Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Microbiol Methods ; 204: 106632, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460092

RESUMEN

Real-time PCR assays are the method of choice for the specific detection of DNA targets. Multiple real-time PCR chemistries are used for developing pathogen detection assays. Among them, a hydrolysis probe is a preferred choice for pathogen detection assays. Two known limitations of hydrolysis probes are high cost and limited storage life. Therefore, this study aimed to develop and validate a universal hydrolysis probe (UHP)-based approach with high-resolution melt (HRM) analysis capabilities. The approach can be used for the detection and genotyping of target DNA. The approach described in this study was validated by standardizing nine UHP assays for detecting seven Shiga toxin-producing Escherichia coli serogroups, Listeria monocytogenes, and Salmonella strains. These nine assays were validated with 141 pure culture bacterial strains. Additionally, the HRM capability of the developed approach was validated for three UHP assays targeting E. coli O26, O111, and O121 using 96 DNAs isolated from enriched food samples. The nine assays specifically detected the target bacterial strains, and the three assays showed single nucleotide polymorphism (SNP) identification capability and no cross-reactivity with non-target strains. The developed approach can be performed in singleplex or multiplex format and combined with HRM analysis. The data from this study demonstrate that the UHP real-time PCR approach is a robust method for detecting any deoxyribonucleic acid target.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Proteínas de Escherichia coli/genética , Microbiología de Alimentos , Genotipo , Hidrólisis , ADN
2.
Genes (Basel) ; 13(4)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35456376

RESUMEN

In angiosperms, huge advances in massive DNA sequencing technologies have impacted phylogenetic studies. Probe sets have been developed with the purpose of recovering hundreds of orthologous loci of targeted DNA sequences (TDS) across different plant lineages. We tested in silico the effectiveness of two universal probe sets in the whole available genomes of Caryophyllids, emphasizing phylogenetic issues in cacti species. A total of 870 TDS (517 TDS from Angiosperm v.1 and 353 from Angiosperms353) were individually tested in nine cacti species and Amaranthus hypochondriacus (external group) with ≥17 Gbp of available DNA data. The effectiveness was measured by the total number of orthologous loci recovered and their length, the percentage of loci discarded by paralogy, and the proportion of informative sites (PIS) in the alignments. The results showed that, on average, Angiosperms353 was better than Angiosperm v.1 for cacti species, since the former obtained an average of 275.6 loci that represent 123,687 bp, 2.48% of paralogous loci, and 4.32% of PIS in alignments, whereas the latter recovered 148.4 loci (37,683 bp), 10.38% of paralogous loci, and 3.49% of PIS. We recommend the use of predesigned universal probe sets for Caryophyllids, since these recover a high number of orthologous loci that resolve phylogenetic relationships.


Asunto(s)
Cactaceae , Magnoliopsida , Cactaceae/genética , Genoma , Magnoliopsida/genética , Filogenia , Análisis de Secuencia de ADN/métodos
3.
BMC Genomics ; 22(1): 850, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819030

RESUMEN

BACKGROUND: The detection and identification of single nucleotide polymorphism (SNP) is essential for determining patient disease susceptibility and the delivery of medicines targeted to the individual. At present, SNP genotyping technology includes Sanger sequencing, TaqMan-probe quantitative polymerase chain reaction (qPCR), amplification-refractory mutation system (ARMS)-PCR, and Kompetitive Allele-Specific PCR (KASP). However, these technologies have some disadvantages: the high cost of development and detection, long and time consuming protocols, and high false positive rates. Focusing on these limitations, we proposed a new SNP detection method named universal probe-based intermediate primer-triggered qPCR (UPIP-qPCR). In this method, only two types of fluorescence-labeled probes were used for SNP genotyping, thus greatly reducing the cost of development and detection for SNP genotyping. RESULTS: In the amplification process of UPIP-qPCR, unlabeled intermediate primers with template-specific recognition functions could trigger probe hydrolysis and specific signal release. UPIP-qPCR can be used successfully and widely for SNP genotyping. The sensitivity of UPIP-qPCR in SNP genotyping was 0.01 ng, the call rate was more than 99.1%, and the accuracy was more than 99.9%. High-throughput DNA microarrays based on intermediate primers can be used for SNP genotyping. CONCLUSION: This novel approach is both cost effective and highly accurate; it is a reliable SNP genotyping method that would serve the needs of the clinician in the provision of targeted medicine.


Asunto(s)
Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Alelos , Genotipo , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Appl Plant Sci ; 9(7): e11442, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34336405

RESUMEN

PREMISE: Custom probe design for target enrichment in phylogenetics is tedious and often hinders broader phylogenetic synthesis. The universal angiosperm probe set Angiosperms353 may be the solution. Here, we test the relative performance of Angiosperms353 on the Rosaceae subtribe Malinae in comparison with custom probes that we specifically designed for this clade. We then address the impact of bioinformatically altering the performance of Angiosperms353 by replacing the original probe sequences with orthologs extracted from the Malus domestica genome. METHODS: To evaluate the relative performance of these probe sets, we compared the enrichment efficiency, locus recovery, alignment length, proportion of parsimony-informative sites, proportion of potential paralogs, the topology and support of the resulting species trees, and the gene tree discordance. RESULTS: Locus recovery was highest for our custom Malinae probe set, and replacing the original Angiosperms353 sequences with a Malus representative improved the locus recovery relative to Angiosperms353. The proportion of parsimony-informative sites was similar between all probe sets, while the gene tree discordance was lower in the case of the custom probes. DISCUSSION: A custom probe set benefits from data completeness and can be tailored toward the specificities of the project of choice; however, Angiosperms353 was equally as phylogenetically informative as the custom probes. We therefore recommend using both a custom probe set and Angiosperms353 to facilitate large-scale systematic studies, where financially possible.

5.
Food Chem ; 330: 127247, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535319

RESUMEN

Among the existing multiplex genetically modified organism (GMO) detection methods, significant problems are highlighted, including amplification asymmetry of different targets, and the low detection throughput, which limits their capacity to meet the requirements of high-throughput analysis. To mitigate these challenges, a 'turn-on' ultra-sensitive multiplex real-time fluorescent quantitative biosensor is developed. In this system, the multiplex ligation-dependent amplification (MLPA), universal primer and universal probe are innovatively combined, which can enhanced the amplification specificity, overcome asymmetric amplification and guarantee the homogeneity of amplification efficiency simultaneously. Furthermore, both single and multiplex detection results can be output by the fluorescent group labeled on universal TaqMan probes for different targets in real-time. After optimization, the quantitative detection limit was 5 pg. In conclusion, this strategy could serve as an important tool for GMO detection in processed and commercially available products, even in the fields that require reliable and sensitive detection of DNA targets.


Asunto(s)
Técnicas Biosensibles , Cartilla de ADN/genética , Reacción en Cadena de la Polimerasa Multiplex , Plantas Modificadas Genéticamente
6.
ACS Sens ; 5(4): 1149-1157, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32164417

RESUMEN

Because of insufficient information, a single biomarker is not sufficient for early diagnosis of cancer, whereas sensitive and selective detection of multiple biomolecules can significantly reduce analysis time, sample size, and accurately perform cell screening in early cancer. Therefore, the development of a noninvasive strategy that can simultaneously quantify multiple biomarkers (i.e., nucleic acids, proteins, and small molecules) in a single cell is particularly important. Herein, a universal sensing system (functional DNA@mesoporous silica nanoparticles (MSN)-Black Hole Quencher-rhodamine 6G (RhB), FDSBR), which is based on the combination of functionalized DNA and smart responsive nanomaterial, was successfully constructed. After incubation with the cells, different types of targets trigger the strand displacement reaction to release the fluorophore-labeled nucleic acids as the output signals to reflect the intracellular level of the telomerase and adenosine triphosphate (ATP), respectively. Simultaneously, intracellular miR-21 can be clearly indicated by the restored fluorescence of RhB when the caged double-stranded DNA was substituted into single-stranded DNA to open the pore. The concentrations of intracellular telomerase, miR-21, and ATP were identified successfully in three cell lines at the single-cell level. The results show that the contents of three biomolecules have significant differences in the three model cell lines and provide a promising route for developing innovative early disease diagnosis and cell screening assay.


Asunto(s)
Células HeLa/química , Nanopartículas/química , Estudios de Evaluación como Asunto , Humanos
7.
Front Plant Sci ; 10: 1761, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32063915

RESUMEN

Universal angiosperm enrichment probe sets designed to enrich hundreds of putatively orthologous nuclear single-copy loci are increasingly being applied to infer phylogenetic relationships of different lineages of angiosperms at a range of evolutionary depths. Studies applying such probe sets have focused on testing the universality and performance of the target nuclear loci, but they have not taken advantage of off-target data from other genome compartments generated alongside the nuclear loci. Here we do so to infer phylogenetic relationships in the orchid genus Epidendrum and closely related genera of subtribe Laeliinae. Our aims are to: 1) test the technical viability of applying the plant anchored hybrid enrichment (AHE) method (Angiosperm v.1 probe kit) to our focal group, 2) mine plastid protein coding genes from off-target reads; and 3) evaluate the performance of the target nuclear and off-target plastid loci in resolving and supporting phylogenetic relationships along a range of taxonomical depths. Phylogenetic relationships were inferred from the nuclear data set through coalescent summary and site-based methods, whereas plastid loci were analyzed in a concatenated partitioned matrix under maximum likelihood. The usefulness of target and flanking non-target nuclear regions and plastid loci was assessed through the estimation of their phylogenetic informativeness. Our study successfully applied the plant AHE probe kit to Epidendrum, supporting the universality of this kit in angiosperms. Moreover, it demonstrated the feasibility of mining plastome loci from off-target reads generated with the Angiosperm v.1 probe kit to obtain additional, uniparentally inherited sequence data at no extra sequencing cost. Our analyses detected some strongly supported incongruences between nuclear and plastid data sets at shallow divergences, an indication of potential lineage sorting, hybridization, or introgression events in the group. Lastly, we found that the per site phylogenetic informativeness of the ycf1 plastid gene surpasses that of all other plastid genes and several nuclear loci, making it an excellent candidate for assessing phylogenetic relationships at medium to low taxonomic levels in orchids.

8.
Electroanalysis ; 29(3): 873-879, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-29371782

RESUMEN

Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode's surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode's surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets.

9.
Chinese Journal of Zoonoses ; (12): 441-448, 2017.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-620063

RESUMEN

We developed a universal probe based microRNA detection assay and applied it to detect microRNA-146a in human brucellosis,testing the possibility of using it as diagnosis signature.By using orthogonal design,the annealing temperature,probe concentration and commercial kits were optimized and the assay was developed.Total RNAs were isolated from plasma of human brucellosis and healthy control,and microRNA-146a was detected and compared.Results reveal that the optimized universal probe assay was established,which was more specific than the SYBR GreenI assay,and had a wider range of amplification.Compared with healthy control,the application of universal probe assay for the detection of serum microRNA146a in patients with brucellosis was significantly inhibited (P<0.01).Implying the potential of microRNA-146a as biomarker in diagnosis of brucellosis.It is suggested that universal probe based assay is a universal,specific and sensitive method for microRNA detection.MicroRNA-146a represents a potential biomarker for human brucellosis diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA