Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Placenta ; 145: 9-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008034

RESUMEN

INTRODUCTION: Ubiquitination is a significant post-translational modification engaged in diverse biological processes, such as cell differentiation, metastasis, and protein stability modulation. The dysregulation of ubiquitination and deubiquitination is inextricably linked to disease progression, including preeclampsia (PE). Ubiquitin-specific protease 17 (USP17), a prominent deubiquitinating enzyme that regulates ubiquitination modifications, performs multiple functions at the cellular level, whereas its role in PE remains elusive. In this study, we intended to probe the role of USP17 in PE and its underlying mechanisms. METHODS: The USP17 level in the plasma of PE patients was detected through Elisa. Western blot and qRT-PCR were performed to measure the mRNA and protein level of USP17 in placental tissues. CCK-8, EdU, and transwell assays were conducted to evaluate the proliferation, migration, and invasion of trophoblast cells. The interaction between HDAC2 and USP17 or STAT1 were determined by co-immunoprecipitation and Western blot assays. The expression of NF-κB pathway related proteins was examined using Western blot. RESULTS: USP17 was dramatically downregulated in PE patients. Overexpression of USP17 facilitated trophoblast proliferation, migration, and invasion. Moreover, histone deacetylase 2 (HDAC2) was validated as a substrate of USP17 deubiquitination, and USP17 upregulation enhanced HDAC2 protein level. Furthermore, HDAC2 could interact with and deacetylate Signal transducer and activator of transcription 1 (STAT1), resulting in the enhancement of STAT1 activity and inhibition of NF-κB signaling. DISCUSSION: Our findings disclosed that USP17 augmented the proliferation and invasion of trophoblast by deubiquitinating HDAC2, which will contribute to novel prospective targets for diagnosing and treating PE.


Asunto(s)
FN-kappa B , Preeclampsia , Humanos , Femenino , Embarazo , FN-kappa B/metabolismo , Histona Desacetilasa 2/genética , Preeclampsia/metabolismo , Placenta/metabolismo , Transducción de Señal , Trofoblastos/metabolismo , Proliferación Celular , Movimiento Celular/genética
2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894935

RESUMEN

Deubiquitinases (DUBs) are essential for bone remodeling by regulating the differentiation of osteoblast and osteoclast. USP17 encodes for a deubiquitinating enzyme, specifically known as ubiquitin-specific protease 17, which plays a critical role in regulating protein stability and cellular signaling pathways. However, the role of USP17 during osteoblast differentiation has not been elusive. In this study, we initially investigated whether USP17 could regulate the differentiation of osteoblasts. Moreover, USP17 overexpression experiments were conducted to assess the impact on osteoblast differentiation induced by bone morphogenetic protein 4 (BMP4). The positive effect was confirmed through alkaline phosphatase (ALP) expression and activity studies since ALP is a representative marker of osteoblast differentiation. To confirm this effect, Usp17 knockdown was performed, and its impact on BMP4-induced osteoblast differentiation was examined. As expected, knockdown of Usp17 led to the suppression of both ALP expression and activity. Mechanistically, it was observed that USP17 interacted with Osterix (Osx), which is a key transcription factor involved in osteoblast differentiation. Furthermore, overexpression of USP17 led to an increase in Osx protein levels. Thus, to investigate whether this effect was due to the intrinsic function of USP17 in deubiquitination, protein stabilization experiments and ubiquitination analysis were conducted. An increase in Osx protein levels was attributed to an enhancement in protein stabilization via USP17-mediated deubiquitination. In conclusion, USP17 participates in the deubiquitination of Osx, contributing to its protein stabilization, and ultimately promoting the differentiation of osteoblasts.


Asunto(s)
Osteoblastos , Osteogénesis , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Osteogénesis/genética , Osteoblastos/metabolismo , Diferenciación Celular/genética , Estabilidad Proteica , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo
3.
Breast Cancer Res Treat ; 196(1): 31-44, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36040642

RESUMEN

PURPOSE: Sirtuin7 (SIRT7), as a member of the sirtuin and NAD+-dependent protein-modifying enzyme family, plays an important role in regulating cellular metabolism, stress responses, tumorigenesis, and aging. Ubiquitination and deubiquitination are reversible post-translational modifications that regulate protein stability, enzyme activity, protein-protein interactions, and cellular signaling transduction. However, whether SIRT7 is regulated by deubiquitination signaling is unclear. This study aims to elucidate the molecular mechanism of SIRT7 via deubiquitination signaling. METHODS: USP17L2 or SIRT7-targeting shRNAs were used to deplete USP17L2 or SIRT7. Western blot was applied to assess the effects of USP17L2 or SIRT7 depletion. A co-immunoprecipitation assay was used to detect the interaction relationship. Cell Counting Kit-8 assays were applied to assess the viability of breast cancer cells. An immunohistochemistry assay was employed to detect the protein level in samples from breast cancer patients, and the TCGA database was applied to analyze the survival rate of breast cancer patients. Statistical analyses were performed with the Student's t test (two-tailed unpaired) and χ2 test. RESULTS: We find that the deubiquitinase USP17L2 interacts with and deubiquitinates SIRT7, thereby increasing SIRT7 protein stability. In addition, USP17L2 regulates DNA damage repair through SIRT7. Furthermore, SIRT7 polyubiquitination is increased by knocking down of USP17L2, which leads to cancer cells sensitizing to chemotherapy. In breast cancer patient samples, high expression of USP17L2 is correlated with increased levels of SIRT7 protein. In conclusion, our study demonstrates that the USP17L2-SIRT7 axis is the new regulator in DNA damage response and chemo-response, suggesting that USP17L2 may be a prognostic factor and a potential therapeutic target in breast cancer. CONCLUSION: Our results highlighted that USP17L2 regulates the chemoresistance of breast cancer cells in a SIRT7-dependent manner. Moreover, the role of USP17L2 as a potential therapeutic target in breast cancer and a prognostic factor for patients was elucidated.


Asunto(s)
Neoplasias de la Mama , Sirtuinas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Daño del ADN , Enzimas Desubicuitinizantes/genética , Resistencia a Antineoplásicos/genética , Endopeptidasas/genética , Femenino , Humanos , NAD/genética , Sirtuinas/genética , Sirtuinas/metabolismo
4.
Phytomedicine ; 104: 154337, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35849971

RESUMEN

BACKGROUND: An overdose of acetaminophen (APAP), the main cause of acute liver failure (ALF), induces oxidative stress that ultimately causes mitochondrial impairment and hepatotoxicity. The nuclear factor erythroid 2-related factor 2 (Nrf2) was widely recognized as an anti-oxidative stress mechanism. The present study was aimed at investigating whether sarmentosin, extract from traditional Chinese medicine, protects the liver against APAP-induced injury via activating Nrf2 and subsequently decreasing oxidative stress. METHODS: Male ICR mice were treated with sarmentosin oral administration for 1 week and injected APAP (300 mg/kg. i.p.) for acute liver injury model. The liver and serum of mice for histological and biochemistry analysis. AML12 and LO2 cells were used in vitro assays. RESULTS: We found that sarmentosin moderately increased accumulation of Nrf2 via upregulating USP17-mediated ubiquitin inhibition at the early stage of hepatocytes damage. The Nrf2 separating from bonding protein Keap1 translocated into nucleus and activated downstream gene of antioxidants. Mitophagy, a unique autophagy can remove Reactive Oxygen Species (ROS) damaged mitochondria, was elevated in this progress to maintain mitochondria function and ROS homeostasis. CONCLUSION: In summary, our research revealed that sarmentosin could alleviate APAP-induced liver acute injury through USP17-mediated Nrf2 overexpression and PINK1-dependent mitophagy.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fallo Hepático Agudo , Animales , Masculino , Ratones , Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Endopeptidasas , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/tratamiento farmacológico , Ratones Endogámicos ICR , Mitofagia , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
5.
Front Microbiol ; 13: 828430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387085

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) has RNA genome and depends on host cellular machinery for most of its activities. Host cellular proteins modulate the expression and activity of viral proteins to combat the virus. HIV-1 proteins are known to regulate each other for the benefit of virus by exploiting these modulations. Here, we report that HIV-1 Vif increases the levels of Tat via AKT signaling pathway. We show that HIV-1 Vif activates AKT signaling pathway by inducing phosphorylation of AKT. Mdm2, downstream target of AKT signaling, increases the levels of Tat protein in ubiquitin-dependent manner by inducing Ubiquitin Specific Protease 17 (USP17), which is a deubiquitinase and stabilizes Tat protein. Thus, HIV-1 proteins exploit AKT signaling pathway to promote viral replication.

6.
EMBO Rep ; 23(4): e51932, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080333

RESUMEN

Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL-4/6), chemokines (IL-8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore-forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.


Asunto(s)
Lisosomas , Membrana Celular/metabolismo , Proliferación Celular , Lisosomas/metabolismo
7.
FEBS Lett ; 596(4): 465-478, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35076962

RESUMEN

The c-Myc oncoprotein is frequently overexpressed in human cancers and is essential for cancer cell proliferation. The dysregulation of ubiquitin-proteasome-mediated degradation is one of the contributing factors to the upregulated expression of c-Myc in human cancers. We herein identified USP17 as a novel deubiquitinating enzyme that regulates c-Myc levels and controls cell proliferation and glycolysis. The overexpression of USP17 stabilized the c-Myc protein by promoting its deubiquitination. In contrast, the knockdown of USP17 promoted c-Myc degradation and reduced c-Myc levels. The knockdown of USP17 also suppressed cell proliferation and glycolysis. Collectively, the present results reveal a novel role for USP17 in the regulation of c-Myc stability and suggest its potential as a therapeutic target for cancer treatment.


Asunto(s)
Endopeptidasas/genética , Glucólisis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Células COS , Línea Celular Tumoral , Proliferación Celular/genética , Chlorocebus aethiops , Endopeptidasas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
8.
Cancer Cell Int ; 21(1): 455, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454495

RESUMEN

The balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.

9.
J Biol Chem ; 296: 100214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428929

RESUMEN

The mitogen-responsive, ETS-domain transcription factor ELK-1 stimulates the expression of immediate early genes at the onset of the cell cycle and participates in early developmental programming. ELK-1 is subject to multiple levels of posttranslational control, including phosphorylation, SUMOylation, and ubiquitination. Recently, removal of monoubiquitin from the ELK-1 ETS domain by the Ubiquitin Specific Protease USP17 was shown to augment ELK-1 transcriptional activity and promote cell proliferation. Here we have used coimmunoprecipitation experiments, protein turnover and ubiquitination assays, RNA-interference and gene expression analyses to examine the possibility that USP17 acts antagonistically with the F-box protein FBXO25, an E3 ubiquitin ligase previously shown to promote ELK-1 ubiquitination and degradation. Our data confirm that FBXO25 and ELK-1 interact in HEK293T cells and that FBXO25 is active toward Hand1 and HAX1, two of its other candidate substrates. However, our data indicate that FBXO25 neither promotes ubiquitination of ELK-1 nor impacts on its transcriptional activity and suggest that an E3 ubiquitin ligase other than FBXO25 regulates ELK-1 ubiquitination and function.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas F-Box/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Proliferación Celular , Endopeptidasas/genética , Proteínas F-Box/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Fosforilación , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sumoilación , Transfección , Ubiquitinación , Proteína Elk-1 con Dominio ets/genética
10.
Int J Biochem Cell Biol ; 130: 105886, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33227393

RESUMEN

Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Ciclo Celular/fisiología , Endopeptidasas/metabolismo , Humanos , Neoplasias/patología
11.
J Biol Chem ; 294(44): 16429-16439, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31533987

RESUMEN

Su(var)3-9, Enhancer-of-zeste, and Trithorax (SET) domain-containing protein 8 (SET8) is the sole enzyme that monomethylates Lys-20 of histone H4 (H4K20). SET8 has been implicated in the regulation of multiple biological processes, such as gene transcription, the cell cycle, and senescence. SET8 quickly undergoes ubiquitination and degradation by several E3 ubiquitin ligases; however, the enzyme that deubiquitinates SET8 has not yet been identified. Here we demonstrated that ubiquitin-specific peptidase 17-like family member (USP17) deubiquitinates and therefore stabilizes the SET8 protein. We observed that USP17 interacts with SET8 and removes polyubiquitin chains from SET8. USP17 knockdown not only decreased SET8 protein levels and H4K20 monomethylation but also increased the levels of the cyclin-dependent kinase inhibitor p21. As a consequence, USP17 knockdown suppressed cell proliferation. We noted that USP17 was down-regulated in replicative senescence and that USP17 inhibition alone was sufficient to trigger cellular senescence. These results reveal a regulatory mechanism whereby USP17 prevents cellular senescence by removing ubiquitin marks from and stabilizing SET8 and transcriptionally repressing p21.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Endopeptidasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Envejecimiento/metabolismo , Animales , Células COS , Ciclo Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Chlorocebus aethiops , Células HCT116 , Histonas/metabolismo , Humanos , Células MCF-7 , Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
12.
Biomed Pharmacother ; 118: 108946, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31377470

RESUMEN

Prostate cancer is one of the most frequently diagnosed neoplasms among men in the world. However, molecular mechanisms underlying the progression of prostate cancer are still unclear. In the study, we investigated the effects of ubiquitin specific protease 17 (USP17) on prostate cancer growth. The results indicated that USP17 expression was markedly increased in prostate cancer tissues and cell lines. Repressing USP17 expression significantly reduced the proliferation, migration and invasion of prostate cancer cells using cell counting kit-8 (CCK-8), colony formation and transwell assays. In addition, apoptosis was significantly induced by USP17 knockdown via increasing the expression of cleaved Caspase-9/-3 and poly (ADP)-ribose polymerase (PARP), as well as Cyto-c. Further, USP17 silence evidently promoted reactive oxygen species (ROS) production in prostate cancer cells. Nuclear nuclear factor-κB (NF-κB)/p65 expression and total NF-κB/p65 phosphorylation were markedly down-regulated by USP17 repression. Intriguingly, blocking ROS generation using its scavenger of N-acetyl-l-cysteine (NAC) significantly abrogated USP17 knockdown-induced apoptosis and -inhibited NF-κB/p65 signaling in vitro. Our data also showed that USP17 silence impaired tumor growth in the subcutaneous mouse model in vivo. Taken together, our results suggested that USP17 decrease might exert anti-tumor activities against prostate cancer growth by inducing apoptosis and suppressing NF-κB/p65 signaling via the promotion of ROS. Thus, USP17 could be served as a promising candidate to develop effective therapeutic strategy against prostate cancer progression.


Asunto(s)
Apoptosis , Proliferación Celular , Endopeptidasas/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Endopeptidasas/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , ARN Interferente Pequeño/genética , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Int J Biol Sci ; 15(4): 738-748, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906206

RESUMEN

Ubiquitin-specific protease 17 (USP17), a novel member of deubiquitinase, is reported to play essential roles in several solid tumors. However, the expression and function of USP17 in breast cancer tumorigenesis remains ambiguity. Here we found that the mRNA level of USP17 was lower in breast cancer tissues than normal tissues. Meanwhile, higher USP17 level was detected in normal epithelial cell MCF-10A and a less-malignant cell MCF-7 than malignant cell line MDA-MB-231. Inhibition of USP17 in MCF7 cells enhanced tumorigenesis and tumor growth while overexpression of USP17 in malignant MDA-MB-231 cells reduced its tumorigenesis and growth ability in vitro and in vivo. Further study revealed that USP17 interacted with and deubiquitinated Asparaginyl endopeptidase (AEP), resulting in decreased protein levels of AEP. Moreover, knockdown of AEP inhibited breast cancer tumorigenesis and growth in vitro and in vivo through the inactivation of ERK signaling. Taken together, our works indicate that USP17 deubiquitinates AEP, down-regulates its protein level, and inhibits breast cancer tumorigenesis through disturbing ERK signaling. Thus, our data suggests that USP17 is a potential tumor suppressor in breast cancer and AEP is a promising target in breast cancer therapy.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Femenino , Humanos , Células MCF-7 , Ubiquitinación/fisiología
14.
Cell Commun Signal ; 16(1): 77, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409180

RESUMEN

BACKGROUND: The deubiquitinase USP17 is overexpressed in NSCLC and has been shown to be required for the growth and motility of EGFR wild-type (WT) NSCLC cells. USP17 is also required for clathrin-mediated endocytosis of EGFR. Here, we examine the impact of USP17 depletion on the growth, as well as EGFR endocytosis and signaling, of EGFR mutant (MT) NSCLC cells. In particular, we examine NSCLC cells harboring an EGFR activating exon 19 deletion (HCC827), or both the L858R activating mutation and the T790M resistance gatekeeper mutation (H1975) which renders them resistant to EGFR tyrosine kinase inhibitors (TKIs). METHODS: MTT, trypan blue and clonogenic assays, confocal microscopy, Western blotting and cell cycle analysis were performed. RESULTS: USP17 depletion blocks the growth of EGFRMT NSCLC cells carrying either the EGFR exon 19 deletion, or L858R/T790M double mutation. In contrast to EGFRWT cells, USP17 depletion also triggers apoptosis of EGFRMT NSCLC cells. USP17 is required for clathrin-mediated endocytosis in these EGFRMT NSCLC cells, but it is not required for the internalization of the mutated EGFR receptors. Instead, USP17 depletion alters the localization of these receptors within the cell, and although it does not decrease basal EGFR activation, it potently reduces activation of Src, a key kinase in mutant EGFR-dependent tumorigenicity. Finally, we demonstrate that USP17 depletion can trigger apoptosis in EGFRWT NSCLC cells, when combined with the EGFR tyrosine kinase inhibitor (TKI) gefitinib. CONCLUSIONS: Our data reveals that USP17 facilitates trafficking and oncogenic signaling of mutant EGFR and indicates targeting USP17 could represent a viable therapeutic strategy in NSCLC tumours carrying either an EGFR activating mutation, or a resistance gatekeeper mutation.


