Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 954
Filtrar
1.
Heliyon ; 10(11): e32526, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961903

RESUMEN

Objective: Based on network pharmacology and experimental validation, this study aimed to screen the potential targets of Liuwei Dihuang decoction (LW) against mild cognitive impairment (MCI). Methods: Based on network pharmacology, this study preliminarily explored the targets and molecular mechanisms of LW in the treatment of MCI. The results showed that the mechanism of action of LW against MCI may be related to the cAMP pathway. Then, an aging cell and animal model was established to further verify its molecular mechanism. Results: A total of 23 active ingredients were identified in LW. In addition, through network pharmacological analysis, we found 22 anti-MCI active ingredients in LW, of which alisol B had the most significant effect, and predicted the potential mechanism pathway by which LW may improve MCI through the cAMP signaling pathway. Further in vivo and in vitro experiments confirmed that LW can alleviate cognitive dysfunction in aging mice and reduce D-galactose-induced senescent cells, which may be through activation of the cAMP/PKA/CREB signaling pathway. Conclusion: This study found that the traditional Chinese medicine formula LW may play a role in improving MCI by regulating the cAMP/PKA/CREB signaling pathway, which provides a reference for further clinical research on the anti-MCI effect of LW and its molecular mechanism.

2.
J Chromatogr A ; 1730: 465122, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38941796

RESUMEN

In the realm of electrospray ionization mass spectrometry (ESI-MS), distinguishing among isomers poses a significant challenge due to the minimal spectral differences that often arise from their subtle structural differences. This makes the accurate identification of these compounds through solely experimental spectra a daunting task. Computational chemistry has emerged as a pivotal tool in bridging the gap between experimental observations and theoretical understanding. This study used the MS fragmentation simulation software, QCxMS, to model the spectra of five groups of isomers, encompassing 11 compounds, found in the traditional Chinese medicine, Zhishi Xiebai Guizhi Decoction. By comparing the spectra predicted through computational methods with those derived from Ultra-high performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) experiments, it was observed that, following the optimization of simulation parameters, QCxMS was capable of generating reliable spectra for all examined compounds. Notably, the data calculated under both GFN1-xTB and GFN2-xTB levels exhibited no significant discrepancies. Further analysis enabled the identification of the principal fragments of the 11 compounds from the theoretical data, facilitating the deduction of their fragmentation pathways. The Density Functional Theory (DFT) method was subsequently applied to compute the primary fragmentation energies of these compounds. The findings revealed a congruence between the energy data calculated using both thermodynamic and kinetic approaches and the observed fragment abundance of the isomers. This alignment providing a more precise theoretical framework for understanding the mechanisms underlying the generation of fragment ion differences among isomers.

3.
Front Plant Sci ; 15: 1421008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933459

RESUMEN

Objective: Ephedra, widely used in clinical practice as a medicinal herb, belongs to the genus Ephedra in the family Ephedraceae. However, the presence of numerous Ephedra varieties and variants requires differentiation for accurate identification. Methods: In this study, we employed headspace gas chromatography mass spectrometry (HS-GC-MS), ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and global natural products social molecular networking (GNPS) for chemical component identification. Chemometric analysis was used to analyze the differential components. Metabolic analysis and Kyoto encyclopedia of genes and genomes (KEGG) enrichment were utilized to explore the synthesis pathways of different components. Result: A total of 83 volatile and 79 non-volatile components were identified in Ephedra species. Differential analysis revealed that among the eight Ephedra stems, 18 volatile and 19 non-volatile differential compounds were discovered, whereas Ephedra roots exhibited 21 volatile and 17 non-volatile markers. Volatile compounds were enriched in four synthetic pathways, while non-volatile components were enriched in five pathways among the differentiated components. Conclusion: This study is the first to conduct a comparative analysis of chemical components in different Ephedra species and parts. It provides a foundational reference for authenticating Ephedra herbs, evaluating medicinal resources, and comparing quality in future studies.

4.
Biomed Chromatogr ; : e5922, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867488

RESUMEN

This study aims to explore the pharmacological substance basis of Qi Ge Decoction (QG) in antihyperlipidemia through a combination of metabolomics and serum pharmacochemistry. We used ultra-performance liquid chromatography quadrupole-time-of-flight/MS (UPLC Q-TOF/MS) to analyze and identify the chemical constituents of QG in vitro and in blood chemical components. The metabolomics technology was used to analyze serum biomarkers of QG in preventing and treating hyperlipidemia. We constructed a mathematical model of the relationship between constituents absorbed into the blood and endogenous biomarkers and explored the potential therapeutic application of QG for the prevention and treatment of hyperlipidemia. Compared with the model group, the levels of total cholesterol and triglyceride in the QG group were significantly decreased (P < 0.01). A total of 12 chemical components absorbed into the blood were identified, and 48 biomarkers of the hyperlipidemia model were obtained from serum metabolomic analysis, of which 15 metabolites were backregulated after QG intervention. Puerarin, hesperetin, puerarin xyloside, calycosin, and monohydroxy-tetramethoxyflavone had a high correlation with the biomarkers regulated by QG. This study elucidated the material basis of QG in the intervention of hyperlipidemia, thereby facilitating future research aimed at further revealing the pharmacodynamic material basis of QG's antihyperlipidemic effects.

5.
J Pharm Biomed Anal ; 248: 116313, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878453

RESUMEN

Hypericum perforatum L. (HPL), also known as St. John's wort, is one of the extensively researched domestically and internationally as a medicinal plant. In this study, non-targeted metabolomics combined with machine learning methods were used to identify reasonable quality indicators for the holistic quality control of HPL. First, the high-resolution MS data from different samples of HPL were collected, and visualized the chemical compounds through the MS molecular network. A total of 122 compounds were identified. Then, the orthogonal partial least squares-discriminant analysis (OPLS-DA) model was established for comparing the differences in metabolite expression between flower, leaf, and branches. A total of 46 differential metabolites were screened out. Subsequently, analyzing the pharmacological activities of these differential metabolites based on protein-protein interaction (PPI) network. A total of 25 compounds associated with 473 gene targets were retrieved. Among them, 13 highly active compounds were selected as potential quality markers, and five compounds were ultimately selected as quality control markers for HPL. Finally, three different classifiers (support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN)) were used to validate whether the selected quality control markers are qualified. When the feature count is set to 122 and 46, the RF model demonstrates optimal performance. As the number of variables decreases, the performance of the RF model degrades. The KNN model and the SVM model also exhibit a decrease in performance but still manage to satisfy the intended requirements. The strategy can be applied to the quality control of HPL and can provide a reference for the quality control of other herbal medicines.

6.
Heliyon ; 10(11): e32160, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912465

RESUMEN

Studies have shown that a lot of traditional Chinese medicines could improve the immunity of the body. Dangdi oral liquid (DDO) was mainly composed of Angelica sinensis (Oliv.) Diels (Danggui), Rehmannia glutinosa Libosch. (Dihuang), Achyranthes bidentata Bl. (Niuxi), Glycyrrhiza uralensis Fisch. (Gancao). In this study, the rapid ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method was used to identify the potentially effective compounds of DDO. Then the immune activity of DDO was measured by lymphocyte proliferation, macrophage phagocytic function, NK cell activity, delayed type hypersensitivity reaction, hemolytic plaque number, sIgA content and immune organ index. The results showed that a total of 51 compounds were identified. In addition, DDO could significantly promote the lymphocyte proliferation, improve macrophage phagocytic ability, NK cell activity, hemolytic plaque number, sIgA content and immune organ index compared with control group, and the medium dose possessed the best efficacy (P<0.05). These results indicated that DDO could enhance the immunity of mice.

7.
Foods ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38890845

RESUMEN

Mushrooms contain phenolic compounds that possess health-promoting properties, including antioxidant effects. However, the low solubility and form of phenolic compounds affect their bioactivity and bioaccessibility. To overcome this limitation, our study investigates the fermentation of mushrooms to increase their free phenolic content and enhance their bioactivity. Our research focused on the impact of fermentation on both free and bound phenolic fractions (FPs and BPs, respectively) in Lentinula edodes and Lactarius deliciosus, which were successively fermented with Lactiplantibacillus plantarum LMG 17673 for 72 h. We examined the total phenolic content (TPC), phenolic profile, and antioxidant activity of both FPs and BPs. Our results showed that the TPC of BPs was higher than that of FPs in both mushrooms, with strong antioxidant capabilities. Fermentation significantly increased the TPC of FPs in both mushrooms, particularly after 24 h of fermentation. The TPC of BPs in mushrooms decreased during fermentation, indicating their release from the matrix. Additionally, we identified 30 bioactive compounds using UPLC-Q-TOF-MS/MS. Our study demonstrates for the first time that lactic acid bacteria fermentation of mushrooms with high phenolic content leads to the liberation of bound phenolics, enhancing their bioactivity and bioaccessibility.

8.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893474

RESUMEN

Herbal medicine has been widely valued because of its remarkable efficacy and minimal side effects. The quantitative analysis of herbal medicines is essential to ensure their safety and efficacy. The simultaneous detection of multiple quality markers (Q-markers) has emerged as an important approach and trend in herbal medicine quality control. In recent years, non-targeted screening has become an effective strategy for the discovery and identification of unknown compounds. This study developed a non-targeted screening and quantitative analysis strategy to discover, identify and quantify the multiple components that truly represent the efficacy of Wuling capsule. Within this strategy, 18 types of flavonoids were tentatively discovered and identified from Wuling capsule by analyzing mass cleavage pathways, the precise molecular weights of compounds, and comparing the data with a database. Ten types of flavonoids were determined after the comparison of the standards. Additionally, following the evaluation of the regression equation, linear range, limit of detection (LOD), limit of quantitation (LOQ), precision, repeatability, and recovery of the proposed quantitative method, six flavonoids were quantified. This method successfully screened, identified, and quantified the potential active components in Wuling capsule, providing insights for improving the quality control standards in other herbal medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Flavonoides , Control de Calidad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/normas , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química , Cápsulas , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Límite de Detección , Reproducibilidad de los Resultados
9.
Heliyon ; 10(11): e31710, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882295

RESUMEN

Hyperlipidemia refers to the abnormal levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) in peripheral blood circulation. It is a predominant risk factor underlying cardiovascular and cerebrovascular diseases, including coronary heart disease and atherosclerosis. Furthermore, it is also one of the most prevalent chronic diseases globally. Liujunzi Decoction is the basic prescription for the treatment of spleen and stomach diseases. It can tonify the spleen and qi, remove dampness, and reduce turbidity. Moreover, it is also clinically used for the treatment of spleen deficiency hyperlipidemia. However, its metabolites and therapeutic effect on spleen deficiency hyperlipidemia have not been comprehensively determined in vitro and in vivo. This study established a rat model of spleen deficiency hyperlipidemia by inducing starvation and satiety disorders, exhaustion swimming, and intragastric administration of the fat emulsion. To identify related metabolite changes and serum lipid composition, UPLC-Q-TOF-MS, PCA, and OPLS-DA lipidological methods were performed. The results demonstrated significant changes in rat's signs during the modeling process, which were consistent with the criteria for the syndrome differentiation of spleen deficiency in traditional Chinese medicine. Furthermore, this study identified 100 potential biomarkers in rat serum, of which 52 were associated with lipid synthesis, such as LPC, PC, PI, PE, PA, Cer, SM, etc. The pathways involved were glycerol phospholipid, sphingomyelin, and glycerol ester metabolisms. After the Liujunzi decoction intervention, 56 potential biomarkers were observed in the high-dose group, alleviating the metabolic spectrum imbalance by reducing metabolite levels. In addition, metabolic pathway disturbances were markedly improved. This study provides references for future studies on Liujunzi decoction and furnishes essential data for assessing the relationships between chemical constituents and pharmacological activities of Liujunzi decoction.

10.
Food Chem ; 457: 140113, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38901344

RESUMEN

Hops, extensively cultivated in China for their food and medicinal applications, currently lack well-defined chemical markers to evaluate variations in their quality. The study aimed to explore variations in the quality of Chinese hops by the chemical characteristics of hops, employing UPLC-Q-TOF/MS, integrated with chemical fingerprinting and chemometrics. The results indicated that Chinese hops are abundant in polyphenols and bitter acids. The integration of UPLC-Q-TOF/MS, Chemical fingerprinting, and chemometrics revealed to be an accurate and effective approach for assessing the quality of Chinese hops. In this study, ten important chemical markers were found to be useful in differentiating various hop varieties. Moreover, the support vector machine showed a prediction accuracy of 92.3077% in identifying Chinese hop varieties. The strategy of the study lays the groundwork for classifying Chinese hop varieties and serves as a prerequisite for future quality control studies, particularly focusing on chemical compositions.

11.
Front Pharmacol ; 15: 1206718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828449

RESUMEN

The pharmacodynamic substances in "Scrophulariae Radix-Fritillaria" and the molecular mechanisms underlying its therapeutic effects against goiter were analyzed through metabolomics and serum pharmaco-chemistry. A rat model of goiter was established using propylthiouracil (PTU), and the animals were treated using "Scrophulariae Radix-Fritillaria." The efficacy of the drug pair was evaluated in terms of thyroid gland histopathology and blood biochemical indices. Serum and urine samples of the rats were analyzed by UPLC-Q-TOF/MS. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to screen potential biomarkers in urine and the corresponding metabolic pathways. The blood components of "Scrophulariae Radix-Fritillaria" were also identified, and their correlation with urine biomarkers was analyzed in order to screen for potential bioactive compounds. "Scrophulariae Radix-Fritillaria" mitigated injury to thyroid tissues and normalized the levels of the thyroid hormones FT3, FT4, and TSH. We also identified 22 urine biomarkers related to goiter, of which 19 were regulated by "Scrophulariae Radix-Fritillaria." Moreover, urine biomarkers are involved in tryptophan metabolism, steroid hormone biosynthesis, and beta-alanine metabolism, and these pathways may be targeted by the drug pair. In addition, 47 compounds of "Scrophulariae Radix-Fritillaria" were detected by serum pharmacochemistry, of which nine components, namely, syringic acid, paeonol, cedrol, and cis-ferulic acid, fetisinine, aucubigenin, linolenic acid, ussuriedine, and 5-(methylsulfanyl)pentanenitrile, were identified as potential effective substances against goiter. To summarize, we characterized the chemical components and mechanisms of "Scrophulariae Radix-Fritillaria" involved in the treatment of goiter, and our findings provide an experimental basis for its clinical application.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38821003

RESUMEN

PURPOSE: A serum medicinal chemistry analysis was performed to investigate the pharmacological basis of Xintongtai granule and to predict the potential mechanism of anti-atherosclerotic action based on the blood components. METHODS: UPLC-Q-TOF-MS/MS was used to analyze the in vitro chemical composition and in vivo blood components of Xintongtai granule, and to detect the blood drug concentration. The PPI network was constructed by collecting blood components and disease targets through the network pharmacology method, and the key targets were subjected to GO and KEGG functional enrichment analyses, so as to construct the topology network of drug-component-target-disease, and to validate the network by molecular docking. RESULTS: The UPLC-Q-TOF-MS/MS analysis identified 69 chemical components in Xintongtai granule, including 19 prototype circulating components and 9 metabolites in the bloodstream. Network pharmacology analysis revealed 115 intersecting targets for the circulating components, from which 10 core targets were selected. GO and KEGG analyses unveiled associated signaling pathways and biological processes. The construction of a topology network and preliminary molecular docking provided insights into its mechanism of action. CONCLUSION: The mechanism underlying the anti- atherosclerosis effect of Xintongtai granule may be associated with the intervention of active components such as Cryptotanshinone, Kaempferitrin, and Puerarin in pathways targeting CXCL8, STAT3, TNF, and other related targets.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Líquida de Alta Presión/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Masculino , Farmacología en Red , Humanos , Ratones
13.
Fitoterapia ; 176: 106010, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740341

RESUMEN

Flowers of Hosta plantaginea (H. plantaginea), a widely utilized medicinal herb in Mongolian medicine, holds a significant historical background in terms of its medicinal applications. This herb is renowned for its ability to clear heat and detoxify the body, alleviate cough, and provide relief to the throat. However, the active ingredients and the potential mechanism of action remain ambiguity. The objective of this study was to conduct a comprehensive analysis of the efficacy of H. plantaginea in treating pneumonia, identify its active ingredients and unveil the pharmacological mechanism in the treatment of pneumonia. In vivo experiments demonstrate the plant's anti-pneumonia properties, while mass spectrometry analysis identifies 62 chemicals, with 14 absorbed into the bloodstream. Network pharmacology and Venn analysis reveal 195 targets of 52 active ingredients, with 49 gene targets common to H. plantaginea and pneumonia. Protein-protein interaction (PPI) network construction and enrichment analysis highlight the key targets and pathways such as AKT, EGFR, IL-17. Western blotting confirms downregulation of these pathways, indicating the anti-inflammatory effects of H. plantaginea in treating acute lung injury. Our findings showed that the treatment of ALI with the H. plantaginea exerts its anti-inflammatory effects through multiple components, targets, and pathways. This study established a solid experimental foundation for investigating the various components, targets, and pathways involved in the treatment of pneumonia using H. plantaginea. It offers valuable insights from multiple perspectives and can serve as a reference for the clinical application of this plant in pneumonia treatment.


Asunto(s)
Flores , Farmacología en Red , Fitoquímicos , Neumonía , Animales , Flores/química , Neumonía/tratamiento farmacológico , Ratones , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Hosta , Antiinflamatorios/farmacología , Mapas de Interacción de Proteínas , Masculino , Plantas Medicinales/química , Medicina Tradicional Mongoliana , Lesión Pulmonar Aguda/tratamiento farmacológico
14.
J Ethnopharmacol ; 332: 118377, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38782307

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Tibetan medicine Ganlu Formula, as a classic prescription, is widely used across the Qinghai-Tibet Plateau area of China, which has a significant effect on relieving the course of rheumatoid arthritis (RA). However, the active compounds and underlying mechanisms of Ganlu Formula in RA treatment remain largely unexplored. AIM OF THE STUDY: This study aimed to elucidate the active substances and potential mechanisms of the ethyl acetate extract of Ganlu Formula ethyl acetate extract (GLEE) in the treatment of RA. MATERIALS AND METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was utilized to analyze and identify the chemical constituents within GLEE. Discovery Studio molecular virtual docking technology was utilized to dock the interaction of GLEE with inflammation-related pathway proteins. The GLEE gene library was obtained by transcriptome sequencing. Collagen-induced arthritic(CIA) rats were utilized to assess the antiarthritic efficacy of GLEE. Micro-CT imaging was employed to visualize the rat paw, and ultrasound imaging revealed knee joint effusion. Evaluation of synovial tissue pathological changes was conducted through hematoxylin-eosin staining and saffranine solid green staining, while immunohistochemical staining was employed to assess NLRP3 expression along with inflammatory markers. Immunofluorescence staining was utilized to identify M1 macrophages. RESULTS: Metabolomic analysis via UPLC-Q-TOF-MS identified 28 potentially bioactive compounds in GLEE, which interacted with the active sites of key proteins such as NLRP3, NF-κB, and STAT3 through hydrogen bonds, C-H bonds, and electrostatic attractions. In vitro analyses demonstrated that GLEE significantly attenuated NLRP3 inflammasome activation and inhibited the polarization of bone marrow-derived macrophages (BMDMs) towards the M1 phenotype. In vivo, GLEE not only prevented bone mineral density (BMD) loss but also reduced ankle swelling in CIA rats. Furthermore, it decreased the expression of the NLRP3 inflammasome and curtailed the release of inflammatory mediators within the knee joint. CONCLUSION: GLEE effectively mitigated inflammatory responses in both blood and knee synovial membranes of CIA rats, potentially through the down-regulation of the NLRP3/Caspase-1/IL-1ß signaling pathway and reduction in M1 macrophage polarization.


Asunto(s)
Artritis Experimental , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Ratas , Masculino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química , Artritis Reumatoide/tratamiento farmacológico , Ratas Sprague-Dawley , Ratones , Antirreumáticos/farmacología , Antirreumáticos/aislamiento & purificación , Antirreumáticos/química , Acetatos
15.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2478-2488, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812147

RESUMEN

In order to analyze the similarities and differences of chemical compositions between the roots and stems and leaves of Isodon japonicus(IJ), this study utilized UPLC-Q-TOF-MS technology to systematically characterize its chemical compositions, analyzed and identified the structure of its main compounds, and established a method for simultaneous determination of its content by refe-rence substance. A total of 34 major compounds in IJ, including 14 reference compounds, were identified or predicted online. Moreover, an UPLC-UV content determination method was developed for 11 compounds [danshensu, caffeic acid, vicenin-2,(1S,2S)-globoidnan B, rutin,(+)-rabdosiin,(-)-rabdosiin,(1S,2S)-rabdosiin, shimobashiric acid C, rosmarinic acid, and pedalitin]. The method exhibited excellent separation, stability, and repeatability, with a wide linear range(0.10-520.00 µg·mL~(-1)) and high linearity(R~2>0.999). The average recovery rates ranged from 94.72% to 104.2%. The principal component analysis(PCA) demonstrated a clear difference between the roots and stems and leaves of IJ, indicating good separation by cluster. Furthermore, the orthogonal partial least squares discriminant analysis(OPLS-DA) model was employed, and six main differentially identified compounds were identified: rosmarinic acid, shimobashiric acid C, epinodosin, pedalitin, rutin, and(1S,2S)-rabdosiin. In summary, this study established a strategy and method for distinguishing different parts of IJ, providing a valuable tool for quality control of IJ and a basis for the ratio-nal utilization and sustainable development of IJ.


Asunto(s)
Quimiometría , Medicamentos Herbarios Chinos , Isodon , Espectrometría de Masas , Hojas de la Planta , Cromatografía Líquida de Alta Presión/métodos , Isodon/química , Espectrometría de Masas/métodos , Quimiometría/métodos , Hojas de la Planta/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Raíces de Plantas/química , Tallos de la Planta/química
16.
J Pharm Biomed Anal ; 246: 116204, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776584

RESUMEN

Lamiophlomis Herba (LH) is a traditional Chinese and Tibetan dual-use herb with hemostatic and analgesic effects, and is widely used in the clinical treatment of traumatic bleeding and pain. In recent years, LH has been proven to treat liver fibrosis (LF), but the chemical components related to the pharmacological properties of LH in the treatment of LF are still unclear. Based on the theory of plasma pharmachemistry, the characteristic components in water extract and drug-containing plasma samples of LH were qualitatively analyzed by UPLC-Q-TOF-MS. The chemical components in plasma were screened and the targets were predicted by network pharmacology. Then, the predicted components and targets were verified in vitro by Elisa and qRT-PCR technology. Finally, the pharmacological effects of LH and its monomeric components were determined by hematoxylin-eosin staining of rat liver. A total of 50 chemical constituents were identified in LH, of which 12 were blood prototypes and 9 were metabolites. In vitro experiments showed that LH and its monomeric components luteolin, shanzhiside methyl ester, loganic acid, loganin, 8-O-acetyl shanzhiside methyl ester could increase the expression of antioxidant genes (NQO-1, HO-1) and decrease the expression of inflammatory genes (IL-6, IL-18), thereby reducing the expression of extracellular matrix-related genes and proteins (COL1A1, COL3A1, LN, α-sma, PC-III, Col-IV). In vivo experiments showed that LH could reduce the area of LF in rats in a dose-dependent manner, and shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester may be the main components in pharmacodynamics. These effects may be mediated by LH-mediated Nrf2/NF-κB pathway. This study explored the potential pharmacodynamic components of LH in the treatment of LF, and confirmed that shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester play a key role in the treatment of LF with LH.


Asunto(s)
Medicamentos Herbarios Chinos , Cirrosis Hepática , Farmacología en Red , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Farmacología en Red/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Cirrosis Hepática/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Humanos , Cromatografía Líquida de Alta Presión/métodos , Lamiaceae/química
17.
Sci Rep ; 14(1): 12119, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802644

RESUMEN

Despite its effectiveness in treating diabetic cardiomyopathy (DCM), Qigui Qiangxin Mixture (QGQXM) remains unclear in terms of its active ingredients and specific mechanism of action. The purpose of this study was to explore the active ingredients and mechanism of action of QGQXM in the treatment of DCM through the comprehensive strategy of serum pharmacology, network pharmacology and combined with experimental validation. The active ingredients of QGQXM were analyzed using Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS). Network pharmacology was utilized to elucidate the mechanism of action of QGQXM for the treatment of DCM. Finally, in vivo validation was performed by intraperitoneal injection of STZ combined with high-fat feeding-induced DCM rat model. A total of 25 active compounds were identified in the drug-containing serum of rats, corresponding to 121 DCM-associated targets. GAPDH, TNF, AKT1, PPARG, EGFR, CASP3, and HIF1 were considered as the core therapeutic targets. Enrichment analysis showed that QGQXM mainly treats DCM by regulating PI3K-AKT, MAPK, mTOR, Insulin, Insulin resistance, and Apoptosis signaling pathways. Animal experiments showed that QGQXM improved cardiac function, attenuated the degree of cardiomyocyte injury and fibrosis, and inhibited apoptosis in DCM rats. Meanwhile, QGQXM also activated the PI3K/AKT signaling pathway, up-regulated Bcl-2, and down-regulated Caspase9, which may be an intrinsic mechanism for its anti-apoptotic effect. This study preliminarily elucidated the mechanism of QGQXM in the treatment of DCM and provided candidate compounds for the development of new drugs for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Medicamentos Herbarios Chinos , Farmacología en Red , Animales , Medicamentos Herbarios Chinos/farmacología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Ratas , Masculino , Cromatografía Líquida de Alta Presión , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Espectrometría de Masas/métodos , Transducción de Señal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico
18.
Food Chem ; 452: 139463, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718451

RESUMEN

In this study, a QuEChERS method based on citrate was developed and utilized for the analysis of twelve neonicotinoid pesticides in fresh red chilies, fresh green chilies, and dried chilies, coupled with ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS). In the sample preparation, acetonitrile containing 1% formic acid was used as the extraction solvent. Anhydrous sodium sulfate replaced the traditional anhydrous magnesium sulfate for water removal, effectively eliminating the issues of salt caking. Graphitized carbon black, octadecyl silica, and primary secondary amine were used as cleaning agents. The method showed good sensitivity, with the limits of quantification below 0.03 mg/kg for fresh chilies and below 0.15 mg/kg for dried chilies. Values of matrix effects ranged from -19.5% to 8.4%, and the recovery was 86.9% - 105.2%. The analytical method provided an effective tool for the high throughput detection of neonicotinoid pesticide residues in multiple chili matrices.


Asunto(s)
Capsicum , Contaminación de Alimentos , Residuos de Plaguicidas , Cromatografía Líquida de Alta Presión , Capsicum/química , Contaminación de Alimentos/análisis , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Residuos de Plaguicidas/aislamiento & purificación , Espectrometría de Masas/métodos , Neonicotinoides/análisis , Neonicotinoides/química , Espectrometría de Masas en Tándem/métodos
19.
Food Chem ; 452: 139508, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733681

RESUMEN

In this study, an ultrasonic-assisted natural deep eutectic solvent (NaDES) was used to extract flavonoids from Perilla frutescens (L.) Britt. leaves. Of 10 tested NaDESs, that comprising D-(+)-glucose and glycerol exhibited the best total flavonoid extraction rate. Response surface methodology (RSM) was used for extraction modeling and optimization, and the total flavonoid content reached 87.48 ± 1.61 mg RE/g DW, which was a significant increase of 5.36% compared with that of 80% ethanol extraction. Morphological changes in P. frutescens leaves before and after extraction were analyzed by scanning electron microscopy (SEM), and the mechanism of NaDES formation was studied by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, 10 flavonoids were identified by UPLC-Q-TOF-MS. In addition, the NaDES extract had better biological activity according to five kinds of antioxidant capacity measurements, cyclooxygenase-2 (COX-2) and hyaluronidase (Hyal) inhibition experiments. Moreover, the stability test revealed that the total flavonoid loss rate of the NaDES extract after four weeks was 37.75% lower than that of the ethanol extract. These results indicate that the NaDES can effectively extract flavonoids from P. frutescens leaves and provide a reference for further applications in the food, medicine, health product and cosmetic industries.


Asunto(s)
Disolventes Eutécticos Profundos , Flavonoides , Perilla frutescens , Extractos Vegetales , Hojas de la Planta , Flavonoides/química , Flavonoides/aislamiento & purificación , Hojas de la Planta/química , Perilla frutescens/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Tecnología Química Verde , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología
20.
Biomed Chromatogr ; 38(7): e5881, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763770

RESUMEN

Chaihu-jia-Longgu-Muli decoction (CLMD) has been proven clinically effective in treating vertigo with anxiety disorder. However, the mechanism is not clear. This study aimed to explore the mechanism of CLMD in treating vertigo with anxiety disorder based on ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) and network pharmacology. UPLC-Q-TOF/MS was performed to identify the compounds in blood and the targets of compounds of CLMD in vertigo and anxiety were searched using databases. A protein-protein interaction network was built to screen the core targets. The core targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, the vertigo with anxiety rat model was used to verify the results. A total of 22 compounds were absorbed into the blood. Eighty-one potential targets associated with CLMD for vertigo with anxiety disorder were identified through network pharmacological analysis. Subsequently, GO and KEGG analysis showed that CLMD treatment for vertigo with anxiety disorder is associated with neurotransmitter levels and other pertinent physiological processes. The results of the animal experiments showed that CLMD decreased the levels of serotonin, norepinephrine and dopamine, alleviating the symptoms of vertigo and anxiety disorder in model rats. The study revealed CLMD could alleviate vertigo and anxiety symptoms through reducing the levels of neurotransmitters.


Asunto(s)
Trastornos de Ansiedad , Medicamentos Herbarios Chinos , Farmacología en Red , Ratas Sprague-Dawley , Vértigo , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Ratas , Vértigo/tratamiento farmacológico , Masculino , Trastornos de Ansiedad/tratamiento farmacológico , Espectrometría de Masas/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...