Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.212
Filtrar
1.
J Ethnopharmacol ; 336: 118742, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197806

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Persian medicine (TPM), people often use herbal infusions as a dosage form to treat diseases related to hyperglycemia, known as 'dam-kardeh'. Traditionally, herbal preparations of Eryngium bungei Boiss. (E. b), Tragopogon buphthalmoides (DC.) Boiss. (T. b), Salvia hydrangea DC. ex Benth. (S. h), and Juniperus polycarpos K. Koch. (J. p) are used to manage diabetes in Iran. However, there is no evidence of their effectiveness in controlling glucose levels and their mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate whether traditional doses of plant infusions can have hypoglycemic and/or anti-hyperglycemic effects during fasting and/or postprandial states and establish the basis for future research on their potential mechanisms of action. MATERIALS AND METHODS: The effects of traditional doses of herbal extracts on blood glucose levels in STZ-NA-induced hyperglycemic rats were investigated in 2-h acute tests during fasting and postprandial states (with a glucose load). In addition, the potential inhibitory effect in vitro of enzymes involved in relevant pathways, such as gluconeogenesis (fructose-1,6-bisphosphatase, FBPase and glucose-6-phosphatase, G6Pase), carbohydrate breakdown (intestinal α-glucosidases), and insulin sensitivity (protein tyrosine phosphatase 1B, PTP-1B) was evaluated. Acute toxicity tests were carried out and HPLC-SQ-TOF was used to analyze the chemical profiles of the plant extracts. RESULTS: In the fasting state, T. b, S. h, and E. b were as effective as glibenclamide in lowering blood glucose levels in hyperglycemic rats. Moreover, all three suppressed G6Pase and FBPase enzymatic activity by 90-97% and 80-91%, respectively. On the other hand, significant postprandial hypoglycemic efficacy was observed for E. b, S. h, and T. b. Based on the AUC values, T. b caused a reduction comparable to the therapeutic efficacy of repaglinide. When investigating the possible mechanisms of action involved in this activity, E. b, S. h, and T. b showed significant inhibition of PTP-1B in vitro (>70%). Finally, all plant extracts showed no signs of acute toxicity. Several compounds that may contribute to biological activities were identified, including phenolic acids and flavonoid glycosides. CONCLUSIONS: The present study supports the traditional use of T. b, E. b and S. h for the control of diabetes in the fasting and postprandial state. Moreover, these plants were found to be rich in bioactive compounds with hypoglycemic and antihyperglycemic activities. On the other hand, J. p, showed a modest effect only in the fasting state and after 90 min. Further studies are needed to expand these results by analyzing the chemical composition and using complementary experimental models.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Ayuno , Hipoglucemiantes , Extractos Vegetales , Periodo Posprandial , Animales , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Masculino , Irán , Ratas , Medicina Persa , Ratas Wistar , Hiperglucemia/tratamiento farmacológico , Plantas Medicinales/química , Estreptozocina , Juniperus/química
2.
World J Gastrointest Oncol ; 16(9): 3913-3931, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39350977

RESUMEN

BACKGROUND: The incidence of primary liver cancer is increasing year by year. In 2022 alone, more than 900000 people were diagnosed with liver cancer worldwide, with hepatocellular carcinoma (HCC) accounting for 75%-85% of cases. HCC is the most common primary liver cancer. China has the highest incidence and mortality rate of HCC in the world, and it is one of the malignant tumors that seriously threaten the health of Chinese people. The onset of liver cancer is occult, the early cases lack typical clinical symptoms, and most of the patients are already in the middle and late stage when diagnosed. Therefore, it is very important to find new markers for the early detection and diagnosis of liver cancer, improve the therapeutic effect, and improve the prognosis of patients. Protein tyrosine phosphatase non-receptor 2 (PTPN2) has been shown to be associated with colorectal cancer, triple-negative breast cancer, non-small cell lung cancer, and prostate cancer, but its biological role and function in tumors remain to be further studied. AIM: To combine the results of relevant data obtained from The Cancer Genome Atlas (TCGA) to provide the first in-depth analysis of the biological role of PTPN2 in HCC. METHODS: The expression of PTPN2 in HCC was first analyzed based on the TCGA database, and the findings were then verified by immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and immunoblotting. The value of PTPN2 in predicting the survival of patients with HCC was assessed by analyzing the relationship between PTPN2 expression in HCC tissues and clinicopathological features. Finally, the potential of PTPN2 affecting immune escape of liver cancer was evaluated by tumor immune dysfunction and exclusion and immunohistochemical staining. RESULTS: The results of immunohistochemical staining, qRT-PCR, and immunoblotting in combination with TCGA database analysis showed that PTPN2 was highly expressed and associated with a poor prognosis in HCC patients. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that PTPN2 was associated with various pathways, including cancer-related pathways, the Notch signaling pathway, and the MAPK signaling pathway. Gene Set Enrichment Analysis showed that PTPN2 was highly expressed in various immune-related pathways, such as the epithelial mesenchymal transition process. A risk model score based on PTPN2 showed that immune escape was significantly enhanced in the high-risk group compared with the low-risk group. CONCLUSION: This study investigated PTPN2 from multiple biological perspectives, revealing that PTPN2 can function as a biomarker of poor prognosis and mediate immune evasion in HCC.

3.
Clin Rheumatol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320556

RESUMEN

Single nucleotide polymorphisms (SNPs) of the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene have been documented to be linked with several autoimmune disorders including Behçet's disease (BD). PTPN2 SNPs rs2542151 and rs7234029 have been assessed using real-time PCR in 96 BD patients and 50 controls matched by age and gender. Patients were categorized into groups according to the disease phenotypes and severity. A total of 94.8% of patients were males. The patients' mean age at onset was 26.1 ± 8 years. The median (IQR) disease duration was 8.5(4-13) years. No difference was observed between the patients and controls concerning the frequency of the two SNPs' different genotypes, models, and alleles. Moreover, neither disease phenotypes nor severity were associated with rs2542151 or rs7234029 SNPs. PTPN2 rs2542151 and rs7234029 SNPs do not seem to have associations with BD occurrence, phenotypes, or severity in the Egyptian patients. Key Points • PTPN2 rs2542151 and rs7234029 SNPs do not seem to have associations with BD occurrence, phenotypes, or severity in the Egyptian patients. • Further studies involving a larger sample size with variable clinical diversity are recommended to verify the results.

4.
Mol Neurobiol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39322833

RESUMEN

Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of several pain-related substrates in spinal cord dorsal horn and are critically involved in the modification of pain transmission. The current study demonstrated that protein tyrosine phosphatase 1B (PTP1B), a unique endoplasmic reticulum-resident member of PTP family, displayed an activity-dependent increase in its protein expression and synaptic localization in spinal dorsal horn of adult male rats. PTP1B interacted with the Src Homology 3 (SH3) domain of Synapse-Associated Protein 102 (SAP102), one of the postsynaptic scaffolding proteins that anchored PTP1B at postsynaptic sites. The SAP102-tethered PTP1B augmented the synaptic transmission mediated specifically by GluN2B subunit-containing N-methyl-D-aspartate subtype glutamate receptors. Interference with PTP1B activity or disruption of its interaction with SAP102 attenuated GluN2B-mediated nociceptive transmission and ameliorated pain sensitization induced by intraplantar injection of Complete Freund's Adjuvant. These data suggested that the activity-dependent synaptic redistribution of PTP1B served as an important mechanism regulating GluN2B receptor activity and that manipulation of PTP1B synaptic targeting might represent an effective approach for the treatment of chronic inflammatory pain.

5.
Biol Res ; 57(1): 69, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342392

RESUMEN

BACKGROUND: The LYP tyrosine phosphatase presents a SNP (1858C > T) that increases the risk of developing autoimmune diseases such as type I diabetes and arthritis. It remains unclear how this SNP affects LYP function and promotes the development of these diseases. The scarce information about LYP substrates is in part responsible for the poor understanding of LYP function. RESULTS: In this study, we identify in T lymphocytes several adaptor proteins as potential substrates targeted by LYP, including FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2. We also show that LYP co-localizes with SLP76 in microclusters, upon TCR engagement. CONCLUSIONS: These data indicate that LYP may modulate T cell activation by dephosphorylating several adaptor proteins, such as FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2 upon TCR engagement.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Fosfoproteínas , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria , Linfocitos T , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Jurkat , Activación de Linfocitos , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/genética , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/metabolismo
6.
Physiol Rep ; 12(18): e70058, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39324545

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. DKD is a heterogeneous disease with complex pathophysiology where early endothelial dysfunction is associated with disease progression. The Tie2 receptor and Angiopoietin 1 and 2 ligands are critical for maintaining endothelial cell permeability and integrity. Tie2 signaling is negatively regulated by the endothelial specific transmembrane receptor Vascular Endothelial Protein Tyrosine Phosphatase (VEPTP). Genetic deletion of VEPTP protects from hypertension and diabetes induced renal injury in a mouse model of DKD. Here, we show that VEPTP inhibition with an extracellular domain targeting VEPTP antibody induced Tie2 phosphorylation and improved VEGF-A induced vascular permeability both in vitro and in vivo. Treatment with the VEPTP blocking antibody decreased the renal expression of endothelial activation markers (Angpt2, Edn1, and Icam1) but failed to improve kidney function in db/db uninephrectomized ReninAAV DKD mice.


Asunto(s)
Albuminuria , Nefropatías Diabéticas , Receptor TIE-2 , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Albuminuria/metabolismo , Ratones , Receptor TIE-2/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Masculino , Humanos , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Modelos Animales de Enfermedad , Permeabilidad Capilar , Riñón/metabolismo , Fosforilación , Células Endoteliales de la Vena Umbilical Humana/metabolismo
7.
Sci China Life Sci ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39235560

RESUMEN

Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction. Furthermore, we identify SHP-2 as the direct molecular target of PA for inhibiting the PD-1 signaling transduction. Subsequently, mechanistic studies suggest that PA binds to a new druggable site in the phosphorylated PD-1 ITSM recognition site of SHP-2, inhibiting the recruitment of SHP-2 by PD-1. Taken together, our findings demonstrate that PA has a potential application in cancer immunotherapy and occupying the phosphorylated ITSM recognition site of SHP-2 may serve as an alternative strategy to develop PD-1 signaling inhibitors. In addition, our success in target recognition provides a paradigm of target identification and confirmation for natural products.

8.
Nutrients ; 16(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39275157

RESUMEN

As part of our ongoing research on new anti-diabetic compounds from ethnopharmacologically consumed plants, two previously undescribed lupane-type triterpenoids (1 and 2) with dicarboxylic groups, an undescribed nor-taraxastane-type triterpenoid (3), and 14 known compounds (4-17) were isolated from the leaves of Cleistocalyx operculatus. Extensive spectroscopic analysis (IR, HRESIMS, 1D, and 2D NMR) was used for structure elucidation, while the known compounds were compared to reference data reported in the scientific literature. All the isolates (1-17) were evaluated for their inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme. Compounds 6, 9, and 17 showed strong PTP1B inhibitory activities. The mechanism of PTP1B inhibition was studied through enzyme kinetic experiments. A non-competitive mechanism of inhibition was determined using Lineweaver-Burk plots for compounds 6, 9, and 17. Additionally, Dixon plots were employed to determine the inhibition constant. Further insights were gained through a structure-activity relationship study and molecular docking analysis of isolated compounds with the PTP1B crystal structure. Moreover, all isolates (1-17) were tested for their stimulatory effects on the uptake of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) in differentiated 3T3-L1 adipocyte cells. Compounds 6, 13, and 17 exhibited strong glucose absorption stimulation activity in a dose-dependent manner.


Asunto(s)
Células 3T3-L1 , Glucosa , Simulación del Acoplamiento Molecular , Hojas de la Planta , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Hojas de la Planta/química , Ratones , Animales , Glucosa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Syzygium/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Relación Estructura-Actividad , Simulación por Computador
9.
Front Cardiovasc Med ; 11: 1445739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238503

RESUMEN

Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.

10.
Front Pharmacol ; 15: 1423029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239651

RESUMEN

The protein tyrosine phosphatase 1B (PTP1B) is a critical therapeutic target for type 2 diabetes mellitus (T2DM). Many PTP1B inhibitors have been reported, however, most of them lack high specificity and have adverse effects. Designing effective PTP1B inhibitors requires understanding the molecular mechanism of action between inhibitors and PTP1B. To this end, molecular dynamics (MD) simulations and molecular mechanics Poisson Boltzmann Surface Area (MM-PB/SA) methods were used to observe the binding patterns of compounds with similar pentacyclic triterpene parent ring structures but different inhibition abilities. Through structure and energy analysis, we found that the positions of cavities and substituents significantly affect combining capacity. Besides, we constructed a series of potential inhibitor molecules using LUDI and rational drug design methods. The ADMET module of Discovery Studio 2020 was used to predict the properties of these inhibitor molecules. Lastly, we obtained compounds with low toxicity and significant inhibitory activity. The study will contribute to the treatment of T2DM.

11.
Curr Opin Chem Biol ; 83: 102522, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243480

RESUMEN

Endogenously formed reactive molecules, such as lipid peroxides, 4-hydroxynonenal, methylglyoxal and other reactive oxygen species, can have major effects on cells. Accumulation of these molecules is counteracted by antioxidant enzymes, including the glutathione (GSH) and thioredoxin (Trx) systems, in turn regulated by the KEAP1/NRF2 system. Receptor tyrosine kinases (RTK) and their counteracting protein tyrosine phosphatases (PTP) are also modulated through redox regulation of PTP activities. The cytosolic selenoprotein thioredoxin reductase (TXNRD1) is particularly prone to attack at its easily accessible catalytic selenocysteine (Sec) residue by reactive electrophilic compounds. Therefore, we here discuss how endogenously formed electrophiles can modulate RTK/PTP signaling in a concentration- and time dependent manner by reactions either directly or indirectly linking TXNRD1 with the KEAP1/NRF2 system. Moreover, recent findings suggest that endogenous formation of peroxymonocarbonate can efficiently inhibit PTP activities and stimulate RTK signaling, seemingly bypassing PTP reduction as otherwise supported by the GSH/Trx systems.

12.
Acta Pharm Sin B ; 14(8): 3624-3642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39234614

RESUMEN

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a promising therapeutic target for cancer therapy. In this work, we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors, leading to the identification of pyrazolopyrazine-based TK-642 as a highly potent, selective, orally bioavailable allosteric SHP2 inhibitor (SHP2WT IC50 = 2.7 nmol/L) with favorable pharmacokinetic profiles (F = 42.5%; t 1/2 = 2.47 h). Both dual inhibition biochemical assay and docking analysis indicated that TK-642 likely bound to the "tunnel" allosteric site of SHP2. TK-642 could effectively suppress cell proliferation (KYSE-520 cells IC50 = 5.73 µmol/L) and induce apoptosis in esophageal cancer cells by targeting the SHP2-mediated AKT and ERK signaling pathways. Additionally, oral administration of TK-642 also demonstrated effective anti-tumor effects in the KYSE-520 xenograft mouse model, with a T/C value of 83.69%. Collectively, TK-642 may warrant further investigation as a promising lead compound for the treatment of esophageal cancer.

13.
Oncol Rep ; 52(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301655

RESUMEN

Lung cancer is increasingly recognized as a leading cause of cancer­related mortality. Immunotherapy has emerged as a promising therapeutic approach for lung cancer, particularly non­small cell lung cancer (NSCLC). Nonetheless, the response rate to programmed cell death 1 (PD­1) inhibitors remains less than optimal. It has been suggested that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in the development and progression of cancer by facilitating T cell expansion and cytotoxicity. Our previous research demonstrated that the combination of tumor necrosis factor receptor 2 (TNFR2) with immune activity treatments synergistically suppresses tumor growth. This insight led to exploring the efficacy of a combined treatment strategy involving PD­1 inhibitors, PTP1B inhibitors and TNFR2 antibodies (triple therapy) in NSCLC. In this context, the therapeutic effectiveness of these combination immunotherapies was validated in mouse models with NSCLC by analyzing the expansion and function of immune cells, thereby assessing their impact on tumor growth. The results indicated that inhibiting PTP1B decreases the expression of PD­L1 and TNFR2 on LLC cells, along with an increase in the proportion of CD4+T and CD8+T cells. Compared with other treatment groups, the triple therapy significantly reduced tumor volume in mice with NSCLC and extended their survival. Moreover, this combination therapy altered the distribution of myeloid­derived suppressor cells, dendritic cells, B cells and M1 macrophages, while increasing the proportion of CD8+T cells and reducing the proportion of Treg cells in the spleens, lymph nodes, and tumors of NSCLC models. The triple therapy also resulted in a decrease in PD­L1, PTP1B and TNFR2 expression within NSCLC tumor tissues in mice. Overall, the triple therapy effectively suppressed tumor growth and improved outcomes in mice with NSCLC by modulating immune cell distribution and reducing levels of target immune proteins.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Receptor de Muerte Celular Programada 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Receptores Tipo II del Factor de Necrosis Tumoral , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Ratones , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Humanos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Inmunoterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología
14.
ChemMedChem ; : e202400452, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113101

RESUMEN

Current treatments for type 2 diabetes (T2D) mainly rely on exercise, dietary control, and anti-diabetic drugs to enhance insulin secretion and improve insulin sensitivity. However, there is a need for more therapeutic options. A potential target that has attracted attention is the protein tyrosine phosphatase 1B (PTP1B), which negatively regulates the insulin signaling pathway. In this work, a comprehensive computational screening was carried out using cheminformatics and molecular docking on PTP1B, employing a rigorous repurposing approach. The screening involved approved drugs and compounds under research as anti-diabetics that bind to targets such as peroxisome proliferator-activated receptor gamma (PPAR-gamma) and alpha-glucosidase. Some computational hits were then meticulously tested in vitro against PTP1B; particularly the 13-cis-retinoic acid ( 3a) showed an IC 50 of 0.044 mM and competitive inhibition. Molecular dynamics studies agrees that 3a can bind to the catalytic binding site of PTP1B. It is worth mentioning that 3a has been reported by the first time as an inhibitor of PTP1B in this work, making it a potentially valuable candidate for further studies in D2T treatment.

15.
Front Genet ; 15: 1399760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39205941

RESUMEN

Introduction: Hearing loss is one of the most prevalent congenital sensory disorders. Over 50% of congenital hearing loss cases are attributed to genetic factors. The PTPRQ gene encodes the protein tyrosine phosphatase receptor Q, which plays an important role in maintaining the structure and function of the stereocilia of hair cells. Variants in the PTPRQ gene have been implicated in hereditary sensorineural hearing loss. Methods and Results: Utilizing next-generation sequencing technology, we identified novel compound heterozygous variants (c.977G>A:p.W326X and c.6742C>T:p.Q2248X) in the PTPRQ gene within a Chinese national lineage, marking the first association of these variants with hereditary sensorineural hearing loss. Discussion: Our findings further emphasize the critical role of PTPRQ in auditory function and contribute to a more comprehensive understanding of PTPRQ-associated hearing loss mechanisms, aiding in clinical management and genetic counseling.

16.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091798

RESUMEN

Multi-domain enzymes can be regulated by both inter-domain interactions and structural features intrinsic to the catalytic domain. The tyrosine phosphatase SHP2 is a quintessential example of a multi-domain protein that is regulated by inter-domain interactions. This enzyme has a protein tyrosine phosphatase (PTP) domain and two phosphotyrosine-recognition domains (N-SH2 and C-SH2) that regulate phosphatase activity through autoinhibitory interactions. SHP2 is canonically activated by phosphoprotein binding to the SH2 domains, which causes large inter-domain rearrangements, but autoinhibition can also be disrupted by disease-associated mutations. Many details of the SHP2 activation mechanism are still unclear, the physiologically-relevant active conformations remain elusive, and hundreds of human variants of SHP2 have not been functionally characterized. Here, we perform deep mutational scanning on both full-length SHP2 and its isolated PTP domain to examine mutational effects on inter-domain regulation and catalytic activity. Our experiments provide a comprehensive map of SHP2 mutational sensitivity, both in the presence and absence of inter-domain regulation. Coupled with molecular dynamics simulations, our investigation reveals novel structural features that govern the stability of the autoinhibited and active states of SHP2. Our analysis also identifies key residues beyond the SHP2 active site that control PTP domain dynamics and intrinsic catalytic activity. This work expands our understanding of SHP2 regulation and provides new insights into SHP2 pathogenicity.

17.
Cancer Lett ; 599: 217151, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094827

RESUMEN

Plexiform neurofibromas (PNFs) are a prevalent and severe phenotype associated with NF1, characterized by a high teratogenic rate and potential for malignant transformation. The growth and recurrence of PNFs are attributed to aberrant proliferation and migration of Nf1-deficient Schwann cells. Protein tyrosine phosphatase receptor S (PTPRS) is believed to modulate cell migration and invasion by inhibiting the EMT process in NF1-derived malignant peripheral nerve sheath tumors. Nevertheless, the specific role of PTPRS in NF1-derived PNFs remains to be elucidated. The study utilized the GEO database and tissue microarray to illustrate a decrease in PTPRS expression in PNF tissues, linked to tumor recurrence. Furthermore, the down- and over-expression of PTPRS in Nf1-deficient Schwann cell lines resulted in the changes of cell migration and EMT processes. Additionally, RTK assay and WB showed that PTPRS knockdown can promote EGFR expression and phosphorylation. The restoration of EMT processes disrupted by alterations in PTPRS levels in Schwann cells can be achieved through EGFR knockdown and EGFR inhibitor. Moreover, high EGFR expression has been significantly correlated with poor prognosis. These findings underscore the potential role of PTPRS as a tumor suppressor in the recurrence of PNF via the regulation of EGFR-mediated EMT processes, suggesting potential targets for future clinical interventions.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Receptores ErbB , Neurofibroma Plexiforme , Células de Schwann , Humanos , Línea Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/genética , Neurofibroma Plexiforme/patología , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/metabolismo , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Transducción de Señal
18.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 9): 210-219, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39177701

RESUMEN

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) has recently been recognized as a promising target for cancer immunotherapy. Despite extensive structural and functional studies of other protein tyrosine phosphatases, there is limited structural understanding of PTPN2. Currently, there are only five published PTPN2 structures and none are truly unbound due to the presence of a mutation, an inhibitor or a loop (related to crystal packing) in the active site. In this report, a novel crystal packing is revealed that resulted in a true apo PTPN2 crystal structure with an unbound active site, allowing the active site to be observed in a native apo state for the first time. Key residues related to accommodation in the active site became identifiable upon comparison with previously published PTPN2 structures. Structures of PTPN2 in complex with an established PTPN1 active-site inhibitor and an allosteric inhibitor were achieved through soaking experiments using these apo PTPN2 crystals. The increased structural understanding of apo PTPN2 and the ability to soak in inhibitors will aid the development of future PTPN2 inhibitors.


Asunto(s)
Dominio Catalítico , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Humanos , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Sitios de Unión , Modelos Moleculares , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Cristalización , Apoenzimas/química , Apoenzimas/metabolismo , Apoenzimas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Neurobiol Dis ; 200: 106641, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39159894

RESUMEN

STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.


Asunto(s)
Proteínas Tirosina Fosfatasas no Receptoras , Animales , Humanos , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Transmisión Sináptica/fisiología , Convulsiones/metabolismo , Convulsiones/fisiopatología , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética
20.
Mol Cell Biol ; : 1-10, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039893

RESUMEN

Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single-nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 (PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the impact of autoimmune disease-associated PTPN22 SNPs on T cell responses and describe approaches to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA