Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Artículo en Japonés | MEDLINE | ID: mdl-39143013

RESUMEN

PURPOSE: The purpose of this study was to evaluate the protective performance of several new radiation-protective clothing and to clarify issues of quality control. METHODS: The composition of the shielding elements was analyzed using X-ray fluorescence analysis, and the energy spectrum of transmitted X-rays was measured. Furthermore, the lead equivalent and uniformity were measured from the transmitted X-ray doses according to Japanese industrial standards (JIS). Uniformity was evaluated by transmitting X-ray images of each radiation protective clothing in addition to the conventional method. RESULTS: The energy spectrum showed K-absorption edges of lead, bismuth, tin, etc., which were detected in the composition analysis. The multi-layered protective material maintained higher shielding ability at high tube voltages. In addition, X-ray images of the radiation-protective clothing showed uneven density and dots, and the differences in uniformity measurement methods and points that didn't meet the required shielding capacity were seen. CONCLUSION: The current JIS does not allow accurate evaluation of the lead equivalent and uniformity, so visual evaluation of X-ray images is important. It is necessary to establish standardized standards for quality control performed by each facility.

2.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204604

RESUMEN

This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75-85% octadecyl acrylate and 0-7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5-39 °C. The synthesized powder underwent a battery of tests, including differential scanning calorimetry and thermogravimetric analysis, as well as scanning electron microscopy. These comprehensive evaluations confirmed the material's exceptional thermal stability, uniform particle size distribution, and strong anchoring properties. Building upon these findings, we advanced the development of thermochromic polyvinyl butyral films and laminated glass products. By utilizing a coextrusion technique, we integrated these films into laminated glass, setting a new benchmark against existing glass technologies. Remarkably, the incorporation of thermochromic PVB films into laminated glass led to a significant reduction in solar irradiance of 20-30%, outperforming traditional double silver low-emissivity glass. This achievement demonstrates the exceptional shading and thermal insulation properties of the material. The research presented herein not only pioneers a valuable methodology for the engineering of smart materials with tunable thermotropic transmittance but also holds the key to unlocking enhanced energy efficiency across a spectrum of applications. The potential impact of this innovation on the realm of sustainable building materials is profound, promising significant strides toward energy conservation and environmental stewardship.

3.
Sci Rep ; 14(1): 19829, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191803

RESUMEN

In this study, a novel gamma-ray radiation sensor has been developed depending on a 1D photonic crystal (1D-PhC). Based on porous silicon (PSi) layer that has been penetrated by a conjugated copolymer (B-co-MP) which consists of BEHP-PPV and MEH-PPV, with a fractional ratio of 60:40. The suggested method for the development of the dosimeter is based on the shift of photonic band-gap to shorter wavelengths, where exposure to gamma-ray radiation at doses ranging from 0 to 20 kGy alters the refractive index of the (B-co-MP) copolymer. The fitted experimental data, the equation of Bruggeman effective medium, and the transfer matrix method (TMM) are the main axes in the framework of the current theoretical approach. The collected data shows that, within the visible range, the suggested sensor's sensitivity (224 nm/RIU) is high and stable over a 0-20 kGy applied-dose range. Also, we compared these results with previous research.

4.
Nanotechnology ; 35(40)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38981451

RESUMEN

Due to shortcomings such as poor homogeneity of Al doping, precisely controlling the thickness, inability to conformally deposit on high aspect ratio devices and high pinhole rate, the applications of Al-doped ZnO (AZO) nanomembrane in integrated optoelectronic devices are remarkably influenced. Here, we reportin situmonitoring during the atomic layer deposition (ALD) of AZO nanomembrane by using an integrated spectroscopic ellipsometer. AZO nanomembranes with different compositions were deposited with real-time and precise atomic level monitoring of the deposition process. We specifically investigate the half-reaction and thickness evolution during the ALD processes and the influence of the chamber temperature is also disclosed. Structural characterizations demonstrate that the obtained AZO nanomembranes without any post-treatment are uniform, dense and pinhole-free. The transmittances of the nanomembranes in visible range are >94%, and the optimal conductivity can reach up to 1210 S cm-1. The output of current research may pave the way for AZO nanomembrane to become promising in integrated optoelectronic devices.

5.
Exploration (Beijing) ; 4(3): 20210234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38939865

RESUMEN

Plasmonic metal nanostructures can simultaneously scatter and absorb light, with resonance wavelength and strength depending on their morphology and composition. This work demonstrates that unique dichroic effects and high-contrast colour-switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. Using core/shell nanostructures comprising a metal core and a dielectric shell, we show that their spray coating on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The high-contrast colour switching, high flexibility in designing multicolour patterns, and convenience for large-scale production promise their wide range of applications, including anticounterfeiting, mechanochromic sensing, colour display, and printing.

6.
Dent Mater ; 40(9): 1452-1463, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945741

RESUMEN

OBJECTIVE: This study investigated the influence of photoinitiator types on degree of conversion (DC), rate of polymerization (RP), flexural strength (FS), flexural modulus (FM), and light transmittance (LT) of filled and unfilled light-curable resin cements through different thicknesses and shades of lithium disilicate ceramics. METHODS: Lithium disilicate ceramic discs (IPS Emax Press, background [0.0], 0.5, 1.0, 2.0, 3.0, and 4.0 mm, shades A1 and BL3) were prepared. Experimental resin-based cements [TEGDMA/BisGMA (50/50 mass%)] were prepared using either camphorquinone (CQ)/amine (0.44/1.85 mol%) or TPO (0.44 mol%)], and a micro and nanofiller loads of nil (unfilled); 40/10 mass%; and 50/10 mass%). Resin cements (0.2 mm thick) were placed on the lower surface of the ceramic specimens and light-activated for 30 s from the upper surface using a Bluephase Style curing light (exitance at tip: 1236 mW/cm2 ± 1.20). LT and distribution of irradiance through the ceramics were measured using a UV-vis spectrometer and a beam profile camera, respectively (n = 3). The DC and RP were measured in real-time using mid infrared spectroscopy in attenuated total reflectance (ATR) mode (n = 3). FS and FM were measured using a universal testing machine (n = 5). Statistical analyses were performed on LT, DC, RP, FS, and FM data using a general linear model, and supplementary ANOVA and post hoc Tukey multiple comparison test were also performed (α = .05). RESULTS: Thicknesses, shades, photoinitiator type, and fillers load significantly influenced the optical and mechanical characteristics of the resin-based materials (p < 0.05). The BL3 shade ceramic provided higher values of DC, RP, FS, FM, and LT compared with the A1 shade (p < 0.05). Increasing ceramic thickness decreased the properties of the resin-based materials (p < 0.05). Generally, TPO improved mechanical properties of the resin cement compared with CQ (p < 0.05). SIGNIFICANCE: The luting process of indirect restorations may be improved by using high molar absorptivity, more reactive, and more efficient photoinitiators such as TPO, as opposed to conventional CQ. The use of such initiator may allow the placement of thicker and more opaque indirect restorations.


Asunto(s)
Cerámica , Porcelana Dental , Resistencia Flexional , Curación por Luz de Adhesivos Dentales , Ensayo de Materiales , Polimerizacion , Cementos de Resina , Cementos de Resina/química , Porcelana Dental/química , Cerámica/química , Ácidos Polimetacrílicos/química , Polietilenglicoles/química , Fotoiniciadores Dentales/química , Bisfenol A Glicidil Metacrilato/química , Propiedades de Superficie , Terpenos/química , Alcanfor/análogos & derivados
7.
Dent Mater J ; 43(4): 525-530, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825450

RESUMEN

This study aimed to propose the measurement methods for resin composite translucency using four shades of resin composite and four spectrophotometers. Four methods were used for measuring translucency: (A) color measurement using reflectance mode, (B) visible light spectrum measurement using reflectance mode, (C) color measurement using transmittance mode, (D) visible light spectrum measurement using transmittance mode. Although there was a significant difference among the results of the translucency measuring methods, the same tendency was observed for translucency parameters obtained using each spectrophotometer. Therefore, the four methods can potentially be used as translucency measuring methods for resin composite.


Asunto(s)
Color , Resinas Compuestas , Ensayo de Materiales , Espectrofotometría , Resinas Compuestas/química , Materiales Dentales/química
8.
3D Print Addit Manuf ; 11(2): 467-475, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689931

RESUMEN

The development of innovative production processes and the optimization of photobioreactors play an important role in generating industrial competitive production technologies for phototrophic biofilms. With emerse photobioreactors a technology was introduced that allowed efficient surface attached cultivation of terrestrial cyanobacteria. However, the productivity of emerse photobioreactors depends on the available cultivation surface. By the implementation of biocarriers to the bioreactor volume, the cultivation surface can be increased which potentially improves productivity and thus the production of valuable compounds. To investigate the surface attached cultivation on biocarriers new photobioreactors need to be developed. Additive manufacturing (AM) offers new opportunities for the design of photobioreactors but producing the needed transparent parts can be challenging using AM techniques. In this study an emerse fixed bed photobioreactor was designed for the use of biocarriers and manufactured using different AM processes. To validate the suitability of the photobioreactor for phototrophic cultivation, the optical properties of three-dimensional (3D)-printed transparent parts and postprocessing techniques to improve luminous transmittance of the components were investigated. We found that stereolithography 3D printing can produce parts with a high luminous transmittance of over 85% and that optimal postprocessing by sanding and clear coating improved the clarity and transmittance to more than 90%. Using the design freedom of AM resulted in a bioreactor with reduced part count and improved handling. In summary, we found that modern 3D-printing technologies and materials are suitable for the manufacturing of functional photobioreactor prototypes.

9.
ACS Appl Mater Interfaces ; 16(21): 27587-27595, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748924

RESUMEN

Optimizing the photon spectrum for photosynthesis concurrently with improving crop yields presents an efficient and sustainable pathway to alleviate global food shortages. Luminescent solar concentrators (LSCs), consisting of transparent host matrices doped with fluorophores, show excellent promise to achieve the desired spectral tailoring. However, conventional LSCs are predominantly engineered for photon concentration, which results in a limited outcoupling efficiency of converted photons. Here, we introduce a scheme to implement LSCs into horticulture (HLSC) by enhancing light extraction. The symmetry of the device is disrupted by incorporating microcone arrays on the bottom surface to mitigate total internal reflection. Both Monte Carlo ray tracing simulations and experimental results have verified that the greatest enhancements in converted light extraction, relative to planar LSCs, are achieved using microcone arrays (base width 50 µm, aspect ratio 1.2) with extruded and protruded profiles (85.15 and 66.55% improvement, respectively). Angularly resolved transmission measurements show that the HLSC device exhibits a broad angular radiation distribution. This characteristic indicates that the HLSC device emits diffuse light, which is conducive to optimal plant growth.

10.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732818

RESUMEN

This study comprehensively investigates how rain and drizzle affect the object-detection performance of non-contact safety sensors, which are essential for the operation of unmanned aerial vehicles and ground vehicles in adverse weather conditions. In contrast to conventional sensor-performance evaluation based on the amount of precipitation, this paper proposes spatial transmittance and particle density as more appropriate metrics for rain environments. Through detailed experiments conducted under a variety of precipitation conditions, it is shown that sensor performance is significantly affected by the density of small raindrops rather than the total amount of precipitation. This finding challenges traditional sensor-evaluation metrics in rainfall environments and suggests a paradigm shift toward the use of spatial transmittance as a universal metric for evaluating sensor performance in rain, drizzle, and potentially other adverse weather scenarios.

11.
Micromachines (Basel) ; 15(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675362

RESUMEN

Using a stainless shadow mask combined with a magnetron-ion-assisted deposition (IAD) sputtering system, we investigate the surface morphologies and optical properties of microfilms. Optimal color-filter (CF) coating microfilms with niobium pent-oxide (Nb2O5)/silicon dioxide (SiO2) multilayers on a hard polycarbonate (HPC) substrate, grown at 85 °C and 50 SCCM oxygen flow, can obtain a fairly uniform thickness (with an average roughness of 0.083 and 0.106 nm respectively for Nb2O5 and SiO2 films) through all positions. On a flexible HPC substrate with the Nb2O5/SiO2 microfilms, meanwhile, the peak transmittances measured in the visible range are 95.70% and 91.47%, respectively, for coatings with and without a shadow mask for this new-tech system. For the optimal CF application with a shadow mask, transmittance on each 100 nm band-pass wavelength is enhanced by 4.04% absolute (blue), 2.96% absolute (green), and 2.12% absolute (red). Moreover, the developed new-tech system not only enhances the quality of the films by achieving smoother and uniform surfaces but also reduces deposition time, thereby improving overall process efficiency. For the with-shadow-mask condition, there is little shift at 50% transmittance (T50%), and high transmittance (~97%) is maintained after high-temperature (200 °C) baking for 12 h. These results are well above the commercial CF standard (larger than 90%) and demonstrate reliability and good durability for flexible optical applications.

12.
ACS Appl Mater Interfaces ; 16(17): 21807-21817, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634635

RESUMEN

Radiative cooling is the process to dissipate heat to the outer space through an atmospheric window (8-13 µm), which has great potential for energy savings in buildings. However, the traditional "static" spectral characteristics of radiative cooling materials may result in overcooling during the cold season or at night, necessitating the development of dynamic spectral radiative cooling for enhanced energy saving potential. In this study, we showcase the realization of dynamic radiative cooling by modulating the heat transfer process using a tunable transmittance convection shield (TTCS). The transmittance of the TTCS in both solar spectrum and atmospheric window can be dynamically adjusted within ranges of 28.8-72.9 and 27.0-80.5%, with modulation capabilities of ΔTsolar = 44.1% and ΔT8-13 µm = 53.5%, respectively. Field measurements demonstrate that through the modulation, the steady-state temperature of the TTCS architecture is 0.3 °C lower than that of a traditional radiative cooling architecture during the daytime and 3.3 °C higher at nighttime, indicating that the modulation strategy can effectively address the overcooling issue, offering an efficient way of energy saving through dynamic radiative cooling.

13.
J Agric Food Chem ; 72(17): 9735-9745, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648561

RESUMEN

For healthier human nutrition, it is desirable to provide food with a high content of nutraceuticals such as polyphenolics, vitamins, and carotenoids. We investigated to what extent high growth irradiance influences the content of phenolics, α-tocopherol and carotenoids, in wild rocket (Diplotaxis tenuifolia), which is increasingly used as a salad green. Potted plants were grown in a climate chamber with a 16 h day length at photosynthetic photon flux densities varying from 20 to 1250 µmol m-2 s-1. Measurements of the maximal quantum yield of photosystem II, FV/FM, and of the epoxidation state of the violaxanthin cycle (V-cycle) showed that the plants did not suffer from excessive light for photosynthesis. Contents of carotenoids belonging to the V-cycle, α-tocopherol and several quercetin derivatives, increased nearly linearly with irradiance. Nonintrusive measurements of chlorophyll fluorescence induced by UV-A and blue light relative to that induced by red light, indicating flavonoid and carotenoid content, allowed not only a semiquantitative measurement of both compounds but also allowed to follow their dynamic changes during reciprocal transfers between low and high growth irradiance. The results show that growth irradiance has a strong influence on the content of three different types of compounds with antioxidative properties and that it is possible to determine the contents of flavonoids and specific carotenoids in intact leaves using chlorophyll fluorescence. The results may be used for breeding to enhance healthy compounds in wild rocket leaves and to monitor their content for selection of appropriate genotypes.


Asunto(s)
Carotenoides , Clorofila , Carotenoides/análisis , Carotenoides/metabolismo , Clorofila/análisis , Clorofila/metabolismo , Luz , Fotosíntesis/efectos de la radiación , alfa-Tocoferol/análisis , alfa-Tocoferol/metabolismo , Antioxidantes/análisis , Antioxidantes/metabolismo , Antioxidantes/química , Fenoles/metabolismo , Fenoles/análisis , Fenoles/química , Flavonoides/análisis , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo
14.
Appl Radiat Isot ; 209: 111331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669737

RESUMEN

This work is dedicated to study the possibility of using UV-VIS spectrophotometer, a non-invasive technique with a versatile applications that is being used to determine the optical properties of matter, to estimate the CR-39 exposure to alpha particles. CR-39 detectors were exposed to alpha particles from two different alpha sources: 241Am and radon gas. Tracks densities on CR-39 were determined using the traditional counting method by an optical microscope. The transmittances of CR-39 detectors were measured using UV-VIS spectroscopy in the range of 400-1000 nm, and results were correlated with measured tracks densities. The comparison showed that this method is effective in estimating exposure of CR-39 to alpha particles, and that its efficiency has increased by increasing the etching time of the detectors.

15.
ACS Appl Mater Interfaces ; 16(14): 17607-17616, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557000

RESUMEN

Perovskite solar cells (PSCs) offer impressive performance and flexibility, thanks to their simple, low-temperature deposition methods. Their band gap tunability allows for a wide range of applications, transitioning from opaque to transparent devices. This study introduces the first flexible, bifacial PSCs using the FAPbBr3 perovskite. We investigated the impact of optimizing electron and hole transport layers on the cells' bifaciality, transparency, and stability. PSCs achieved a maximum power conversion efficiency (PCE) of 6.8 and 18.7% under 1 sun and indoor light conditions (1200 lx), respectively, showing up to 98% bifaciality factor and an average visible transmittance (AVT) of 55%. Additionally, a P1-P2-P3 laser ablation scheme has been developed on the flexible poly(ethylene terephthalate) (PET) substrate for perovskite solar modules showing a PCE of 4.8% and high geometrical fill factor (97.8%). These findings highlight the potential of flexible, bifacial PSCs for diverse applications such as building-integrated photovoltaics (BIPV), agrivoltaics, automotive technology, wearable sensors, and Internet of things (IoT).

16.
Materials (Basel) ; 17(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38591376

RESUMEN

We investigate the transmittance spectrum of a multichannel filter composed of dielectric (A) and plasma (P) materials in the microwave region within the transfer matrix formalism. Two configurations of the proposed filter are studied under the influence of an applied magnetic field: (1) a periodic structure containing (A/P)N unit cells surrounded by air and (2) the introduction of a second dielectric material (D) acting as a defect layer to produce an (AP)N/2/D/(AP)N/2 structure. Our findings reveal that in the periodic case, the number of resonant states of the transmittance increases with number N; however, the observed blue and red shifts depend on the intensity and orientation of the applied magnetic field. We present contour plots of the transmission coefficients that show the effect of the incident angle on the shifts of the photonic band gaps. Furthermore, we find that the introduction of a defect layer generates additional resonant states and merges the central resonant peak into a miniband of resonances. Moreover, we show that the number of resonant peaks and their locations can be modulated by increasing the unit cell number, N, as well as increasing the width of the inserted defect layer. Our proposed structures enable the design of novel photonic filters using magnetized plasma materials operating in the microwave region.

18.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475144

RESUMEN

A methodology for optimal sensor placement is presented in the current work. This methodology incorporates a damage detection framework with simulated damage scenarios and can efficiently provide the optimal combination of sensor locations for vibration-based damage localization purposes. A classic approach in vibration-based methods is to decide the sensor locations based, either directly or indirectly, on the modal information of the structure. While these methodologies perform very well, they are designed to predict the optimal locations of single sensors. The presented methodology relies on the Transmittance Function. This metric requires only output information from the testing procedure and is calculated between two acceleration signals from the structure. As such, the outcome of the presented method is a list of optimal combinations of sensor locations. This is achieved by incorporating a damage detection framework that has been developed and tested in the past. On top of this framework, a new layer is added that evaluates the sensitivity and effectiveness of all possible sensor location combinations with simulated damage scenarios. The effectiveness of each sensor combination is evaluated by calling the damage detection framework and feeding as inputs only a specific combination of acceleration signals each time. The final output is a list of sensor combinations sorted by their sensitivity.

19.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475258

RESUMEN

In this study, various diamine monomers were used to synthesize aramid polymer films via a low-temperature solution condensation reaction with diacid chloride. For diamines with relatively high basicity, the reaction system became opaque because amine salt formation inhibited polymer synthesis. Meanwhile, low-basicity diamines with strong electron-withdrawing groups, such as CF3 and sulfone, were smoothly polymerized without amine salt formation to provide highly viscous solutions. The acid byproduct HCl generated during polymerization was removed by adding propylene oxide to the reaction vessel and converting the acid into highly volatile inert substances. The resulting solutions were used as varnishes without any additional purification, and polymer films with an excellent appearance were easily obtained through a conventional casting and convection drying process. The films neither tore nor broke when pulled or bent by hand; furthermore, even when heated up to 400 °C, they did not decompose or melt. Moreover, polymers prepared from 2,2-bis(trifluoromethyl)benzidine (TFMB) and bis(4-aminophenyl)sulfone (pAPS) did not exhibit glass transition until decomposition. The prepared polymer films showed a high elastic modulus of more than 4.1 GPa and a high tensile strength of more than 52 MPa. In particular, TFMB-, pAPS-, and 2,2-bis(4-aminophenyl)hexafluoropropane-based polymer films were colorless and transparent, with very high light transmittances of 95%, 96%, and 91%, respectively, at 420 nm and low yellow indexes of 2.4, 1.9, and 4.3, respectively.

20.
Data Brief ; 54: 110319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38550228

RESUMEN

Remote sensing is the process of detecting and monitoring a plant's characteristics by measuring its reflected and emitted radiation at a distance, typically from a satellite or aircraft. The handheld leaf spectrometers help validate these images at the field scale. This dataset was captured by the CI-710 s SpectraVue Leaf Spectrometer (Cid-Bioscience, Camas, WA, U.S.A.). The absorbance, reflectance, and transmittance of albino plants were measured under natural cold stress in a temperate rice-growing area [1]. The experiment was carried out in field conditions at the seedling stage. The chlorophyll degradation takes place, starting with the yellowing of the leaf until plant death. Albinos and different level of leaf colour mutants are very useful for research and as well as breeding [2]. The symptoms of cool-temperature-induced chlorosis (CTIC) are widely examined in higher plants, especially in rice [3]. Beside laboratory induction, CTIC is appearing natural low temperature in early spring, especially cold-sensitive genotypes, such as indica rice cultivars (e.g. 'Dular') [4]. The dataset contains raw data from 400 nm to 1100 nm with the wavelength data increment of 0.6 nm [5]. These data may provide reliable support to researcher and breeder to make a simple comparison of the extent of chlorophyll degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA