Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.426
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38946487

RESUMEN

The micro- and nanostructures of III-nitride semiconductors captivate strong interest owing to their distinctive properties and myriad potential applications. Nevertheless, challenges endure in managing the damage inflicted on crystals through top-down processes or achieving extensive control over the large-area growth of these microstructures via bottom-up methods, thereby impacting their optical and electronic properties. Here, we present novel epitaxially grown 3D GaN truncated pyramid arrays (TPAs) on patterned Si substrates, devoid of any catalyst. These GaN TPAs feature highly ordered, large-scale structures, attributed to the utilization of 3D Si substrates and thin AlN interlayers to alleviate epitaxial strains and limit dislocation formation. Comprehensive characterization via scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and cathodoluminescence attests to the superior structural and optical attributes of these crystals. Furthermore, photoluminescence and ultraviolet (UV)-visible diffuse reflectance spectroscopy reveal sharp band-edge emission and significant light trapping in the UV bands. Employing these GaN TPAs, we constructed metal-semiconductor-metal visible-blind UV photodetectors (PDs) incorporating Ti3C2 MXene as Schottky electrodes. These PDs display exceptional responsivity, achieving 5.32 × 103 mA/W at 255 nm and an ultrahigh UV/visible rejection ratio (R255nm/R450nm) approaching 106, which are 1-2 orders of magnitude higher than most recently reported works. This exploration showcases novel GaN-based microstructures characterized by uniformity, ordered geometry, and exemplary crystalline integrity, paving the way for developing optoelectronic applications.

2.
Biomed Chromatogr ; : e5949, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956820

RESUMEN

α-Bisabolol (α-BIS) is a sesquiterpene alcohol present in chamomile essential oil [Chamomilla recutita (L.) Rauschert]. Despite its numerous pharmacological effects, its pharmacokinetics remain understudied. An analytical method capable of quantifying α-BIS in plasma is crucial to enable pharmacokinetic analysis. Presently, only one study has quantified it using mass spectrometry. Administering α-BIS requires a nanoemulsion for intravenous injection. This study aimed to develop and validate a bioanalytical method using high-performance liquid chromatography with an ultraviolet detector to quantify α-BIS in rat plasma. The method employed acetonitrile and ultrapure water (80:20, v/v) as the mobile phase, with a flow rate of 1 ml/min and concentrations ranging from 465 to 29.625 µg/ml. All US Food and Drug Administration-designated assays were successful, indicating the method's precision, accuracy, sensitivity and linearity in determining α-BIS in rat plasma. The developed nanoemulsion, assessed through dynamic light scattering analysis, the ensemble collection of particles and polydispersity index evaluation, proved safe and effective for intravenous administration. The pharmacokinetic parameters such as volume of distribution, clearance and half-life indicated that α-BIS tends to persist in the body. This study provides a foundation for further research to explore α-BIS's potential pharmaceutical applications in the future.

3.
Front Plant Sci ; 15: 1399840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957604

RESUMEN

The genetic basis of plant response to light and heat stresses had been unveiled, and different molecular mechanisms of leaf cell homeostasis to keep high physiological performances were recognized in grapevine varieties. However, the ability to develop heat stress tolerance strategies must be further elucidated since the morpho-anatomical and physiological traits involved may vary with genotype × environment combination, stress intensity, and duration. A 3-year experiment was conducted on potted plants of Sardinian red grapevine cultivars Cannonau (syn. Grenache) and Carignano (syn. Carignan), exposed to prolonged heat stress inside a UV-blocking greenhouse, either submitted to low daily UV-B doses of 4.63 kJ m-2 d-1 (+UV) or to 0 kJ m-2 d-1 (-UV), and compared to a control (C) exposed to solar radiation (4.05 kJ m-2 d-1 average UV-B dose). Irrigation was supplied to avoid water stress, and canopy light and thermal microclimate were monitored continuously. Heat stress exceeded one-third of the duration inside the greenhouse and 6% in C. In vivo spectroscopy, including leaf reflectance and fluorescence, allowed for characterizing different patterns of leaf traits and metabolites involved in oxidative stress protection. Cannonau showed lower stomatal conductance under C (200 mmol m-2 s-1) but more than twice the values inside the greenhouse (400 to 900 mmol m-2 s-1), where water use efficiency was reduced similarly in both varieties. Under severe heat stress and -UV, Cannonau showed a sharper decrease in primary photochemical activity and higher leaf pigment reflectance indexes and leaf mass area. UV-B increased the leaf pigments, especially in Carignano, and different leaf cell regulatory traits to prevent oxidative damage were observed in leaf cross-sections. Heat stress induced chloroplast swelling, plastoglobule diffusion, and the accumulation of secretion deposits in both varieties, aggravated in Cannonau -UV by cell vacuolation, membrane dilation, and diffused leaf blade spot swelling. Conversely, in Carignano UV-B, cell wall barriers and calcium oxalate crystals proliferated in mesophyll cells. These responses suggest an adaptive divergence among cultivars to prolonged heat stress and UV-B light. Further research on grapevine biodiversity, heat, and UV-B light interactions may give new insights on the extent of stress tolerance to improve viticulture adaptive strategies in climate change hotspots.

4.
J Fluoresc ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958905

RESUMEN

Pedalium Murex leaf extract was used in this study to create Nickel-doped Cerium oxide (Ni-CeO2) nanoparticles at 3 mol% and 5 mol% molar concentrations. The biosynthesized process was applied for the fabrication of Ni-CeO2 NPs. The X-ray diffraction method was used to identify their crystal structure. The XRD measurements showed that the Ni-CeO2 NPs crystallized into the face-centred cubic system. Fourier transform infrared spectral study was applied to explore the molecular vibrations and chemical bonding. The surface texture and chemical ingredients of Ni-CeO2 NPs were studied using field-emission scanning electron microscopy and energy-dispersive X-ray analysis. The EDX mapping spectra illustrate the uniform dispersal of Ce, Ni, and O atoms over the sample's surface. X-ray photoelectron spectroscopy (XPS) was conducted to confirm the chemical state of the Ni-CeO2 NPs. UV-Vis spectrum study was performed to ascertain the photon absorption, bandgap, and Urbach edge of Ni-CeO2 NPs. Photoluminescence (PL) research has been used to study the light-emitting characteristic of Ni-CeO2 NPs. The emissive intensity transition corresponding to Ni-CeO2 NPs was found to increase with the dopant level. The CIE 1931 chromaticity map was plotted to find the aptness of the samples for optical uses. The antifungal ability of Ni-CeO2 NPs was evaluated against the fungi candida albicans and candida krusein with the agar well-diffusion process. The fungicidal activity of the 3 mol% Ni doped CeO2 nanoparticles has shown a maximum zone of inhibition. The experimental findings illustrate the utility of Ni-CeO2 NPs for optical and antifungal applications.

5.
Environ Technol ; : 1-11, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955504

RESUMEN

As volatile organic compounds (VOCs), gaseous ethylbenzene has adverse effects on human health and ecology. Therefore, an effective degradation process is highly desirable. The Fenton process under UV 365 nm was selected as the first option to remove gaseous ethylbenzene in a bubble column reactor. The main parameters for the batch experiments were systematically studied, including H2O2 concentration, [H2O2]/[Fe2+], pH, UV wavelength, UV intensity, gaseous ethylbenzene concentration, gas flow rate, and process stability towards removal efficiency. The optimum conditions were found to be H2O2 concentration of 100 mmol·L-1, [H2O2]/[Fe2+] of 4, pH of 3.0, UV wavelength of 365 nm, UV power of 5 W, gas flow rate of 900 mL·min-1, and gaseous ethylbenzene concentration of 30 ppm, resulting in a removal efficiency of 76.3%. The study found that the Fenton process, when coupled with UV 365 nm, was highly effective in removing gaseous ethylbenzene. The degradation mechanism of gaseous ethylbenzene was proposed in the UV365/Fenton process based on EPR, radical quenching experiments, iron analysis, carbon balance, and GC-MS analysis. The results indicated that •OH played a crucial role in the process.

6.
Food Chem ; 456: 140055, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38876072

RESUMEN

Soy protein films have the advantage of being eco-friendly and renewable, but their practical applications are hindered by the mechanical properties. The exceptional tensile strength and fracture toughness of natural silk stem from sacrificial hydrogen bonds it contains that effectively dissipates energy. In this study, we draw inspiration from silk's structural principles to create biodegradable films based on soy protein isolate (SPI). Notably, composite films containing sodium lignosulfonate (LS) demonstrate exceptional strain at break (up to 153%) due to the augmentation of reversible hydrogen bonding, contrasted to films with the addition of solely dialdehyde starch (DAS). The enhancement of tensile strength is realized through a combination of Schiff base cross-linking and sacrificial hydrogen bonding. Furthermore, the incorporation of LS markedly improves the films' ultraviolet (UV) blocking capabilities and hydrophobicity. This innovative design strategy holds great promise for advancing the production of eco-friendly SPI-based films that combine strength and toughness.

7.
Carbohydr Polym ; 341: 122313, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876722

RESUMEN

ß-Cyclodextrin (ß-CD) with a cage-like supramolecular structure possesses the hydrophobic internal ring and external hydroxyl groups, which are beneficial for intramolecular interactions known as "host-guest" chemistry. This study presents a ß-CD-based three-functions-in-one and host-guest fire retardant (ßCD-MOF@Schiff base), which incorporates self-crosslinking Schiff base into its cavity and modification of its surface by metal-organic framework (MOF). With the presence of 5 wt% of ßCD-MOF@Schiff base, the LOI value of PLA composites increased to 29 % and showed 15 %, 17 % and 62 % reductions in peak heat release rate (pHRR), total heat release (THR), and the yield of hazard gas carbon monoxide, respectively. The mode action of FR on fire retardation of PLA showed that the FR promoted the char formation with higher thermal stability and graphitization, and modified the decomposition path of PLA. Additionally, the PLA composites exhibited enhanced UV resistance in the UVA and UVB areas with improved UV absorbance and the UPF values improving and doubling. This work develops a new approach to preparing biodegradable FR, which simultaneously endows fire safety and anti-UV properties for PLA.

8.
J Photochem Photobiol B ; 257: 112949, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38865816

RESUMEN

Large scale outbreaks of infectious respiratory disease have repeatedly plagued the globe over the last 100 years. The scope and strength of the outbreaks are getting worse as pathogenic RNA viruses are rapidly evolving and highly evasive to vaccines and anti-viral drugs. Germicidal UV-C is considered as a robust agent to disinfect RNA viruses regardless of their evolution. While genomic damage by UV-C has been known to be associated with viral inactivation, the precise relationship between the damage and inactivation remains unsettled as genomic damage has been analyzed in small areas, typically under 0.5 kb. In this study, we assessed genomic damage by the reduced efficiency of reverse transcription of regions of up to 7.2 kb. Our data seem to indicate that genomic damage was directly proportional to the size of the genome, and a single hit of damage was sufficient for inactivation of RNA viruses. The high efficacy of UV-C is already effectively adopted to inactivate airborne RNA viruses.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124593, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38865884

RESUMEN

Cohumulone and colupulone are representatives of α- and ß-acids, respectively. These compounds are important antimicrobial hop (Humulus lupulus) constituents, where cohumulone is an important source of the bitter taste of beer. In this study, we examined the pH dependence of UV/Vis spectra of both compounds while CD spectra of cohumulone were also measured at various wavelengths. This facilitated the examination of the protolytic equilibrium of both compounds, where the second pKa value of cohumulone was determined for the first time. Additionally, comparing experimental spectra with spectra calculated using time-dependent density functional theory (TD-DFT) enabled the determination of the most likely deprotonation positions and corresponding species most likely present in the aqueous solution at various pH values. Last but not least, comparing calculated and experimental CD spectra of cohumulone facilitated the determination of the absolute stereoconfiguration of cohumulone.

10.
J Biol Chem ; : 107457, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866324

RESUMEN

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding (RBNS) reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions (IDR) flanking the ARID domain modulate the specificity and affinity of DNA-binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bi-functional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.

11.
Microbiol Spectr ; : e0398223, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869294

RESUMEN

Earth's stratosphere is characterized by hypobaric conditions, low temperatures, and high intensities of ultraviolet (UV) and cosmic radiation as well as low water and nutrient availability. While it is not considered a permanent habitat for microorganisms, they can be transported to the stratosphere by storms, volcanic action, or human activity. The impact of those extreme conditions on microorganisms and their survival were tested by sending a sample gondola to the stratosphere. The sample gondola was built to allow exposure of Bacillus subtilis endospores at different angles to the sun. It moreover had holders for three environmental samples to test the effect of stratospheric conditions on complex microbial communities. The gondola attached to a stratospheric balloon was launched near Kiruna, Sweden, ascended to ~25 km, and drifted eastward for ~200 km. Samples were exposed to pressures as low as 2 kPa and temperatures as low as -50°C as well as high UV radiation. Survival rates of B. subtilis were determined by comparing the numbers of colony-forming units (CFUs) for the different exposure angles. Survival was negatively correlated with exposure angle, indicating the significant impact of UV radiation. The effect of stratospheric conditions on environmental samples was assessed by comparing most probable numbers, microbial community composition, and substrate-use profiles to controls that had stayed on the ground. Cultivation was possible from all samples with survival rates of at least 1%, and differences in community composition were observed. Survival of environmental microorganisms might have been supported by the sample matrix, which provided protection from radiation and desiccation. IMPORTANCE: Earth's stratosphere is a hostile environment that has challenged microbial survival. We set out to test the effect of stratosphere exposure on survival of single species (Bacillus subtilis) and complex microbial communities from soils and sediment. B. subtilis survival was strongly impacted by sun exposure, i.e., ultraviolet (UV) radiation, with only 1% survival at full sun exposure. Complex microbial communities had high survival rates, and the soil or sediment matrix may have provided protection against radiation and desiccation, supporting the survival of environmental microorganisms.

12.
EFSA J ; 22(6): e8817, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868108

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on vitamin D2 mushroom powder as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is produced from Agaricus bisporus mushroom powder that has been exposed to ultraviolet (UV) irradiation to induce the conversion of provitamin D2 (ergosterol) to vitamin D2 (ergocalciferol). The NF contains concentrations of vitamin D in the form of vitamin D2 in the range of 245-460 µg/g. The information provided on the production process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF as an ingredient in a variety of foods and beverages in amounts that result in either 1.2 or 2.4 µg vitamin D2 per 100 g or 100 mL of the food as consumed. The applicant also intends to add the NF in food supplements at a maximum of 15 µg vitamin D2/day for individuals above 1 year of age, as well as in foods for special medical purposes (FSMPs). The estimates for combined intake of vitamin D from the NF, the background diet and fortified foods, were below the ULs for vitamin D as established previously by the NDA Panel for children, adolescents and adults, i.e. 50 and 100 µg/day. The estimated combined vitamin D intake in infants (6-12 months) is also below the UL for vitamin D of 35 µg/day. The Panel considers that taking into account the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous for the proposed target population. The Panel concludes that the NF is safe under the proposed conditions of use.

13.
J Invest Dermatol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871024

RESUMEN

The change of repair efficiency of UV-induced pyrimidine dimers due to aging was examined in replicatively senesced fibroblasts. The fibroblasts with repeated passages showed the characteristics of cellular senescence including irreversible cell cycle arrest, elevated ß-galactosidase activity and senescence-associated secretory phenotype. The incision efficiency of oligonucleotide containing UV lesions was similar regardless of cell doubling levels, but the gap filling process was impaired in replicatively senescent cells. The releases of XPG, PCNA and RPA from damaged sites were delayed, which might have disturbed the DNA polymerase progression. The persistent single stranded DNA (ssDNA) was likely converted to double strand breaks (DSBs), leading to ATM phosphorylation and 53BP1 foci formation. γ-H2AX induction mainly occurred in G1 phase in senescent cells, not in S phase like in normal cells, indicating replication stress-independent DSBs might be formed. Mre11 having nuclease activity accumulated to damaged sites at early time point after UV irradiation but not released in senescent cells. The pharmacological studies using specific inhibitors for the nuclease activity suggested that Mre11 contributed to the enlargement of ssDNA gap, facilitating the DSB formation.

14.
Int J Biol Macromol ; 272(Pt 1): 132857, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834124

RESUMEN

Skin damage caused by excessive UV radiation has gradually become one of the most prevalent skin diseases. Collagen has gradually found applications in the treatment of UV-damaged skin; however, their high molecular weight greatly limits their capacity to permeate the skin barrier and repair the damaged skin. Nano collagen has garnered growing attentions in the mimicking of collagen; while the investigation of its skin permeability and wound-healing capability remains vacancies. Herein, we have for the first time created a highly biocompatible and bioactive transdermal nano collagen demonstrating remarkable transdermal capacity and repair efficacy for UV-damaged skin. The transdermal nano collagen exhibited a stable triple-helix structure, effectively promoting the adhesion and proliferation of fibroblasts. Notably, the transdermal nano collagen displayed exceptional penetration capabilities, permeating fibroblast and healthy skin. Combo evaluations revealed that the transdermal nano collagen contributed to recovering the intensity and TEWL values of UV-damaged skin to normal level. Histological analysis further indicated that transdermal nano collagen significantly accelerated the repair of damaged skin by promoting the collagen regeneration and fibroblasts activation. This highly biocompatible and bioactive transdermal nano collagen provides a novel substituted strategy for the transdermal absorption of collagen, indicating great potential applications in cosmetics and dermatology.


Asunto(s)
Materiales Biocompatibles , Colágeno , Fibroblastos , Piel , Rayos Ultravioleta , Cicatrización de Heridas , Colágeno/química , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Administración Cutánea , Ratones , Proliferación Celular/efectos de los fármacos
15.
Sci Total Environ ; 940: 173753, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838494

RESUMEN

The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.


Asunto(s)
Biodegradación Ambiental , Chlorella vulgaris , Eliminación de Residuos Líquidos , Aguas Residuales , Chlorella vulgaris/metabolismo , Aguas Residuales/química , México , Eliminación de Residuos Líquidos/métodos , Bebidas , Industria de Alimentos , Contaminantes Químicos del Agua/análisis , Residuos Industriales/análisis
16.
Int J Food Microbiol ; 421: 110800, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878705

RESUMEN

To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.

17.
J Pharm Bioallied Sci ; 16(Suppl 2): S1132-S1135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882791

RESUMEN

Aim: The current study was conducted to assess the effects of various surface treatments on the implant surface. Materials and Methods: A total of 45 dental implants measuring 16 mm in length and 5 mm in diameter were used, along with the appropriate abutments. Depending on the surface treatment used, the samples were randomly split into three groups, with 15 implants in each group: Group 1: Control, Group 2: UV light-treated, Group 3: Sandblasted and acid-etched (SLA)-treated. After surface treatment, a scanning electron microscope (SEM) was used to assess the test samples' surface properties. All sample images were captured using a 3000× magnification. After all three groups' surfaces were treated, the surface roughness was measured using a digital optical profilometer with a stylus speed of 0.5 mm/s that was connected to computer software. Results: The maximum surface roughness was found in the group treated with SLA (0.714 ± 0.12), followed by the group treated with UV light (0.692 ± 0.09) and the control group (0.516 ± 0.12). There was a significant difference found between different surface treatment methods. Conclusion: The present study concluded that the group that received the SLA treatment had the highest surface roughness when compared to the UV light and control groups.

18.
J Pharm Bioallied Sci ; 16(Suppl 2): S1274-S1280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882846

RESUMEN

Background: The present study, plant extract to biosynthesize silver nanoparticles (AgNPs), is an environmentally benign way to lessen the use of dangerous chemicals. Aims and Objectives: The antibacterial effects of the green production of AgNPs by Lawsonia inermis extract were examined. Materials and Methods: Utilizing scanning, transmission electron microscopy, X-ray diffraction (XRD), ultraviolet-visible spectroscopy, and infrared spectroscopy, researchers examined the physical and chemical characteristics of synthesized AgNPs. Results: Ag-NPs have the highest peak in visible light at 460 nm, according to UV-vis analysis. When silver nanocrystals were structurally characterized, peaks that matched Bragg's diffractions were found, with average crystallite sizes ranging from 28 to 60 nm. Examining Ag-NPs' antibacterial properties, it was shown that all microbes are extremely sensitive to these biologically produced Ag-NPs. Conclusion: Escherichia coli, Salmonella typhi, Bacillus cereus, and Staphylococcus aureus were tested for the antimicrobial properties of AgNPs synthesized.

19.
J Pharm Bioallied Sci ; 16(Suppl 2): S1211-S1216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882899

RESUMEN

Solanum trilobatum L. (Solanaceae), commonly known as nightshade, has been traditionally used by various populations to treat a variety of ailments. Environment-friendly alternatives to chemical and physical procedures for the synthesis of nanomaterials have been proposed. In this research, the hot plate combustion method is used to synthesize nickel oxide nanoparticles (AgNPs) from silver nitrate and S. trilobatum leaf extract. According to X-ray diffraction (XRD) tests, the cubic phase was face-centered, had good crystallinity, and had average crystallite sizes. According to morphological studies, the surface has a cylindrical and rod-like morphology, and average particle size estimates from UV-visible spectroscopy (UV), Fourier transform infrared (FT-IR), concur well with XRD, and the bio-reduced silver nanoparticles were characterized. Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans, Pseudomonas aeruginosa, and the human pathogenic microorganisms were used to investigate the antibacterial efficacy (12.5, 25, 50 µg/mL) of these biologically created silver nanoparticles.

20.
Int J Biol Macromol ; 273(Pt 2): 132959, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848848

RESUMEN

Given the environmental concerns related to the non-degradability of conventional petroleum-based polymer films, the synthesis of biodegradable films utilizing natural polymers derived from biomass has emerged as a promising alternative, garnering significant attention in recent research endeavors. This research introduced an environmentally friendly and efficient method, utilizing extract liquid from the green ethanol pulping process as the solvent to completely dissolve carboxymethylcellulose into the film-forming liquid, and employing the solution pouring technique to successfully fabricate bamboo ethanol lignin/carboxymethylcellulose films (LCF). The findings revealed that the lignin content significantly influenced the LCF, endowing them with tunable mechanical properties, effective UV-blocking, and thermal insulation capabilities. With a lignin addition of 3.75 %, LCF-3.75 exhibited enhanced mechanical properties, characterized by a tensile strength of 19.4 MPa, along with superior UV-blocking efficiency, blocking 100 % of UVB and 99.81 % of UVA rays. Furthermore, relative to LCF-0, LCF-3.75 had been shown to possess enhanced hydrophobicity and thermal stability, culminating in the development of the composite films that showcased exceptional thermal insulation properties and biodegradability. The films not only harbored extensive application prospects as an anti-ultraviolet and heat-insulating glass films but also represented a potential avenue for the efficient utilization of lignin, thereby contributing to sustainable development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...