Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Lett ; : 217270, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306227

RESUMEN

Alternative splicing (AS) plays a crucial role in the hallmarks of cancer and can open new avenues for targeted therapies. However, the aberrant AS events and the metastatic cascade in papillary thyroid carcinoma (PTC) remain largely unclear. Here, we identify the splicing factor, quaking protein (QKI), which was significantly downregulated in PTC and correlated with poor survival outcomes in patients with PTC. Functional studies indicated that low expression of QKI promoted the PTC cell growth and metastasis in vitro and in vivo. Mechanistically, low QKI induced exon 14 retention of extended synaptotagmin 2 (E-Syt2) and produced a long isoform transcript (termed E-Syt2L) that acted as an important oncogenic factor of PTC metastasis. Notably, overexpression of long non-coding RNA eosinophil granule ontogeny transcript (EGOT) physically binds to QKI and suppressed its activity by inhibiting ubiquitin specific peptidase 25 (USP25) mediated deubiquitination and subsequent degradation of QKI. Collectively, these data demonstrate the novel mechanistic links between the splicing factor QKI and splicing event in PTC metastasis and support the potential utility of targeting splicing events as a therapeutic strategy for PTC.

2.
J Infect Dis ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110031

RESUMEN

Ubiquitin-specific peptidase 25 (USP25) is one of the best-characterized deubiquitinating enzymes and plays a vital regulatory role in various biological processes, especially in cancer development and immune regulation. However, the exact role of USP25 and its underlying mechanisms in macrophage activation and immunogenicity during Mycobacterium tuberculosis infection remain unclear. In this study, we found that M tuberculosis infection induced USP25 expression in human and mouse macrophages. In particular, USP25 expression is elevated in multiple cell types, especially monocytes, in patients with tuberculosis. Additionally, USP25 deficiency in macrophages and mice resulted in compromised immunity against M tuberculosis infection, accompanied by reduced expressions of various proinflammatory cytokines and chemokines. Mechanistically, USP25 in macrophages promoted the activation of the ERK signaling pathway through deubiquitination and stabilization of B-Raf and C-Raf. These findings collectively suggest the critical roles of USP25 in M tuberculosis infection and its potential as a therapeutic target.

3.
Brain ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875478

RESUMEN

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

4.
Adv Sci (Weinh) ; 11(28): e2403485, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803048

RESUMEN

DNA damage plays a significant role in the tumorigenesis and progression of the disease. Abnormal DNA repair affects the therapy and prognosis of cancer. In this study, it is demonstrated that the deubiquitinase USP25 promotes non-homologous end joining (NHEJ), which in turn contributes to chemoresistance in cancer. It is shown that USP25 deubiquitinates SHLD2 at the K64 site, which enhances its binding with REV7 and promotes NHEJ. Furthermore, USP25 deficiency impairs NHEJ-mediated DNA repair and reduces class switch recombination (CSR) in USP25-deficient mice. USP25 is overexpressed in a subset of colon cancers. Depletion of USP25 sensitizes colon cancer cells to IR, 5-Fu, and cisplatin. TRIM25 is also identified, an E3 ligase, as the enzyme responsible for degrading USP25. Downregulation of TRIM25 leads to an increase in USP25 levels, which in turn induces chemoresistance in colon cancer cells. Finally, a peptide that disrupts the USP25-SHLD2 interaction is successfully identified, impairing NHEJ and increasing sensitivity to chemotherapy in PDX model. Overall, these findings reveal USP25 as a critical effector of SHLD2 in regulating the NHEJ repair pathway and suggest its potential as a therapeutic target for cancer therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Ubiquitina Tiolesterasa , Animales , Ratones , Roturas del ADN de Doble Cadena/efectos de los fármacos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Modelos Animales de Enfermedad , Reparación del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
5.
EMBO Rep ; 25(7): 2950-2973, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38816515

RESUMEN

The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.


Asunto(s)
Ubiquitina Tiolesterasa , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Sitios de Unión , Piridinas/química , Piridinas/farmacología , Unión Proteica , Modelos Moleculares
6.
Ren Fail ; 46(1): 2338932, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38616174

RESUMEN

PURPOSE: This study aimed to elucidate the role of USP25 in a mouse model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). METHODS: USP25-deficient anti-GBM GN mice were generated, and their nephritis progression was monitored. Naïve CD4+ T cells were isolated from spleen lymphocytes and stimulated to differentiate into Th1, Th2, and Th17 cells. This approach was used to investigate the impact of USP25 on CD4+ T lymphocyte differentiation in vitro. Furthermore, changes in USP25 expression were monitored during Th17 differentiation, both in vivo and in vitro. RESULTS: USP25-/- mice with anti-GBM GN exhibited accelerated renal function deterioration, increased infiltration of Th1 and Th17 cells, and elevated RORγt transcription. In vitro experiments demonstrated that USP25-/- CD4+ T lymphocytes had a higher proportion for Th17 cell differentiation and exhibited higher RORγt levels upon stimulation. Wild-type mice with anti-GBM GN showed higher USP25 levels compared to healthy mice, and a positive correlation was observed between USP25 levels and Th17 cell counts. Similar trends were observed in vitro. CONCLUSION: USP25 plays a crucial role in mitigating renal histopathological and functional damage during anti-GBM GN in mice. This protective effect is primarily attributed to USP25's ability to inhibit the differentiation of naïve CD4+ T cells into Th17 cells. The underlying mechanism may involve the downregulation of RORγt. Additionally, during increased inflammatory responses or Th17 cell differentiation, USP25 expression is activated, forming a negative feedback regulatory loop that attenuates immune activation.


Asunto(s)
Autoanticuerpos , Glomerulonefritis , Nefritis , Animales , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Células Th17 , Retroalimentación , Diferenciación Celular
7.
Acta Pharm Sin B ; 14(1): 207-222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38261825

RESUMEN

Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/ß-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/ß-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.

8.
Acta Pharmaceutica Sinica B ; (6): 207-222, 2024.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1011245

RESUMEN

Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/β-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/β-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.

9.
J Orthop Surg Res ; 18(1): 762, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814350

RESUMEN

Several members of the ubiquitin-specific proteases (USPs) family have been revealed to regulate the progression of osteoarthritis (OA). The current study aimed to investigate the role and the underlying mechanism of USP25 in IL-1ß-induced chondrocytes and OA rat model. It was discovered that IL-1ß stimulation upregulated USP25, increased ROS level, and suppressed cell viability in rat chondrocytes. Besides, USP25 knockdown alleviated IL-1ß-induced injury by decreasing ROS level, attenuating pyroptosis, and downregulating the expression of IL-18, NLRP3, GSDMD-N, active caspase-1, MMP-3, and MMP-13. Furthermore, we discovered that USP25 affected the IL-1ß-induced injury in chondrocytes in a ROS-dependent manner. Moreover, USP25 was revealed to interact with TXNIP, and USP25 knockdown increased the ubiquitination of TXNIP. The pro-OA effect of USP25 abundance could be overturned by TXNIP suppression in IL-1ß-induced chondrocytes. Finally, in vivo experiment results showed that USP25 inhibition alleviated cartilage destruction in OA rats. In conclusion, we demonstrated that USP25 stimulated the overproduction of ROS to activate the NLRP3 inflammasome via regulating TXNIP, resulting in increased pyroptosis and inflammation in OA.


Asunto(s)
Inflamasomas , Osteoartritis , Animales , Ratas , Proteínas de Ciclo Celular , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoartritis/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Front Immunol ; 14: 1252827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841261

RESUMEN

Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.


Asunto(s)
Francisella tularensis , Infecciones por Bacterias Gramnegativas , Humanos , Macrófagos , Infecciones por Bacterias Gramnegativas/metabolismo , Transducción de Señal , Enzimas Desubicuitinizantes/metabolismo , Ubiquitina Tiolesterasa/metabolismo
11.
Dev Cell ; 58(22): 2495-2509.e6, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683630

RESUMEN

Reprogramming lipid metabolic pathways is a critical feature of activating immune responses to infection. However, how these reconfigurations occur is poorly understood. Our previous screen to identify cellular deubiquitylases (DUBs) activated during influenza virus infection revealed Usp25 as a prominent hit. Here, we show that Usp25-deleted human lung epithelial A549 cells display a >10-fold increase in pathogenic influenza virus production, which was rescued upon reconstitution with the wild type but not the catalytically deficient (C178S) variant. Proteomic analysis of Usp25 interactors revealed a strong association with Erlin1/2, which we confirmed as its substrate. Newly synthesized Erlin1/2 were degraded in Usp25-/- or Usp25C178S cells, activating Srebp2, with increased cholesterol flux and attenuated TLR3-dependent responses. Our study therefore defines the function of a deubiquitylase that serves to restrict a range of viruses by reprogramming lipid biosynthetic flux to install appropriate inflammatory responses.


Asunto(s)
Colesterol , Ubiquitina Tiolesterasa , Virosis , Humanos , Lípidos , Pulmón/metabolismo , Proteómica , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Virosis/genética , Virosis/metabolismo , Colesterol/metabolismo
12.
Adv Sci (Weinh) ; 10(28): e2301641, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37587766

RESUMEN

Cerebral ischemic stroke is a leading cause of morbidity and mortality globally. However, the mechanisms underlying ischemic stroke injury remain poorly understood. Here, it is found that deficiency of the ubiquitin-specific protease USP25 significantly aggravate ischemic stroke injury in mice. USP25 has no impact on neuronal death under hypoxic conditions, but reduced ischemic stroke-induced neuronal loss and neurological deficits by inhibiting microglia-mediated neuroinflammation. Mechanistically, USP25 restricts the activation of NF-κB and MAPK signaling by regulating TAB2. As a deubiquitinating enzyme, USP25 removeds K63-specific polyubiquitin chains from TAB2. AAV9-mediated TAB2 knockdown ameliorates ischemic stroke injury and abolishes the effect of USP25 deletion. In both mouse and human brains, USP25 is markedly upregulated in microglia in the ischemic penumbra, implying a clinical relevance of USP25 in ischemic stroke. Collectively, USP25 is identified as a critical inhibitor of ischemic stroke injury and this data suggest USP25 may serve as a therapeutic target for ischemic stroke.

13.
Biochem Biophys Res Commun ; 676: 21-29, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37480689

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is a type of cancer that originates from abnormal B cells in the lymph nodes or other lymphoid tissues. Dysfunction of deubiquitinases is frequently implicated in malignant progression. This study planned to uncover the biological roles of deubiquitinase USP25 during DLBCL tumorigenesis. In this study we identified USP25 as a novel oncogene which is frequently upregulated in DLBCL and associated with dismal prognosis of patients. Moreover, USP25 silencing was found to inhibit DLBCL growth, migration, while induced an obvious increase in apoptosis in vitro. Meanwhile, USP25 could promote DLBCL tumour growth and lung metastasis in vivo. Mechanistically, the co-immunoprecipitation test provided a mechanistic explanation, showing that USP25 directly interacted with murine double minute 2 (MDM2) and MDM2 protein stability was maintained by USP25 mediated deubiquitination. In addition, overexpression of USP25 with C178A mutation failed to decrease its modification on MDM2 stability. Further mechanism-of-action studies demonstrated that USP25 promoted DLBCL progression via stabilizing MDM2 and consequently decreasing p53 expression. In addition, further analysis showed that the oncogenic effect of USP25 was relied on MDM2-p53 signaling pathway-mediated cell-cycle accelerating. Collective, USP25 was shown to be an important upstream regulator of the MDM2-p53 signaling pathway in DLBCL, and it has the potential to be employed as a novel target gene in the development of new therapeutic applications.

14.
FASEB J ; 37(6): e22971, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37171286

RESUMEN

Both Down syndrome (DS) individuals and animal models exhibit hypo-cellularity in hippocampus and neocortex indicated by enhanced neuronal death and compromised neurogenesis. Ubiquitin-specific peptidase 25 (USP25), a human chromosome 21 (HSA21) gene, encodes for a deubiquitinating enzyme overexpressed in DS patients. Dysregulation of USP25 has been associated with Alzheimer's phenotypes in DS, but its role in defective neurogenesis in DS has not been defined. In this study, we found that USP25 upregulation impaired cell cycle regulation during embryonic neurogenesis and cortical development. Overexpression of USP25 in hippocampus promoted the neural stem cells to glial cell fates and suppressed neuronal cell fate by altering the balance between cyclin D1 and cyclin D2, thus reducing neurogenesis in the hippocampus. USP25-Tg mice showed increased anxiety/depression-like behaviors and learning and memory deficits. These results suggested that USP25 overexpression resulted in defective neurogenesis and cognitive impairments, which could contribute to the pathogenesis of DS. USP25 may be a potential pharmaceutical target for DS.


Asunto(s)
Disfunción Cognitiva , Síndrome de Down , Ratones , Humanos , Animales , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/patología , Hipocampo/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Ubiquitina Tiolesterasa/genética
15.
Biochem Pharmacol ; 213: 115624, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245535

RESUMEN

Deubiquitination is the reverse process of ubiquitination, an important protein post-translational modification. Deubiquitination is assisted by deubiquitinating enzymes (DUBs), which catalyze the hydrolysis and removal of ubiquitin chains from targeted proteins and play an important role in regulating protein stability, cell signaling transduction, and programmed cell death. Ubiquitin-specific peptidases 25 and 28 (USP25 and USP28), important members of the USP subfamily of DUBs, are highly homologous, strictly regulated, and closely associated with various diseases, such as cancer and neurodegenerative diseases. Recently, the development of inhibitors targeting USP25 and USP28 for disease treatment has garnered extreme attention. Several non-selective and selective inhibitors have shown potential inhibitory effects. However, the specificity, potency, and action mechanism of these inhibitors remain to be further improved and clarified. Herein, we summarize the structure, regulation, emerging physiological roles, and target inhibition of USP25 and USP28 to provide a basis for the development of highly potent and specific inhibitors for the treatment of diseases, such as colorectal cancer, breast cancer and so on.


Asunto(s)
Ubiquitina Tiolesterasa , Ubiquitina , Ubiquitina Tiolesterasa/genética , Ubiquitinación , Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional , Proteasas Ubiquitina-Específicas/metabolismo , Enzimas Desubicuitinizantes/genética
16.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166713, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37059312

RESUMEN

Renal fibrosis is a crucial pathological feature of hypertensive renal disease (HRD). In-depth analysis of the pathogenesis of fibrosis is of great significance for the development of new drugs for the treatment of HRD. USP25 is a deubiquitinase that can regulate the progression of many diseases, but its function in the kidney remains unclear. We found that USP25 was significantly increased in human and mice HRD kidney tissues. In the HRD model induced by Ang II, USP25-/- mice showed significant aggravation of renal dysfunction and fibrosis compared with the control mice. Consistently, AAV9-mediated overexpression of USP25 significantly improved renal dysfunction and fibrosis. Mechanistically, USP25 inhibited the TGF-ß pathway by reducing SMAD4 K63-linked polyubiquitination, thereby suppressing SMAD2 nuclear translocation. In conclusion, this study demonstrates for the first time that the deubiquitinase USP25 plays an important regulatory role in HRD.


Asunto(s)
Hipertensión Renal , Hipertensión , Animales , Humanos , Ratones , Enzimas Desubicuitinizantes/metabolismo , Fibrosis , Hipertensión/inducido químicamente , Hipertensión/genética , Hipertensión/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Angiotensina II
17.
Front Cardiovasc Med ; 10: 978918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860279

RESUMEN

Background: Heart Failure (HF) is the end-stage cardiovascular syndrome with poor prognosis. Proteomics holds great promise in the discovery of novel biomarkers and therapeutic targets for HF. The aim of this study is to investigate the causal effects of genetically predicted plasma proteome on HF using the Mendelian randomization (MR) approach. Methods: Summary-level data for the plasma proteome (3,301 healthy individuals) and HF (47,309 cases; 930,014 controls) were extracted from genome-wide association studies (GWASs) of European descent. MR associations were obtained using the inverse variance-weighted (IVW) method, sensitivity analyses, and multivariable MR analyses. Results: Using single-nucleotide polymorphisms as instrumental variables, 1-SD increase in MET level was associated with an approximately 10% decreased risk of HF (odds ratio [OR]: 0.92; 95% confidence interval [CI]: 0.89 to 0.95; p = 1.42 × 10-6), whereas increases in the levels of CD209 (OR: 1.04; 95% CI: 1.02-1.06; p = 6.67 × 10-6) and USP25 (OR: 1.06; 95% CI: 1.03-1.08; p = 7.83 × 10-6) were associated with an increased risk of HF. The causal associations were robust in sensitivity analyses, and no evidence of pleiotropy was observed. Conclusion: The study findings suggest that the hepatocyte growth factor/c-MET signaling pathway, dendritic cells-mediated immune processes, and ubiquitin-proteasome system pathway are involved in the pathogenesis of HF. Moreover, the identified proteins have potential to uncover novel therapies for cardiovascular diseases.

18.
Int Immunopharmacol ; 117: 109917, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36822087

RESUMEN

BACKGROUND: During organ transplantation, pharmacologic drugs targeting T cell activation signal to inhibit T cell-mediated allo-rejection are insufficient and not durable to suppress chronic rejection. Recent advances highlight an exhausted or dysfunctional status of T cells, which favor transplant acceptance. METHODS: The models of MHC-mismatched (BALB/c to C57BL/6 or USP25 KO mice) heterotopic heart transplantation and skin transplantation were utilized to evaluate the regulatory effects of ubiquitin-specific protease 25(USP25) deficiency in vivo. The consequences of USP25 deficiency on murine T-cell proliferation, activation, cytokine secretion, mixed lymphocyte reaction (MLR) and energy metabolism were investigated in vitro. The signaling pathway of T cells in knock out mice was detected by Western blotting and Co-IP. RESULTS: We found T cells were dysfunctional inUSP25KO mice. Due to T cell dysfunction, skin and heart graft had a longer survival. In these dysfunctional T cells, mitochondria number and cristae condensation were decreased. Impaired mitochondrial mass and function favored to allo-graft acceptance. Furthermore, USP25 interacted with ATP5A and ATP5B to promote their stability. CONCLUSIONS: Our data suggest that USP25 is a potential target to induce T cell dysfunction and allo-graft tolerance. And USP25 mediated mitochondrial homeostasis may contribute to reverse T cell exhaustion or dysfunction in tumor and chronic infection.


Asunto(s)
Trasplante de Corazón , Trasplante de Órganos , Ratones , Animales , Dinámicas Mitocondriales , Ratones Endogámicos C57BL , Tolerancia al Trasplante , Linfocitos T , Ratones Noqueados , Ratones Endogámicos BALB C , Rechazo de Injerto/patología , Supervivencia de Injerto
19.
Cell Biol Int ; 46(6): 922-932, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35143098

RESUMEN

House dust mites (HDM) can cause DNA double-strand breaks in the lungs of asthmatic patients. However, the molecular mechanisms driving DNA damage and repair in HDM-induced asthma are yet to be elucidated. Thus, in this study, HDM treatment was applied to BEAS-2B cells and mice to mimic the pathological process of asthma in vitro and in vivo, respectively. γ-H2AX foci and expression were measured by immunofluorescence staining and western blot, respectively. The levels of interleukin (IL)-4, IL-6, IL-13, and tumour necrosis factor α (TNFα) were measured using enzyme-linked immunoassay. The expression of USP25 and BARD1 was measured by reverse transcription quantitative PCR and western blot. Co-immunoprecipitation and ubiquitination assays were employed to detect the relationship between USP25 and BARD1. As per the results, it was found that the deubiquitylating enzyme USP25 repressed HDM-induced DNA damage and the production of proinflammatory cytokines, including TNF-α, IL-4, IL-8, and IL-13, in BEAS-2B cells; in contrast, the depletion of USP25 led to the opposite effects. USP25-mediated inhibition of DNA damage and inflammation was facilitated by the stabilizing protein BARD1, which is a tumor suppressor that principally functions by promoting DNA repair and replication in BEAS-2B cells. Furthermore, USP25 was found to robustly augment BARD1 protein abundance and prevent HDM-induced DNA damage and inflammation in vivo. Taken together, these results suggest a novel mechanism contributing to DNA damage and repair in HDM-induced asthma and that selectively modulating this pathway could lead to a novel therapeutic approach for controlling and managing asthma due to HDM exposure.


Asunto(s)
Asma , Pyroglyphidae , Animales , Asma/tratamiento farmacológico , Citocinas/metabolismo , Daño del ADN , Humanos , Inflamación , Interleucina-13 , Ratones , Pyroglyphidae/metabolismo , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Ubiquitina-Proteína Ligasas
20.
Life Sci ; 296: 120425, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202642

RESUMEN

AIMS: The association between asthma and obesity has been shown but its accurate mechanism is unknown. In the current study, we sought to investigate the gene expression levels of IL-17/TRAF6/MAPK/USP25 axis and pro-inflammatory cytokine level (IL-6, IL-1ß, and TNF-α) in obese Ovalbumin (OVA)-sensitized female and male Wistar rats lung tissue. MAIN METHODS: Animals in both males and females were divided into eight groups (four groups in each sex) based on diet and OVA-sensitization: normal diet, a normal diet with OVA-sensitization, high-fat diet (HFD), and OVA-sensitization with an HFD. KEY FINDINGS: In both sexes, obese OVA-sensitized rats, the methacholine concentration-response curve shifted to the left and EC50 methacholine decreased. Increased pro-inflammatory cytokines as well as elevated IL-17/TRAF6/MAPK axis genes and decreased USP25 gene expression were identified in obese OVA-sensitized groups. SIGNIFICANCE: The results indicate that in obese OVA-sensitized rats, the IL-17 axis were involved in the pathogenesis of the disease and can be considered as a therapeutic target in subjects with obesity-related asthma.


Asunto(s)
Interleucina-17/genética , Pulmón/fisiología , Obesidad/genética , Factor 6 Asociado a Receptor de TNF/genética , Ubiquitina Tiolesterasa/genética , Animales , Peso Corporal/genética , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Pulmón/fisiopatología , Masculino , Cloruro de Metacolina/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Obesidad/fisiopatología , Ovalbúmina/toxicidad , Ratas Wistar , Tráquea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA