RESUMEN
UV radiation causes long- and short-term skin damage, such as erythema and skin cancer. Therefore, the use of sunscreens is extremely important. However, concerns about UV filter safety have prompted exploration into alternative solutions, with nanotechnology emerging as a promising avenue. This systematic review identified 23 experimental studies utilizing nanocarriers to encapsulate sunscreens with the aim of enhancing their efficacy and safety. Polymeric and lipid nanoparticles are frequently employed to encapsulate both organic and inorganic UV filters along with natural antioxidants. Nanocarriers have demonstrated benefits including reduced active ingredient usage, increased sun protection factor, and mitigated photoinstability. Notably, they also decreased the skin absorption of UV filters. In summary, nanocarriers represent a viable strategy for improving sunscreen formulations, offering enhanced physicochemical properties and bolstered photoprotective effects, thereby addressing concerns regarding UV filter safety and efficacy in cosmetic applications.
Asunto(s)
Nanopartículas , Nanotecnología , Protectores Solares , Rayos Ultravioleta , Animales , Humanos , Antioxidantes/administración & dosificación , Antioxidantes/química , Antioxidantes/farmacología , Portadores de Fármacos/química , Lípidos/química , Nanopartículas/química , Nanotecnología/métodos , Polímeros/química , Piel/metabolismo , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Factor de Protección Solar , Protectores Solares/química , Protectores Solares/administración & dosificación , Rayos Ultravioleta/efectos adversosRESUMEN
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Asunto(s)
Benzofenonas , Embrión no Mamífero , Protectores Solares , Titanio , Contaminantes Químicos del Agua , Pez Cebra , Animales , Titanio/toxicidad , Titanio/química , Benzofenonas/toxicidad , Protectores Solares/toxicidad , Protectores Solares/química , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad , Ecotoxicología , Larva/efectos de los fármacosRESUMEN
The behavior of organic UV filters in aquatic ecosystems and living organisms raises concern. For the first time, biochemical biomarkers were evaluated in the liver and brain of juvenile Oreochromis niloticus exposed to 0.001 and 0.5 mg L-1 of a benzophenone-3 (BP-3), octyl methoxycinnamate (EHMC), and octocrylene (OC) mixture for 29 days. Before the exposure, the stability of these UV filters was investigated using liquid chromatography. The experiment with aeration in the aquarium showed a high percentage of concentration reduction (%) after 24 h: 62 ± 2 for BP-3, 96 ± 6 for EHMC, and 88 ± 2 for OC versus 5 ± 4 for BP-3, 8 ± 7 for EHMC, and 2 ± 3 for OC when without aeration. These results defined the bioassay protocol. The stability of the filters concentrations after being stored in PET flasks and subjected to freezing and thawing cycles was also verified. In PET bottles, the BP-3, EHMC, and OC presented concentration reductions of 8 ± 1, 28 ± 7 and 25 ± 5 respectively, after 96 h storage and four freezing cycles. In falcon tubes the concentration reductions observed were 47 ± 2 for BP-3, >95 ± 1 for EHMC and 86 ± 2 for OC after 48 h and two cycles. The 29 days of sub-chronic exposure indicated the occurrence of oxidative stress through the enhanced lipid peroxidation (LPO) levels for the groups exposed to both bioassay concentrations. The catalase (CAT), glutathione-S-transferase (GST), and acetylcholinesterase (AChE) activities did not show significant alterations. The genetic adverse effects were analyzed in erythrocytes of fish exposed to 0.001 mg L-1 of the mixture by comet and micronucleus biomarkers and no significant damage was observed.
Asunto(s)
Cíclidos , Contaminantes Químicos del Agua , Animales , Acetilcolinesterasa , Ecosistema , Estrés Oxidativo , Biomarcadores , Contaminantes Químicos del Agua/análisisRESUMEN
Innovative technologies have been designed to improve efficacy and safety of chemical UV filters. Encapsulation can enhance efficacy and reduce transdermal permeation and systemic exposure. The aims of this work were (i) to determine the cutaneous biodistribution of avobenzone (AVO), oxybenzone (OXY), and octyl methoxycinnamate (OMC) incorporated in mesoporous silica SBA-15 and (ii) to perform preclinical (in vitro) and (iii) clinical safety studies to demonstrate their innocuity and to evaluate sun protection factor (SPF) in humans. Skin penetration studies showed that deposition of OXY and AVO in porcine and human skin after application of stick formulation with incorporated filters (stick incorporated filters) was significantly lower than from a marketed (non-encapsulated) stick. Cutaneous deposition and transdermal permeation of OXY in and across human skin were 3.8-and 13.4- fold lower, respectively, after application of stick entrapped filters. Biodistribution results showed that encapsulation in SBA-15 decreased AVO and OXY penetration reaching porcine and human dermis. Greater deposition (and permeation) of OXY in porcine skin than in human skin, pointed to the role of follicular transport. Stick incorporated filters had good biocompatibility in vivo and safety profiles, even under sun-exposed conditions. Entrapment of UV filters improved the SPF by 26% and produced the same SPF profile as a marketed stick. Overall, the results showed that SBA-15 enabled safety and efficacy of UV filters to be increased.
Asunto(s)
Benzofenonas/farmacocinética , Cinamatos/farmacocinética , Propiofenonas/farmacocinética , Dióxido de Silicio/farmacología , Distribución Tisular , Administración Cutánea , Animales , Composición de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Humanos , Filtros Microporos , Absorción Cutánea , Factor de Protección Solar , Protectores Solares/farmacocinética , PorcinosRESUMEN
Emerging pollutants and priority substances are of growing concern due to their toxicity potential to aquatic organisms and human health. However, few reports on this issue in marine ecosystems in general and, more specifically, on the Colombian Caribbean coast are available. The aim of this study was to detect these compounds in sediments from Cartagena Bay (CB) and in the Grand Marsh of Santa Marta, GMSM (Ramsar site), in order to determine how they related to in vitro cytotoxicity assays on HepG2 cells of sediment extracts. A total of thirty compounds were detected using GC-MS/MS in fifteen stations during both the rainy and the dry seasons. Sediments from CB had a wide range of different toxicants, with polycyclic aromatic hydrocarbons (PAHs) being the most prevalent (12 PAHs, 5.5-881.6 ng/g). Total PCBs ranged from < LOD to 18.6 ng/g, with PCB 138 being the most common detected congener. Residues of p,p'-DDE, Chlorpyrifos and two organophosphate flame retardants, TEHP and ToTP, were found in most sampling locations. The UV filters 4MBC and homosalate were recurrently found in sediments, and the fragrance galaxolide appeared in all cases, with the greatest concentrations found on a touristic beach. In GMSM, with the exception of deltamethrin, all chemicals evaluated had lower average values than in CB. According to sediment quality guidelines, some sites in CB presented values of PAHs higher than the threshold effects level, while in the marsh, none of the stations exceeded it. HepG2 cells exposed to 1% sediment extracts presented reduced cell viability up to 26%. Cytotoxicity displayed a negative correlation with chlorpyrifos concentration. In short, these data suggest the bay and the marsh have specific contamination fingerprints related to anthropogenic interventions. This research highlights the need to further investigate the ecotoxicological implications of detected chemical stressors in these ecosystems.
Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , Bahías , Colombia , Ecosistema , Monitoreo del Ambiente , Humanos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , HumedalesRESUMEN
This study aimed to evaluate the potential DNA photoprotection of nano-based hydrogels containing a novel benzofuroazepine molecule. Photoprotective property of three benzofuroazepine derivative compounds was assessed by determining a UV light absorptive profile. Nanocapsule suspensions (Eudragit® RS 100 as polymeric wall and medium-chain triglyceride or vitamin E as oil core) containing the benzofuroazepine compound that had the best UV spectral absorption were developed and physicochemically characterized. Photostability assay, bioadhesive property as well as preliminary toxicity parameters (HET-CAM and Artemia salina lethality assays) for free or nanoencapsulated forms were assessed. Among the molecules, the UV absorbance spectrum of free MBBA showed a broad and high intensity absorbance at UVB and UVA ranges. MBBA-nanocapsule suspensions had nanometric and homogeneous size distribution, bioadhesiveness property, and increased the UV light scattering in comparison to the free compound. Besides, all formulations triggered no irritative responses and the nanoencapsulation mitigated the toxic effect to Artemia salina observed to free MBBA. Following, hydrogels were prepared by thickening nanocapsule suspensions with gellan gum and their DNA photoprotection properties were determined by the exposure of DNA samples to the UVB and UVA radiation. Hydrogels showed acid pH values, compound content close to the theoretical value (3 mg/g), particle size in nanometric range, and spreadability profile suitable for cutaneous application. All MBBA hydrogels were effective against photoproducts formation induced by UVB and UVA radiation. In conclusion, these data show the identification of a compound with promising UV absorptive potential and the preparation of a final nano-based hydrogel for cutaneous application.
Asunto(s)
Hidrogeles , Nanocápsulas , Tamaño de la Partícula , Protectores Solares , Rayos Ultravioleta , Vitamina ERESUMEN
Nanostructured lipid carriers (NLC) are aqueous dispersions of nanoparticles formed by solid and liquid lipids. In this study, NLC containing an organic UV filter, bemotrizinol, were developed for sunscreen formulation using carnauba wax and caprylic/capric triglycerides through ultrasonication technique. A Box-Behnken design was used to evaluate the influence of three variables on the particle size with the purpose of choosing the best system for further characterization. The particle size decreased as the surfactant concentration increased, reaching an average size of 122.4 ± 0.3 nm at 30 days of storage. Scanning electron microscopy showed intact and spherical particles. Thermal analysis and Fourier-transform infrared spectroscopy suggest that bemotrizinol was incorporated into the NLC. The X-ray diffraction showed a reduction in the crystallinity of the NLC. In vitro analysis indicated an improvement in the photoprotective activity of bemotrizinol when incorporated into NLC. These findings suggest a promising, stable, and biocompatible system.
Asunto(s)
Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Fenoles/química , Protectores Solares/química , Triazinas/química , Ceras/química , Microscopía Electrónica de Rastreo , Difracción de Rayos XRESUMEN
BACKGROUND: Ultraviolet (UV) radiation exposure is related to skin and lip tumors. Therefore, the development of photoprotective lipstick formulations is of utmost importance. AIMS: Considering the biological properties of Shea butter (Butyrospermum parkii), we assessed its potential as an adjuvant in a molded lipstick sunscreen system by in vivo tests and photostability. PATIENTS/METHODS: Shea butter was used in a photoprotective lipstick formulation at two different concentrations (10.0% and 15.0% w/w) associated with ethylhexyl methoxycinnamate (EHM) and titanium dioxide. Skin compatibility was assessed in vivo. The in vivo SPF value was determined according to the current recognized method. Additionally, the photostability of EHM was determined by high-performance liquid chromatography. RESULTS: By the cutaneous compatibility, the product presented no interference with skin barrier and no adverse reactions, thus proving its safety. The in vivo SPF assay showed that the highest concentration of Shea butter increased the in vivo SPF value of the sample by 35%, demonstrating it to be a booster in photoprotective lipstick formulations. Also, Shea butter was proved to enhance the photostability of EHM, a commonly used UVB filter available in several countries. CONCLUSION: Shea butter increased the photostability and in vivo SPF of a molded lipstick sunscreen.
Asunto(s)
Neoplasias de los Labios , Protectores Solares , Administración Cutánea , Humanos , Piel , Protectores Solares/uso terapéutico , Rayos Ultravioleta/efectos adversosRESUMEN
Porous Si-SiO2 UV microcavities are used to modulate a broad responsivity photodetector (GVGR-T10GD) with a detection range from 300 to 510 nm. The UV microcavity filters modified the responsivity at short wavelengths, while in the visible range the filters only attenuated the responsivity. All microcavities had a localized mode close to 360 nm in the UV-A range, and this meant that porous Si-SiO2 filters cut off the photodetection range of the photodetector from 300 to 350 nm, where microcavities showed low transmission. In the short-wavelength range, the photons were absorbed and did not contribute to the photocurrent. Therefore, the density of recombination centers was very high, and the photodetector sensitivity with a filter was lower than the photodetector without a filter. The maximum transmission measured at the localized mode (between 356 and 364 nm) was dominant in the UV-A range and enabled the flow of high energy photons. Moreover, the filters favored light transmission with a wavelength from 390 nm to 510 nm, where photons contributed to the photocurrent. Our filters made the photodetector more selective inside the specific UV range of wavelengths. This was a novel result to the best of our knowledge.
RESUMEN
The incidence of skin cancers such as non-melanoma skin cancer and malignant melanoma has increased in the last few years mainly because of chronic exposure to ultraviolet (UV) radiation. Sunscreens protect the skin against harmful UV radiations; however, some limitations of these products justify the discovery of new UV filters. Novel 1,3,5-triazine derivatives (12a-h) obtained by the optimization of prototype resveratrol were synthesized and characterized. All compounds exhibited sun protection factor (SPF) and UVA protection factor (UVAPF) in the range of 3-17 and 3-13, respectively. These values were superior to resveratrol and the UV filter ethylhexyl triazone (EHT) currently available on the market. In addition, all compounds demonstrated in vitro antioxidant activity and thermal stability with the decomposition at temperatures above 236⯰C. In conclusion, the novel 1,3,5-triazine derivatives have emerged as new UV filters with antioxidant effect useful to prevent skin cancer.
Asunto(s)
Antioxidantes/síntesis química , Neoplasias Cutáneas/prevención & control , Protectores Solares/síntesis química , Triazinas/síntesis química , Antioxidantes/química , Humanos , Neoplasias Cutáneas/tratamiento farmacológico , Protectores Solares/química , Triazinas/químicaRESUMEN
Avobenzone (AVO), oxybenzone (OXY), and octyl methoxycinnamate (OMC), are widely used UV filters. The aim of this study was to investigate the effect of incorporation in mesoporous silica (SBA-15) on their cutaneous deposition and permeation. Stick formulations containing "free" and "incorporated" UV filters (SF1 and SF2, respectively) were prepared and characterized with respect to their physicochemical, thermal, and functional properties. Cutaneous delivery experiments using porcine skin with quantification by UHPLC-MS/MS, demonstrated that skin deposition of AVO and OXY after application of SF2 for 6 and 12â¯h was significantly lower than that from SF1 at each time-point (Student t-test, pâ¯<â¯0.05): e.g. OXY permeation across the skin was 30-, 12- and 1.5-fold lower after 6, 12 and 24â¯h, respectively, following application of SF2. Cutaneous biodistribution profiles of AVO and OXY to 800⯵m evidenced a significant decrease in the amounts in the viable epidermis and dermis. In contrast, deposition of the more lipophilic OMC was not significantly different (pâ¯Ëâ¯0.05). In vitro photoprotective efficacy results demonstrated that adsorption/entrapment of UV filters enhanced the sun protection factor by 94%. In conclusion, SBA-15, an innovative mesoporous material, increased photoprotection by UV filters while reducing their cutaneous penetration and transdermal permeation.
Asunto(s)
Dermis/metabolismo , Epidermis/metabolismo , Dióxido de Silicio/sangre , Absorción Cutánea/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Administración Cutánea , Animales , Benzofenonas/química , Cromatografía Líquida de Alta Presión/métodos , Cinamatos/química , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Propiofenonas/química , Dióxido de Silicio/química , Factor de Protección Solar/métodos , Protectores Solares/administración & dosificación , Protectores Solares/química , Porcinos , Espectrometría de Masas en Tándem/métodos , Distribución Tisular/fisiologíaRESUMEN
A method was developed for the simultaneous determination of two groups of personal care products, namely UV filters (oxybenzone, 3-(4-methylbenzylidene)camphor, padimate-O, 2-ethylhexyl-4-methoxycinnamate, and octocrylene) and polycyclic aromatic musks (galaxolide and tonalide), in fish by in vivo solid-phase microextraction followed by gas chromatography-mass spectrometry. The in vivo method was validated by carrying out in vitro experiments; the method validation parameters were linearity (r2 > 0.98), interday precision (relative standard deviations < 35.50%), limits of detection and quantification ranging from 2 to 25 ng g-1 and 5 to 70 ng g-1, respectively. The calibrations in vivo and in vitro were determined using a pre-equilibrium sampling rate calibration method. In vivo sampling rate (Rs) was greater than that in vitro; therefore in vivo Rs was applied to the uptake and elimination tracing under controlled laboratory conditions to avoid quantitation error. All analytes were bioaccumulated in muscle tissue over the 5-day exposure in different grades depending on their molecular structure and physicochemical properties; the most absorbed compound was tonalide and the least absorbed compound was padimate-O. The elimination rate was initially high with a rapid decrease of the analyte concentrations for the first 24 h; thereafter, the rate of elimination tended to decrease which indicated that the target analytes were bioaccumulated. To our knowledge, this is the first time that UV filters have been analyzed with in vivo SPME-GC-MS. The proposed method is a simple, miniaturized, and non-lethal alternative for the determination of personal care products in living organisms. Graphical abstract.
Asunto(s)
Benzopiranos/análisis , Cosméticos/análisis , Peces , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Protectores Solares/análisis , Tetrahidronaftalenos/análisis , Animales , Calibración , Límite de Detección , Reproducibilidad de los ResultadosRESUMEN
Although organic UV filters (OUVFs) benefit human health by preventing skin burns and cancer, several studies revealed that organic UV filters can induce developmental and reproductive toxicity to aquatic organisms. Discharge of OUVFs occurs predominantly at marine recreational hotspots, such as Lac Bay, Bonaire, and is predicted to increase significantly due to growing tourism worldwide. Unfortunately, there is no insight what the current and future discharge of OUVF at Lac Bay is. Therefore, this study aimed to 1) measure concentrations and estimate the risk of specific OUVFs to different nursery habitats at Lac Bay, and 2) compare measured and predicted concentration based risk assessment outcome. Results showed that at least one of the three nurseries at Lac Bay had a potential for adverse effects. Furthermore, predicted environmental concentrations of UV filter discharge can be applied to gain more insight in the order of extent of OUVF discharge by marine tourism.
Asunto(s)
Medición de Riesgo , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acrilatos/toxicidad , Bahías , Benzofenonas/toxicidad , Alcanfor/análogos & derivados , Alcanfor/toxicidad , Región del Caribe , Humanos , Protectores Solares/análisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisisRESUMEN
Unprotected chronic exposure to solar radiation can contribute to premature skin cancer and sunscreens are a key factor to avoid those detrimental effects. Currently, there is a growing interest in the photoprotector and antioxidant potential of bioactive substances, such as rutin, that could increase the sun protection factor (SPF) value and, also, donate multifunctional characteristics to sunscreens. Recent in vitro findings indicated that rutin, when incorporated into sunscreens, can provide antioxidant activity and SPF improvement. However, clinical studies are fundamental to determine this activity, due to the lack of repeatability of in vitro methodology and low correlation with the in vivo data. We aimed at evaluating the clinical safety and in vivo SPF of rutin by comparing sunscreen formulations containing 0.1% (w/w) rutin, 3.0% (w/w) butyl methoxydibenzoylmethane and 8.0% (w/w) octyl dimethyl PABA (2-ethylhexyl 4-(dimethylamino)benzoato) with a similar bioactive-free preparation. Additionally, skin hydration, in vitro SPF and in vitro antioxidant activity of rutin, in association with the ultraviolet (UV) filters, were investigated. The safety profile of the formulations under sun-exposed skin conditions qualified the formulas for clinical efficacy assays. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test confirmed the antioxidant properties of rutin, revealing around 40% increase in radical scavenging potential when the bioactive compound was present. Rutin in combination with the UV filters robustly elevated the clinical SPF around 70%, when compared with the bioactive-free formulation. To date, this is the first report in the specialized literature of an in vivo SPF measurement of a rutin-containing photoprotective preparation, supporting the claim that rutin is an effective and safe bioactive compound to be used in multifunctional sunscreens.
Asunto(s)
Antioxidantes/administración & dosificación , Propiofenonas/administración & dosificación , Rutina/administración & dosificación , Factor de Protección Solar , Protectores Solares/administración & dosificación , Rayos Ultravioleta , para-Aminobenzoatos/administración & dosificación , Adolescente , Adulto , Antioxidantes/química , Femenino , Humanos , Masculino , Propiofenonas/química , Rutina/química , Piel/efectos de los fármacos , Piel/efectos de la radiación , Pruebas de Irritación de la Piel , Protectores Solares/química , Adulto Joven , para-Aminobenzoatos/químicaRESUMEN
Natural products, or secondary metabolites, obtained from fungal species associated with marine algae have been widely used in sunscreens due to their antioxidant activity and protective potential against solar radiation. The endophytic fungus isolated from Bostrychia radicans algae collected in the Rio Escuro mangrove, São Paulo State, Brazil, Annulohypoxylon stygium (Xylariaceae family) was studied to evaluate the photoprotective potential of its metabolites. The Annulohypoxylon genus can produce secondary metabolites with interesting cytotoxic, antibacterial and antioxidant properties and was never isolated before from a marine alga or had its metabolites studied for UV protection. The fungal culture (code As) extracted with dichloromethane: methanol (2:1) yielded 9 fractions (Asa to Asi) which were submitted to different chromatographic methodologies to obtain pure compounds, and to spectroscopic methodologies to elucidate their structures. Also, a screening was conducted to evaluate the qualitative production of the metabolites, besides the absorption in the UVA/UVB range, their photostability and phototoxicity potential using the 3T3 NRU phototoxicity test (OECD TG 432). This study led to the isolation of a novel compound, 3-benzylidene-2-methylhexahydropyrrolo [1,2-α] pyrazine-1,4-dione (1), from fractions Ase3 and Asf3; Ase1 was identified as 1-(1,3-Benzodioxol-5-yl)-1,2-propanediol (2), two metabolites were isolated as diastereomers (1S,2R)-1-phenyl-1,2-propanediol (3) from Asd2 and (1R,2R)-1-phenyl-1,2-propanediol (4) from Asd3, and Ase1 and 1,3-benzodioxole-5-methanol (5) from Asc1. The results obtained showed a great potential source of new molecules to be used as UVB filters in sunscreens, since substances 1-2 presented UVB absorption, had no phototoxic potential and were considered photostable. In conclusion, these compounds can be considered as a potential new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using in vitro methods for topical use. Meanwhile, further efficacy assays shall be conducted for the establishment of their Sun Protection Factor (SPF). Also, this work provided new information concerning the metabolic profile of A. stygium, since it was possible to obtain two enantiomer compounds (3) and (4). One of them belonged to the same skeleton, but with a methylenedioxy moiety, showing the richest enzymatic pattern for this microorganism.
Asunto(s)
Ascomicetos/metabolismo , Productos Biológicos/química , Sustancias Protectoras/química , Células 3T3 , Animales , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Espectroscopía de Resonancia Magnética , Ratones , Conformación Molecular , Sustancias Protectoras/aislamiento & purificación , Sustancias Protectoras/farmacología , Algas Marinas/microbiología , Espectrofotometría Ultravioleta , Factor de Protección Solar , Rayos UltravioletaRESUMEN
Filtros orgânicos são amplamente utilizados em formulações fotoprotetoras, com habilidade de absorver radiações ultravioleta (UV). Contudo, parte destes compostos possuem limitações, como: fotoinstabilidade, permeação cutânea e fotossensibilização e entre outros. Este trabalho envolveu a síntese de matriz mesoporosa do tipo SBA-15, encapsulação/incorporação de ρ-metoxicinamato de octila (MCO), benzofenona-3 (BZF-3) e avobenzona (AVO) na SBA-15 para aplicação em formulações fotoprotetoras. Fez-se a determinação da eficácia in vitro dos filtros encapsulados/incorporados combinados a ingrediente cosmético; o preparo de bastão fotoprotetor e determinação eficácia estimada; a avaliação do potencial de irritação ocular dos bastões por HET-CAM - Hen's Egg Test - Chorioallantoic Membrane, e a avaliação da permeação/retenção cutânea e perfil de biodistribuição dos filtros. Para a caracterização dos materiais foram empregadas técnicas físico-químicas e analíticas. As medidas de adsorção/dessorção de N2 mostrou que as amostras dos filtros solares encapsulados/incorporados apresentaram diminuição na área superficial e volume de poro (V), indicando que os filtros solares foram encapsulados/incorporados na superfície e nos poros da SBA-15. Os resultados de Espalhamento de raios X a baixo ângulo evidenciaram que os filtros solares não afetaram a estrutura hexagonal da SBA-15. Por TG/DTG e análise elementar foi possível determinar a quantidade de filtros solares na superfície e nos mesoporos da SBA-15. Enquanto, as curvas DSC e DTA revelaram aumento na estabilidade térmica da AVO e BZF-3, quando encapsulados/incorporados. Os resultados da eficácia fotoprotetora in vitro mostraram que a combinação dos três filtros solares encapsulados/incorporados na SBA-15 promoveram aumento de 52% no fator proteção solar (FPS), enquanto que, na formulação fotoprotetora contendo os três filtros encapsulados/incorporados, o aumento foi de 94%. O ensaio de HET-CAM evidenciou que os bastões contendo SBA-15 e os filtros encapsulados/incorporados não foram irritantes. O ensaio de permeação/retenção cutânea mostrou que o processo de encapsulação/incorporação da BZF-3 promoveu diminuição de sua permeação em todos os tempos de exposição. As quantidades permeadas de AVO e MCO ficaram abaixo do limite de quantificação nos tempos 6 e 12 h, no entanto, no tempo de 24 h foi possível quantificá-los. As quantidades dos filtros solares retidas na pele a partir da formulação contendo os filtros solares encapsulados/incorporados na SBA-15 (F4) foram menores (tempos 6 e 12 h) em comparação à formulação contendo os filtros solares não encapsulados (F3). A investigação da biodistribuição dos filtros solares mostrou que a retenção total na pele, como na derme, foi menor na formulação F4 em comparação à F3. O estudo comparativo entre pele suína e a pele humana mostrou que as quantidades de BZF-3 e AVO permeadas e retidas na pele suína foram superiores do que em relação à humana para ambas as formulações (F4 e FR). Pela técnica de biodistribuição, foi possível determinar que os filtros solares oriundos das formulações F3 e referência (FR) apresentaram maior retenção destes compostos na derme do que em outras camadas da pele. Contudo, observou-se que os filtros encapsulados apresentaram taxa reduzida de retenção na derme
Organic Filters are chemical compounds widely used in sunscreens formulations with the ability to absorb ultraviolet radiation (UV). Despite the effectiveness of these compounds in UV radiation protection, disadvantages related to their photo instability, potential skin permeation and photo sensibility pose significant challenges for improving these products. The aim of this work was to synthesize mesoporous matrix SBA-15, encapsulation/entrapping of octyl methoxycinnamate (OMC), benzophenone-3 (BZF-3) and avobenzone (AVO) into SBA-15 for application in photoprotective formulations. It was accessed in vitro photoprotection efficacy and in vitro photostability assay of encapsulated/entrapped UV filters combined with cosmetic ingredient and photoprotective stick formulations; evaluation of the ocular irritation potential of photoprotective stick formulations by in vitro method HET-CAM - Hen's Egg Test - Chorioallantoic Membrane; evaluation the skin permeation/deposition and biodistribution profile of photoprotective stick formulations. The decrease in the surface area and in mesoporous volume (V) observed in the nitrogen adsorption desorption isotherms of encapsulated/entrapped samples indicated that UV filters were efficiently encapsulated/entrapped into SBA-15. Additionally, SAXS results showed that UV filters did not affected the hexagonal structure of the mesoporous material and that these compounds filled the SBA-15 pores. TG/DTG and elemental analysis were efficient tools to confirm the presence and the quantity of UV filters into SBA-15. DTA and DSC curves of encapsulated/entrapped materials showed that the thermal stability of AVO and BZF-3 were increased. On the other hand, DSC curves of encapsulated/entrapped materials demonstrated that thermal stability of OMC was not increase. The in vitro photoprotective efficacy results demonstrated that the combination of the three sunscreens encapsulated/entrapped into SBA-15 increased 52.0% the SPF values, while the stick formulation containing the UV filters encapsulated/entrapped, the increase was 94.0%. Delivery experiments using porcine skin demonstrated that the encapsulation/entrapping process of UV filters resulted the decreased of BZF-3 permeation and deposition in skin (6 and 12 hours). The cutaneous biodistribution profile of UV filters showed that the deposition of these compounds from encapsulated/entrapped stick formulation (F4) was significantly lower than that from UV filters stick formulations (F3) in the total slices of the skin and dermis. The comparative study between porcine skin and human skin demonstrated that the amounts of BZF-3 and AVO permeated and deposited in porcine skin were higher than in human skin for both formulations (F4 and FR - reference formulation). By the biodistribution technique it was possible to determine that the UV filters from the formulations F3 and FR presented higher retention of these compounds in the dermis than in other layers of the skin. On the other hand, it was observed that the encapsulated UV filters presented low retention rate into dermis
Asunto(s)
Protectores Solares/análisis , Rayos Ultravioleta/efectos adversos , Silicatos , Microscopía Electrónica de Transmisión de Rastreo/instrumentación , Dióxido de Silicio/administración & dosificación , IsotermaRESUMEN
OBJECTIVE: Considering that many cosmetic products contain UV filters in their composition and that few studies have evaluated the role of UV filters in the physical properties and clinical efficacy of these products, the aim of this study was to assess the influence of UV filters on the properties and immediate effects of a cosmetic formulation. METHODS: Four cosmetic formulations, vehicle (V), vehicle containing UV filters (F), vehicle containing cassava polysaccharides and alfalfa (A) oligosaccharides and vehicle containing UV filters plus cassava polysaccharides and alfalfa oligosaccharides (multifunctional formulation, M) were developed. The texture profile of the formulations was analysed with a TA.XT plus Texturometer® . Twenty female volunteers aged 39-45 years were then selected for the assessment of immediate clinical efficacy of the formulations under study and of transepidermal water loss (TEWL), stratum corneum water content and microrelief of the skin obtained with their use. RESULTS: The presence of UV filters resulted in an improvement of the physical properties of the multifunctional cosmetic formulation (M) and of skin microrelief. However, the presence of UV filters also caused a significant decrease in hydration. CONCLUSION: The presence of sunscreens had a negative influence on immediate skin hydration and TEWL. On the other hand, it positively influenced parameters related to the physical properties of the multifunctional formulation and skin microrelief. Thus, we conclude that the influence of UV filters on the development of cosmetic formulations is an important factor to be considered because it can have either positive or negative effect on the efficacy of the product.
Asunto(s)
Cosméticos , Rayos Ultravioleta , Adulto , Femenino , Humanos , Persona de Mediana Edad , Fenómenos Fisiológicos de la PielRESUMEN
Besides the unquestionable positive effects of solar exposure for human health, UV rays have been widely investigated for toxicology aspects related to excessive UVB and UVA doses, which involve sunburns, skin aging, DNA skin damage and tumorigenesis. At present, synthetic and mineral sunscreens are used to protect against these damages but several natural molecules can provide UV protection, including also synergic effect or enhanced photo stability. Although a large number of herbal extracts and plant origin molecules can deserve potential applications, most of the study reported utilizes different method and different strategies of investigation, making thus difficult to understand the real versus claimed potential. This is possibly one of the reasons why, beside the large body of literature there are no officially approved natural commercial sun-filter but a consistent number of commercially available solar products (sunscreen) on the market that contain herbal derivatives. In this review we have evaluated the papers appeared in the last 15years and we have critically collected the most significant data. Several databases, namely Scifinder, Pubmed, Google Scholar, ISI-Web of Science and Scopus, were used as literature sources; excluding patents and symposium or congress papers. Only articles in the English language have been selected. New formulation, new skin delivery systems, skin penetration enhancers and boosters are most likely the next frontier of investigation in order to better understand the role of whole herbal extracts in exerting their photo protective activity.
Asunto(s)
Productos Biológicos/farmacología , Líquenes/química , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Protectores Solares/farmacología , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Humanos , Procesos Fotoquímicos , Piel/efectos de la radiación , Neoplasias Cutáneas/prevención & control , Quemadura Solar/prevención & control , Rayos Ultravioleta/efectos adversosRESUMEN
Pyrethroids (PYR) and UV filters (UVF) were investigated in tissues of paired mother-fetus dolphins from Brazilian coast in order to investigate the possibility of maternal transfer of these emerging contaminants. Comparison of PYR and UVF concentrations in maternal and fetal blubber revealed Franciscana transferred efficiently both contaminants to fetuses (F/M > 1) and Guiana dolphin transferred efficiently PYR to fetuses (F/M > 1) different than UVF (F/M < 1). PYR and UVF concentrations in fetuses were the highest-ever reported in biota (up to 6640 and 11,530 ng/g lw, respectively). Muscle was the organ with the highest PYR and UVF concentrations (p < 0.001), suggesting that these two classes of emerging contaminants may have more affinity for proteins than for lipids. The high PYR and UVF concentrations found in fetuses demonstrate these compounds are efficiently transferred through placenta. This study is the first to report maternal transfer of pyrethroids and UV filters in marine mammals.
Asunto(s)
Delfines/metabolismo , Insecticidas/farmacocinética , Intercambio Materno-Fetal , Piretrinas/farmacocinética , Protectores Solares/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Tejido Adiposo/metabolismo , Animales , Brasil , Delfines/embriología , Femenino , Insecticidas/análisis , Exposición Materna , Placenta/metabolismo , Embarazo , Piretrinas/análisis , Protectores Solares/análisis , Distribución Tisular , Contaminantes Químicos del Agua/análisisRESUMEN
Ultraviolet (UV) filters are widely used in the formulation of personal care products (PCPs) to prevent damage to the skin, lips, and hair caused by excessive UV radiation. Therefore, large amounts of these substances are released daily into the aquatic environment through either recreational activities or the release of domestic sewage. The concern regarding the presence of such substances in the environment and the exposure of aquatic organisms is based on their potential for bioaccumulation and their potential as endocrine disruptors. Although there are several reports regarding the occurrence and fate of UV filters in the aquatic environment, these compounds are still overlooked in tropical areas. In this study, we investigated the occurrence of the organic UV filters benzophenone-3 (BP-3), ethylhexyl salicylate (ES), ethylhexyl methoxycinnamate (EHMC), and octocrylene (OC) in six water treatment plants in various cities in Southeast Brazil over a period of 6 months to 1 year. All of the UV filters studied were detected at some time during the sampling period; however, only EHMC and BP-3 were found in quantifiable concentrations, ranging from 55 to 101 and 18 to 115 ng L(-1), respectively. Seasonal variation of BP-3 was most clearly noticed in the water treatment plant in Araraquara, São Paulo, where sampling was performed for 12 months. BP-3 was not quantifiable in winter but was quantifiable in summer. The levels of BP-3 were in the same range in raw, treated and chlorinated water, indicating that the compound was not removed by the water treatment process.