Asunto(s)
Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/patología , Endopeptidasas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Mutación , Transducción de Señal , Células A549 , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Activación Enzimática , Receptores ErbB/genética , Humanos , Transporte de Proteínas , Familia-src Quinasas/metabolismo
15.
Tumour Biol ; 39(7): 1010428317717138, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28670958

RESUMEN

USP17 is upregulated in several cancers, indicating that USP17 might play essential functions in tumor development. However, the function of USP17 in osteosarcoma is still unknown. Our work aimed to investigate the function of USP17 in osteosarcoma. We found that the expression of USP17 was upregulated in osteosarcoma tissues and cell lines, including MG-63 and U2OS. Several functional experiments, such as colony formation analysis, Cell Counting Kit-8 assay, wound healing analysis, and transwell assay, showed that USP17 promoted cell proliferation, migration, and invasion. Moreover, we found that USP17 facilitated migration and invasion through promoting epithelial-mesenchymal transition. SMAD4 has been found to regulate epithelial-mesenchymal transition, co-immunopurification, and glutathione S-transferase pull-down analysis demonstrated that USP17 interacted with SMAD4. Furthermore, USP17 stabilized SMAD4 through its deubiquitinase activity. In conclusion, this study shows that USP17 enhances osteosarcoma cell proliferation and invasion through stabilizing SMAD4.


Asunto(s)
Proliferación Celular/genética , Endopeptidasas/biosíntesis , Osteosarcoma/genética , Proteína Smad4/genética , Adolescente , Adulto , Movimiento Celular/genética , Endopeptidasas/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glutatión Transferasa/genética , Humanos , Masculino , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Estadificación de Neoplasias , Osteosarcoma/patología , Activación Transcripcional/genética
16.
Arch Biochem Biophys ; 612: 35-45, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27756680

RESUMEN

USP17 is a deubiquitinating enzyme that is upregulated in numerous cancers and therefore a drug target. We developed a robust expression, purification, and assay system for USP17 enabling its enzymatic and structural characterization. USP17 was expressed in E. coli as inclusion bodies and then solubilized, refolded, and purified using affinity and size-exclusion chromatography. Milligram quantities of pure USP17 can be produced that is catalytically more efficient (kcat/Km = 1500 (x103) M-1sec-1) than other human USPs studied to date. Analytical size-exclusion chromatography, analytical ultracentrifugation, and dynamic light scattering studies suggest that the quaternary structure of USP17 is a monomer. Steady-state kinetic studies show that USP17 efficiently hydrolyzes both ubiquitin-AMC (kcat = 1.5 sec-1 and Km = 1.0 µM) and ubiquitin-rhodamine110 (kcat = 1.8 sec-1 and Km = 2.0 µM) substrates. Ubiquitin chain cleavage assays reveal that USP17 efficiently cleaves di-ubiquitin chains with Lys11, Lys33, Lys48 and Lys63 linkages and tetra-ubiquitin chains with Lys11, Lys48 and Lys63 linkages but is inefficient in cleaving di-ubiquitin chains with Lys6, Lys27, or Lys29 linkages or linear ubiquitin chains. The substrate specificity of USP17 is most similar to that of USP1, where both USPs display higher specificity than other characterized members of the USP family.


Asunto(s)
Enzimas Desubicuitinizantes/química , Endopeptidasas/química , Regulación de la Expresión Génica , Línea Celular Tumoral , Escherichia coli/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Cinética , Luz , Lisina/química , Mutagénesis Sitio-Dirigida , Neoplasias/metabolismo , Desnaturalización Proteica , Pliegue de Proteína , Dispersión de Radiación , Ubiquitina/química , Ubiquitinación , Ultracentrifugación , Regulación hacia Arriba
17.
Neurosci Lett ; 616: 125-31, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26777424

RESUMEN

Glioma is the most common and malignant brain tumor with extremely poor prognosis. It is crucial to understand the molecular characteristics of glioma and find out more effective therapeutic targets for the treatment of glioma. USP17 is a novel deubiquitinating enzyme that is differentially expressed in certain types of solid tumor. Our present study investigated the pathological functions and clinical significance of USP17 in glioma for the first time. We found that USP17 was down-regulated in glioma tissue compared with normal tissues. Overexpression of USP17 in glioma cells reduced their tumorigenesis and proliferation ability through reducing Ras and Myc protein levels. Subsequent in vivo experiments showed that overexpression of USP17 suppressed tumor progression in an orthotopic glioma models. Further, study of a cohort of 104 patients with stage I-IV glioma showed that USP17 expression was negatively associated with the WHO grade (p<0.001). USP17 was more highly expressed in low grade (I+II) glioma than high-grade (III+IV) glioma (p<0.001). Taken together, our results indicate that USP17 might play important functions in glioma through suppressing glioma tumorigenesis and proliferation.


Asunto(s)
Neoplasias Encefálicas/enzimología , Endopeptidasas/metabolismo , Glioma/enzimología , Animales , Neoplasias Encefálicas/patología , Proliferación Celular , Regulación hacia Abajo , Endopeptidasas/genética , Femenino , Glioma/patología , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Clasificación del Tumor , Trasplante de Neoplasias
18.
Int J Clin Exp Pathol ; 8(9): 10707-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617781

RESUMEN

Histone deacetylase HDAC2 regulates genes transcription via removing the acetyl group from histones. Glucocorticoids, the most potent anti-inflammatory treatment available for inflammatory diseases, inhibit the expression of inflammatory genes by recruiting HDAC2 to activated genes. In the lungs of patients who smoke and have chronic obstructive pulmonary disease (COPD) or asthma, glucocorticoids are not effective enough to suppress airway inflammation, which is so called "glucocorticoid resistance", due to decreased HDAC2 level caused by cigarette smoke. We report that the ubiquitin-specific protease USP17 interacts with HDAC2. USP17 deubiquitinates and stabilizes the protein level of HDAC2. In cigarette smoke extract-exposed airway epithelial cells and macrophages, HDAC2 is excessively ubiquitinated and degraded in the proteasome attributed to low expression of USP17. Furthermore, over-expression of USP17 blocks the destruction of HDAC2 induced by cigarette smoke extract. These results provide a new insight into the mechanisms of glucocorticoid resistance in airway inflammatory disease. Small molecules which can specifically induce the expression of USP17 might be useful in reversing glucocorticoid resistance.


Asunto(s)
Endopeptidasas/metabolismo , Histona Desacetilasa 2/metabolismo , Pulmón/enzimología , Neumonía/enzimología , Procesamiento Proteico-Postraduccional , Humo/efectos adversos , Fumar/efectos adversos , Línea Celular Tumoral , Endopeptidasas/genética , Estabilidad de Enzimas , Células Epiteliales/enzimología , Células HEK293 , Histona Desacetilasa 2/genética , Humanos , Macrófagos/enzimología , Neumonía/etiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Tiempo , Transfección , Ubiquitinación
19.
Int J Mol Sci ; 16(11): 27956-66, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26610488

RESUMEN

IL-33 is a new member of the IL-1 family cytokines, which is expressed by different types of immune cells and non-immune cells. IL-33 is constitutively expressed in the nucleus, where it can act as a transcriptional regulator. So far, no direct target for nuclear IL-33 has been identified, and the regulation of IL-33 nuclear function remains largely unclear. Here, we report that the transcription of type 2 inflammatory cytokine IL-13 is positively regulated by nuclear IL-33. IL-33 can directly bind to the conserved non-coding sequence (CNS) before the translation initiation site in the IL13 gene locus. Moreover, IL-33 nuclear function and stability are regulated by the enzyme ubiquitin-specific protease 17 (USP17) through deubiquitination of IL-33 both at the K48 and at the K63 sites. Our data suggest that IL13 gene transcription can be directly activated by nuclear IL-33, which is negatively regulated by the deubiquitinase USP17.


Asunto(s)
Núcleo Celular/metabolismo , Endopeptidasas/metabolismo , Interleucina-33/metabolismo , Cromatina/genética , Cromatina/metabolismo , Endopeptidasas/genética , Regulación de la Expresión Génica , Sitios Genéticos , Células HEK293 , Humanos , Interleucina-13/genética , Interleucina-33/genética , Unión Proteica , Estabilidad Proteica , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA