, including UV-visible absorption, emission (photoluminescence and fluorescence), and Raman spectroscopy, were employed to capture characteristic spectral signatures for specific color of the study sample. The work unveils a strong correlation between specific elemental concentrations and observed spectral features, particularly influenced by alkaline metals, transition group elements, and REEs. Fluorite's optical absorption behavior lacks a clear pattern in UV and infrared wavelength ranges but correlates well with transition metal, alkaline element, and REE concentrations in visible wavelength regions, influencing coloration. Luminescent centers in the study fluorite samples correspond to specific REE concentrations, indicating a strong linkage between emission wavelengths with the presence of specific REE. UV-visible and fluorescence in fluorite result from trivalent REE or Eu2+ ions, with emission intensity affected by REE concentration and specific REE or combinations thereof. Raman spectroscopy identifies characteristic modes related to F-substitution and REE impurities, providing insights into fluorite's structural composition. This quantitative correlation between elemental composition and spectroscopic characteristics represents a novel contribution for understanding color variation mechanisms in fluorite. The comprehensive analysis of this present work underscores the intricate interplay of mineral composition, and element concentration particularly alkaline metals, transition group elements, and REEs, for variation in spectral signatures with variation in fluorite's visual attributes.

2.
Life (Basel) ; 11(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207658

RESUMEN

Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.

3.
Materials (Basel) ; 14(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562084

RESUMEN

Alloying is an effective method to refine coarse grains of an Al13Fe4 phase and strengthen Al-Fe alloys. However, the grain refinement mechanism remains unclear in terms of the thermodynamics. Herein, the influence of M-element, i.e., Cr, Mn, Co and Ni, addition on the activity of Al and Fe atoms, Gibbs free energy of the Al13Fe4 nucleus in Al-Fe melt and the formation enthalpy of an Al13Fe4 phase in Al-Fe alloys is systematically investigated using the extended Miedema model, Wilson equation, and first-principle calculations, respectively. The results reveal that the addition of different M elements increases the activity of Fe atoms and reduces the Gibbs free energy of the Al13Fe4 nucleus in Al-Fe melt, where the incorporation of Ni renders the most obvious effect, followed by Mn, Co, and Cr. Additionally, the formation enthalpy decreases in the following order: Al78(Fe23Cr) > Al78(Fe23Mn) > Al13Fe4 > Al78(Fe23Ni) > Al78(Fe23Co), where the formation enthalpy of Al78(Fe23Ni) is close to Al78(Fe23Co). Moreover, the presence of Ni promotes the nucleation of the Al13Fe4 phase in Al-Fe alloys, which reveals the mechanism of grain refinement from a thermodynamics viewpoint.

4.
Life (Basel) ; 10(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198206

RESUMEN

Although the cellular microorganism is the fundamental unit of biology, the origin of life (OoL) itself is unlikely to have occurred in a microscale environment. The macrobiont (MB) is the macro-scale setting where life originated. Guided by the methodologies of Systems Analysis, we focus on subaerial ponds of scale 3 to 300 m diameter. Within such ponds, there can be substantial heterogeneity, on the vertical, horizontal, and temporal scales, which enable multi-pot prebiotic chemical evolution. Pond size-sensitivities for several figures of merit are mathematically formulated, leading to the expectation that the optimum pond size for the OoL is intermediate, but biased toward smaller sizes. Sensitivities include relative access to nutrients, energy sources, and catalysts, as sourced from geological, atmospheric, hydrospheric, and astronomical contributors. Foreshores, especially with mudcracks, are identified as a favorable component for the success of the macrobiont. To bridge the gap between inanimate matter and a planetary-scale biosphere, five stages of evolution within the macrobiont are hypothesized: prebiotic chemistry → molecular replicator → protocell → macrobiont cell → colonizer cell. Comparison of ponds with other macrobionts, including hydrothermal and meteorite settings, allows a conclusion that more than one possible macrobiont locale could enable an OoL.

5.
Osteoporos Int ; 31(9): 1671-1682, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32361950

RESUMEN

The relationship between heavy metal exposure and risk of osteopenia or osteoporosis has biological plausibility, yet it remains inconclusive; therefore, we conducted a systematic review and meta-analysis to evaluate the associations between exposure to heavy metals (i.e., cadmium, lead, and mercury) and the risk of osteopenia or osteoporosis. Databases of MEDLINE, Embase, Scopus, and Web of Science were searched through November 2019, to identify studies that evaluated the relationship between exposure to cadmium, lead, and mercury and risk of osteopenia or osteoporosis in adults. Fourteen eligible studies were included. Effect sizes expressed as pooled odds ratios (OR) and 95% confidence intervals (CI) were estimated using weighted random-effect models. Exposure to cadmium (OR = 1.35; 95% CI: 1.17 to 1.56; P ≤ 0.001) and lead (OR = 1.15; 95% CI: 1.00 to 1.32; P = 0.05) was associated with an increased risk of osteopenia or osteoporosis, unlike mercury. Subgroup analyses showed cadmium exposure increased the risk of osteopenia or osteoporosis in older (> 65 yrs.; OR = 1.43; 95%CI: 1.08 to 1.88, P = 0.01) compared with younger (18-65 yrs.; OR = 1.24; 95% CI: 1.02 to 1.52, P = 0.03) adults. Also, lead exposure increased the risk in men (OR = 1.55; 95% CI: 1.15 to 2.09, P = 0.007) unlike in women. By contrast to urinary levels, blood (OR = 1.26; 95% CI: 1.08 to 1.47, P = 0.003) and dietary (OR = 1.46; 95% CI: 1.28 to 1.67, P < 0.001) levels of cadmium were associated with an increased risk of osteopenia or osteoporosis. Exposure to cadmium and lead may be associated with an increased risk of osteopenia or osteoporosis, although high heterogeneity was detected.


Asunto(s)
Enfermedades Óseas Metabólicas , Mercurio , Metales Pesados , Osteoporosis , Adulto , Anciano , Enfermedades Óseas Metabólicas/inducido químicamente , Enfermedades Óseas Metabólicas/epidemiología , Cadmio/toxicidad , Femenino , Humanos , Masculino , Mercurio/toxicidad , Metales Pesados/toxicidad , Osteoporosis/inducido químicamente , Osteoporosis/epidemiología
6.
Materials (Basel) ; 12(20)2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31635182

RESUMEN

The mechanical properties and microstructure of as-cast and homogenized AA7075 were investigated. This alloy was modified by adding transition elements 0.3%Sc + 0.5%Zr, 1%Ti + 0.2%B, and 1%Fe + 1%Ni for use in additive manufacturing applications. After adding Ti + B and Sc + Zr, the structure became uniform and finer with the formation of the Al3(Sc, Zr) and TiB2 phases. Coarse structures were obtained with the formation of an extremely unfavorable morphology, close to a needle-like structure when Fe + Ni was added. The mechanical properties of the modified alloys were increased compared to those of the standard alloy, where the best ultimate tensile strength (UTS) and yield strength (YS) were obtained in the AA7075-TiB alloy compared to the standard alloy in as-cast and homogenized conditions, and the highest hardness value was provided by Fe + Ni additives. The effect of the laser melting process on the microstructure and mechanical properties was investigated. Single laser melts were performed on these alloys using 330 V and a scanning speed of 8 mm/s. During the laser melting, the liquation of the alloying elements occurred due to non-equilibrium solidification. A change in the microstructures was observed within the melt zone and heat-affected zone (HAZ). The hardness of the laser-melted zone (LMZ) after adding the modification elements was increased in comparison with that of the standard alloy. Corrosion testing was performed using a solution of 100 mL distilled water, 3.1 g NaCl, and 1 mL HCl over 5, 10, and 30 min and 1 and 2 h. The corrosion resistance of the alloy modified with FeNi was low because of the non-uniform elemental distribution along the LMZ, but in the case of modification with ScZr and TiB, the corrosion resistance was better compared to that of the standard alloy.

7.
Nanomaterials (Basel) ; 9(3)2019 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-30857326

RESUMEN

The main objective of this work is the catalyst optimization of Fe2O3-, Co3O4-, NiO- and/or PdO- (transition element oxides-TEO) functionalized CeO2 nanoparticles to maximize the conversion of asphaltenes under isothermal conditions at low temperatures (<250 °C) during steam injection processes. Adsorption isotherms and the subsequent steam decomposition process of asphaltenes for evaluating the catalysis were performed through batch adsorption experiments and thermogravimetric analyses coupled to Fourier-transform infrared spectroscopy (FTIR), respectively. The adsorption isotherms and the catalytic behavior were described by the solid-liquid equilibrium (SLE) model and isothermal model, respectively. Initially, three pairs of metal oxide combinations at a mass fraction of 1% of loading of CeNi1Pd1, CeCo1Pd1, and CeFe1Pd1 nanoparticles were evaluated based on the adsorption and catalytic activity, showing better results for the CeNi1Pd1 due to the Lewis acidity changes. Posteriorly, a simplex-centroid mixture design of experiments (SCMD) of three components was employed to optimize the metal oxides concentration (Ni and Pd) onto the CeO2 surface by varying the oxides concentration for mass fractions from 0.0% to 2.0% to maximize the asphaltene conversion at low temperatures. Results showed that by incorporating mono-elemental and bi-elemental oxides onto CeO2 nanoparticles, both adsorption and isothermal conversion of asphaltenes decrease in the order CeNi1Pd1 > CePd2 > CeNi0.66Pd0.66 > CeNi2 > CePd1 > CeNi1 > CeO2. It is worth mentioning that bi-elemental nanoparticles reduced the gasification temperature of asphaltenes in a larger degree than mono-elemental nanoparticles at a fixed amount of adsorbed asphaltenes of 0.02 mg·m-2, confirming the synergistic effects between Pd and Fe, Co, and Ni. Further, optimized nanoparticles (CeNi0.89Pd1.1) have the best performance by obtaining 100% asphaltenes conversion in less than 90 min at 220 °C while reducing 80% the activation energy.

8.
Front Microbiol ; 9: 510, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666607

RESUMEN

Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (Corg), nitrogen and Corg:Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations.

9.
Anal Chim Acta ; 992: 24-33, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054147

RESUMEN

The determination of mercury simultaneously with other elements via inductively coupled plasma-mass spectrometry (ICP-MS) in airborne particulate matter (PM2.5) is still challenging due to the lack of accuracy for the low level mercury concentrations as a result of its volatility and tendency to adhere to the walls of the sample introduction system. This study investigated the effect of existing (gold and methionine) and new (lithium tetrathiafulvalene carboxylate (LiCTTF)) preservation agents in order to improve the determination of trace mercury in PM2.5 samples. Statistical analysis revealed that a concentration of 10 µg mL-1 of LiCTTF was sufficient to obtain highly accurate results with t values of 0.1044-1.1239 which are considerably less than the critical t value of 1.8 and apparent recoveries of 85-100%. An evaluation of the method revealed a spiked mercury recovery of 91% and a detection limit of 0.05 ng mL-1. The method was tested for the determination of trace metals in PM2.5 from atmospheric samples and led to the detection of low elemental concentrations in Singapore's atmosphere. The mechanism for the interaction of mercury with LiCTTF and tetrathiafulvalene (TTF) was studied by conducting in situ electrochemical studies. Cyclic voltammetry and square-wave voltammetry analyses of mercury, and mercury in presence of LiCTTF and TTF revealed complexation between the metal and sulfur-containing compounds.

10.
J Dent Res ; 94(1): 201-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25365968

RESUMEN

Salivary protein histatin 5 (Hst 5) is fungicidal toward Candida albicans, the causative agent of oropharyngeal candidiasis. However, its activity in saliva is compromised by salivary protease-mediated degradation and interaction with salivary salts. Hst 5 has also been shown to bind various metals in saliva-namely, Zn, Cu, and Ni. Surprisingly, interactions of Hst 5 with Fe have not been studied, although iron is one of the most abundant metals present in saliva. Using circular dichroism, we show that Hst 5 can bind up to 10 equivalents of iron as measured by loss of its alpha-helical secondary structure that is normally observed for it in trifluoroethylene. A significant decrease in the candidacidal ability of Hst 5 was observed upon iron binding, with increasing iron concentrations being inversely proportional to Hst 5 killing activity. Binding assays showed that the decrease in killing was likely a result of reduced binding (10-fold reduction) of Fe-Hst 5 to C. albicans cells. Protease stability analysis showed that Fe-Hst 5 was completely resistant to trypsin digestion. In contrast, zinc binding had limited effects on Hst 5 fungicidal activity or protease susceptibility. RNA sequencing results identified changes in iron uptake genes in Hst 5-treated C. albicans cells. Our findings thus suggest that consequences of Hst 5 binding iron not only affect candidacidal ability and proteolyic stability of Hst 5, but may also contribute to a novel killing mechanism involving interference with cellular iron metabolism.


Asunto(s)
Antifúngicos/metabolismo , Histatinas/metabolismo , Hierro/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Pared Celular/efectos de los fármacos , Dicroismo Circular , FMN Reductasa/efectos de los fármacos , Genes Fúngicos/efectos de los fármacos , Genes Fúngicos/genética , Histatinas/farmacología , Humanos , Proteínas de Unión Periplasmáticas/efectos de los fármacos , Estructura Secundaria de Proteína , Análisis de Secuencia de ARN , Tripsina/metabolismo , Zinc/metabolismo
11.
Sci Total Environ ; 500-501: 383-94, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25243921

RESUMEN

Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.


Asunto(s)
Contaminantes Atmosféricos/análisis , Clima Desértico , Polvo/análisis , Monitoreo del Ambiente , Exposición por Inhalación/análisis , Metales/análisis , Ciudades , Exposición por Inhalación/estadística & datos numéricos , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA