Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125817

RESUMEN

Recent studies confirmed that pyroptosis is involved in the progression of pulmonary hypertension (PH), which could promote pulmonary artery remodeling. Urolithin A (UA), an intestinal flora metabolite of ellagitannins (ETs) and ellagic acid (EA), has been proven to possess inhibitory effects on pyroptosis under various pathological conditions. However, its role on PH remained undetermined. To investigate the potential of UA in mitigating PH, mice were exposed to hypoxia (10% oxygen, 4 weeks) to induce PH, with or without UA treatment. Moreover, in vitro experiments were carried out to further uncover the underlying mechanisms. The in vivo treatment of UA suppressed the progression of PH via alleviating pulmonary remodeling. Pyroptosis-related genes were markedly upregulated in mice models of PH and reversed after the administration of UA. In accordance with that, UA treatment significantly inhibited hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) pyroptosis via the AMPK/NF-κB/NLRP3 pathway. Our results revealed that UA treatment effectively mitigated PH progression through inhibiting PASMC pyroptosis, which represents an innovative therapeutic approach for PH.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cumarinas , Hipertensión Pulmonar , Hipoxia , Miocitos del Músculo Liso , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Arteria Pulmonar , Piroptosis , Transducción de Señal , Animales , Cumarinas/farmacología , Cumarinas/uso terapéutico , Piroptosis/efectos de los fármacos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Hipoxia/metabolismo , Hipoxia/complicaciones , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/etiología , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
J Biol Chem ; 300(9): 107669, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128717

RESUMEN

Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.

3.
Nutrients ; 16(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064706

RESUMEN

Circadian rhythm plays an important role in intestinal homeostasis and intestinal immune function. Circadian rhythm dysregulation was reported to induce intestinal microbiota dysbiosis, intestinal barrier disruption, and trigger intestinal inflammation. However, the relationship between intestinal microbiota metabolites and the circadian rhythm of the intestinal barrier was still unclear. Urolithin A (UA), a kind of intestinal microbial metabolite, was selected in this study. Results showed UA influenced on the expression rhythm of the clock genes BMAL1 and PER2 in intestinal epithelial cells. Furthermore, the study investigated the effects of UA on the expression rhythms of clock genes (BMAL1 and PER2) and tight junctions (OCLN, TJP1, and CLND1), all of which were dysregulated by inflammation. In addition, UA pre-treatment by oral administration to female C57BL/6 mice showed the improvement in the fecal IgA concentrations, tight junction expression (Clnd1 and Clnd4), and clock gene expression (Bmal1 and Per2) in a DSS-induced colitis model induced using DSS treatment. Finally, the Nrf2-SIRT1 signaling pathway was confirmed to be involved in UA's effect on the circadian rhythm of intestinal epithelial cells by antagonist treatment. This study also showed evidence that UA feeding showed an impact on the central clock, which are circadian rhythms in SCN. Therefore, this study highlighted the potential of UA in treating diseases like IBD with sleeping disorders by improving the dysregulated circadian rhythms in both the intestinal barrier and the SCN.


Asunto(s)
Ritmo Circadiano , Colitis , Cumarinas , Mucosa Intestinal , Ratones Endogámicos C57BL , Animales , Ritmo Circadiano/efectos de los fármacos , Femenino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Ratones , Cumarinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación , Factor 2 Relacionado con NF-E2/metabolismo , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Sulfato de Dextran , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulina A/metabolismo , Sirtuina 1
4.
Sci Rep ; 14(1): 15706, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977770

RESUMEN

Maintaining the mucus layer is crucial for the innate immune system. Urolithin A (Uro A) is a gut microbiota-derived metabolite; however, its effect on mucin production as a physical barrier remains unclear. This study aimed to elucidate the protective effects of Uro A on mucin production in the colon. In vivo experiments employing wild-type mice, NF-E2-related factor 2 (Nrf2)-deficient mice, and wild-type mice treated with an aryl hydrocarbon receptor (AhR) antagonist were conducted to investigate the physiological role of Uro A. Additionally, in vitro assays using mucin-producing cells (LS174T) were conducted to assess mucus production following Uro A treatment. We found that Uro A thickened murine colonic mucus via enhanced mucin 2 expression facilitated by Nrf2 and AhR signaling without altering tight junctions. Uro A reduced mucosal permeability in fluorescein isothiocyanate-dextran experiments and alleviated dextran sulfate sodium-induced colitis. Uro A treatment increased short-chain fatty acid-producing bacteria and propionic acid concentration. LS174T cell studies confirmed that Uro A promotes mucus production through the AhR and Nrf2 pathways. In conclusion, the enhanced intestinal mucus secretion induced by Uro A is mediated through the actions of Nrf-2 and AhR, which help maintain intestinal barrier function.


Asunto(s)
Colitis , Cumarinas , Mucosa Intestinal , Factor 2 Relacionado con NF-E2 , Receptores de Hidrocarburo de Aril , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Cumarinas/farmacología , Colitis/metabolismo , Colitis/inducido químicamente , Mucina 2/metabolismo , Mucina 2/genética , Humanos , Colon/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Masculino , Microbioma Gastrointestinal , Ratones Noqueados , Sulfato de Dextran , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Funcion de la Barrera Intestinal
5.
Cell Mol Gastroenterol Hepatol ; 18(4): 101379, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038605

RESUMEN

BACKGROUND & AIMS: Cirrhotic portal hypertension (CPH) is the leading cause of mortality in patients with cirrhosis. Over 50% of patients with CPH treated with current clinical pharmacotherapy still present variceal bleeding or sometimes death owing to insufficient reduction in portal pressure. Elevated intrahepatic vascular resistance (IHVR) plays a fundamental role in increasing portal pressure. Because of its potent effect in reducing portal pressure and maintaining normal portal inflow to preserve liver function, lowering the IHVR is acknowledged as an optimal anti-CPH strategy but without clinical drugs. We aimed to investigate the protective effect of microbial-derived Urolithin A (UroA) in IHVR and CPH. METHODS: Carbon tetrachloride or bile duct ligation surgery was administered to mice to induce liver fibrosis and CPH. 16S rRNA gene sequencing was used for microbial analysis. Transcriptomics and metabolomics analyses were employed to study the host and cell responses. RESULTS: UroA was remarkably deficient in patients with CPH and was negatively correlated with disease severity. UroA deficiency was also confirmed in CPH mice and was associated with a reduced abundance of UroA-producing bacterial strain (Lactobacillus murinus, L. murinus). Glutaminolysis of hepatic stellate cells (HSCs) was identified as a previously unrecognized target of UroA. UroA inhibited the activity of glutaminase1 to suppress glutaminolysis, which counteracted fibrogenesis and contraction of HSCs and ameliorated CPH by relieving IHVR. Supplementation with UroA or L. murinus effectively ameliorated CPH in mice. CONCLUSIONS: We for the first time identify the deficiency of gut microbial metabolite UroA as an important cause of CPH. We demonstrate that UroA exerts an excellent anti-CPH effect by suppressing HSC glutaminolysis to lower the IHVR, which highlighted its great potential as a novel therapeutic agent for CPH.

6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1370-1381, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39051083

RESUMEN

OBJECTIVE: To observe the therapeutic effects of urolithin A (UA) on respiratory syncytial virus (RSV)-induced lung infection in neonatal mice and explore the underlying mechanisms. METHODS: Babl/c mice (5-7 days old) were subjected to nasal instillation of RSV and received intraperitoneal injection of saline or 2.5, 5 and 10 mg/kg UA 2 h after the infection and then once daily for 2 weeks. Bronchoalveolar lavage fluid (BALF) was then collected for detection of inflammatory cells and mediators, and lung pathology was evaluated with HE staining. RSV-infected BEAS-2B cells were treated with 2.5, 5 or 10 µmol/ L UA. Inflammatory factors, cell viability, apoptosis and autophagy were analyzed using ELISA, CCK-8 assay, TUNEL staining, flow cytometry, Western blotting and immunofluorescence staining. The cellular expressions of miR-136 and Sirt1 mRNAs were detected using qRT-PCR. A dual-luciferase reporter system was used to verify the binding between miR-136 and Sirt1. RESULTS: In neonatal Babl/c mice, RSV infection caused obvious lung pathologies, promoted pulmonary cell apoptosis and LC3-Ⅱ/Ⅰ, Beclin-1 and miR-136 expressions, and increased the total cell number, inflammatory cells and factors in the BALF and decreased p62 and Sirt1 expressions. All these changes were alleviated dose-dependently by UA. In BEAS-2B cells, RSV infection significantly increased cell apoptosis, LC3B-positive cells and miR-136 expression and reduced Sirt1 expression (P<0.01), which were dose-dependently attenuated by UA. Dual-luciferase reporter assay confirmed the binding between miR-136 and Sirt1. In RSV-infected BEAS-2B cells with UA treatment, overexpression of miR-136 and Ex527 treatment both significantly increased the inflammatory factors and cell apoptosis but decreased LC3B expression, and these changes were further enhanced by their combined treatment. CONCLUSION: UA ameliorates RSV-induced lung infection in neonatal mice by activating miR-136-mediated Sirt1 signaling pathway.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Ratones Endogámicos BALB C , MicroARNs , Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Transducción de Señal , Sirtuina 1 , Animales , Ratones , Sirtuina 1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Cumarinas/farmacología , Cumarinas/uso terapéutico , Líquido del Lavado Bronquioalveolar , Autofagia/efectos de los fármacos , Humanos
7.
Ageing Res Rev ; 100: 102406, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002645

RESUMEN

Urolithin A (UA) is a gut metabolite derived from ellagic acid. This systematic review assesses the potential geroprotective effect of UA in humans. In five studies including 250 healthy individuals, UA (10-1000 mg/day) for a duration ranging from 28 days to 4 months, showed a dose-dependent anti-inflammatory effect and upregulated some mitochondrial genes, markers of autophagy, and fatty acid oxidation. It did not affect mitochondrial maximal adenosine triphosphate production, biogenesis, dynamics, or gut microbiota composition. UA increased muscle strength and endurance, however, had no effect on anthropometrics, cardiovascular outcomes, and physical function. Unrelated adverse events were mild or moderate. Further research across more physiological systems and longer intervention periods is required.


Asunto(s)
Envejecimiento , Cumarinas , Humanos , Cumarinas/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo
8.
Gut Microbes ; 16(1): 2367342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889450

RESUMEN

Alcohol-related liver disease (ALD) is recognized as a global health crisis, contributing to approximately 20% of liver cancer-associated fatalities. Dysbiosis of the gut microbiome is associated with the development of ALD, with the gut microbial metabolite urolithin A (UA) exhibiting a potential for alleviating liver symptoms. However, the protective efficacy of UA against ALD and its underlying mechanism mediated by microbiota remain elusive. In this study, we provide evidence demonstrating that UA effectively ameliorates alcohol-induced metabolic disorders and hepatic endoplasmic reticulum (ER) stress through a specific gut-microbiota-liver axis mediated by major urinary protein 1 (MUP1). Moreover, UA exhibited the potential to restore alcohol-induced dysbiosis of the intestinal microbiota by enriching the abundance of Bacteroides sartorii (B. sartorii), Parabacteroides distasonis (P. distasonis), and Akkermansia muciniphila (A. muciniphila), along with their derived metabolite propionic acid. Partial attenuation of the hepatoprotective effects exerted by UA was observed upon depletion of gut microbiota using antibiotics. Subsequently, a fecal microbiota transplantation (FMT) experiment was conducted to evaluate the microbiota-dependent effects of UA in ALD. FMT derived from mice treated with UA exhibited comparable efficacy to direct UA treatment, as it effectively attenuated ER stress through modulation of MUP1. It was noteworthy that strong associations were observed among the hepatic MUP1, gut microbiome, and metabolome profiles affected by UA. Intriguingly, oral administration of UA-enriched B. sartorii, P. distasonis, and A. muciniphila can enhance propionic acid production to effectively suppress ER stress via MUP1, mimicking UA treatment. Collectively, these findings elucidate the causal mechanism that UA alleviated ALD through the gut-microbiota-liver axis. This unique mechanism sheds light on developing novel microbiome-targeted therapeutic strategies against ALD.


Asunto(s)
Cumarinas , Estrés del Retículo Endoplásmico , Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Hígado , Ratones Endogámicos C57BL , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hepatopatías Alcohólicas/microbiología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/prevención & control , Masculino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Cumarinas/farmacología , Cumarinas/metabolismo , Disbiosis/microbiología , Humanos , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
9.
Geroscience ; 46(5): 5075-5083, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38935229

RESUMEN

Healthy Longevity Medicine aims to optimize health by targeting aging processes across the lifespan. Addressing accelerated aging involves adaptation of lifestyle and the use of geroprotective drugs and supplements, including nutritional supplements and bioactive compounds. The Food and Drug Administration, under the Dietary Supplement Health and Education Act, categorizes bioactive compounds and medicinal products as dietary supplements. While numerous companies sell ingredients that can be deemed geroprotectors, there's limited oversight in their quality control. Governmental safety authorities only verify the presence of prohibited compounds, not the accuracy of ingredients listed on labels.Here, Nicotinamide mononucleotide and Urolithin A supplements, easily accessible online or in pharmacies, were tested for their active ingredient content. Results showed a significant deviation from the labeled amounts, ranging from + 28.6% to -100%. This indicates a considerable disparity in the quality of geroprotective supplements.To address this variability, collaboration between and within societies representing healthcare professionals, industry and regulatory bodies is imperative to ensure the quality of geroprotective supplements.


Asunto(s)
Cumarinas , Suplementos Dietéticos , Mononucleótido de Nicotinamida , Humanos , Estados Unidos , Etiquetado de Medicamentos , Longevidad
10.
Acta Pharmacol Sin ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886550

RESUMEN

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

11.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890703

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Asunto(s)
Cumarinas , Animales , Ratones , Cumarinas/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Retina/metabolismo , Retina/efectos de los fármacos , Retina/patología , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Proteína Sequestosoma-1/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Yodatos/toxicidad
12.
Int J Biol Macromol ; 273(Pt 2): 133045, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942666

RESUMEN

This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.


Asunto(s)
Microbioma Gastrointestinal , Liposomas , Prebióticos , Microbioma Gastrointestinal/efectos de los fármacos , Liposomas/química , Polimerizacion , Cumarinas/química , Cumarinas/metabolismo , Fermentación
13.
Biosci Biotechnol Biochem ; 88(8): 966-978, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772744

RESUMEN

The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1ß (IL-1ß) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1ß, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.


Asunto(s)
Cumarinas , Inflamasomas , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Peritonitis , Especies Reactivas de Oxígeno , Ácido Úrico , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cumarinas/farmacología , Cumarinas/química , Especies Reactivas de Oxígeno/metabolismo , Peritonitis/tratamiento farmacológico , Peritonitis/metabolismo , Peritonitis/inducido químicamente , Ácido Úrico/metabolismo , Inflamasomas/metabolismo , Ratones , Interleucina-1beta/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Caspasa 1/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Lipopolisacáridos , Piroptosis/efectos de los fármacos , Proteínas Portadoras , Tiorredoxinas
14.
J Alzheimers Dis ; 99(4): 1303-1316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38759018

RESUMEN

Background: Anxiety and social withdrawal are highly prevalent among patients with Alzheimer's disease (AD). However, the neural circuit mechanisms underlying these symptoms remain elusive, and there is a need for effective prevention strategies. Objective: This study aims to elucidate the neural circuitry mechanisms underlying social anxiety in AD. Methods: We utilized 5xFAD mice and conducted a series of experiments including optogenetic manipulation, Tandem Mass Tag-labeled proteome analysis, behavioral assessments, and immunofluorescence staining. Results: In 5xFAD mice, we observed significant amyloid-ß (Aß) accumulation in the anterior part of basolateral amygdala (aBLA). Behaviorally, 6-month-old 5xFAD mice displayed excessive social avoidance during social interaction. Concurrently, the pathway from aBLA to ventral hippocampal CA1 (vCA1) was significantly activated and exhibited a disorganized firing patterns during social interaction. By optogenetically inhibiting the aBLA-vCA1 pathway, we effectively improved the social ability of 5xFAD mice. In the presence of Aß accumulation, we identified distinct changes in the protein network within the aBLA. Following one month of administration of Urolithin A (UA), we observed significant restoration of the abnormal protein network within the aBLA. UA treatment also attenuated the disorganized firings of the aBLA-vCA1 pathway, leading to an improvement in social ability. Conclusions: The aBLA-vCA1 circuit is a vulnerable pathway in response to Aß accumulation during the progression of AD and plays a crucial role in Aß-induced social anxiety. Targeting the aBLA-vCA1 circuit and UA administration are both effective strategies for improving the Aß-impaired social ability.


Asunto(s)
Péptidos beta-Amiloides , Complejo Nuclear Basolateral , Región CA1 Hipocampal , Cumarinas , Ratones Transgénicos , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/efectos de los fármacos , Cumarinas/farmacología , Enfermedad de Alzheimer/metabolismo , Masculino , Conducta Social , Modelos Animales de Enfermedad , Ansiedad/metabolismo , Interacción Social/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Optogenética
15.
Phytomedicine ; 130: 155721, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38788395

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in the world with an alarming rate of mortality. Despite the advancement in treatment strategies and drug developments, the overall survival rate remains poor. Therefore, it is imperative to develop alternative or complimentary anti cancer drugs with minimum off target effects. Urolithin A, a microbial metabolite of ellagic acid and ellagitannins produced endogenously by human gut micro biome is considered to have anti-cancerous activity. However anti tumorigenic effect of urolithin A in OSCC is yet to be elucidated. In this study, we examined whether urolithin A inhibits cell growth and induces both apoptosis and autophagy dependent cell death in OSCC cell lines. PURPOSE: The present study aims to evaluate the potential of urolithin A to inhibit OSCC and its regulatory effect on OSCC proliferation and invasion in vitro and in vivo mouse models. METHODS: We evaluated whether urolithin A could induce cell death in OSCC in vitro and in vivo mouse models. RESULTS: Flow cytometric and immunoblot analysis on Urolithin A treated OSCC cell lines revealed that urolithin A markedly induced cell death of OSCC via the induction of endoplasmic reticulum stress and subsequent inhibition of AKT and mTOR signaling as evidenced by decreased levels of phosphorylated mTOR and 4EBP1. This further revealed a possible cross talk between apoptotic and autophagic signaling pathways. In vivo study demonstrated that urolithin A treatment reduced tumor size and showed a decrease in mTOR, ERK1/2 and Akt levels along with a decrease in proliferation marker, Ki67. Taken together, in vitro as well as our in vivo data indicates that urolithin A is a potential anticancer agent and the inhibition of AKT/mTOR/ERK signalling is crucial in Urolithin A induced growth suppression in oral cancer. CONCLUSION: Urolithin A exerts its anti tumorigenic activity through the induction of apoptotic and autophagy pathways in OSCC. Our findings suggest that urolithin A markedly induced cell death of oral squamous cell carcinoma via the induction of endoplasmic reticulum stress and subsequent inhibition of AKT and mTOR signaling as evidenced by decreased levels of phosphorylated mTOR and 4EBP1. Urolithin A remarkably suppressed tumor growth in both in vitro and in vivo mouse models signifying its potential as an anticancer agent in the prevention and treatment of OSCC. Henceforth, our findings provide a new insight into the therapeutic potential of urolithin A in the prevention and treatment of OSCC.


Asunto(s)
Apoptosis , Autofagia , Cumarinas , Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Animales , Cumarinas/farmacología , Humanos , Apoptosis/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Autofagia/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología
16.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38757565

RESUMEN

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Asunto(s)
Cumarinas , Retículo Endoplásmico , Mitocondrias , Pancreatitis , Animales , Cumarinas/farmacología , Cumarinas/química , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/patología , Ratones , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Canales de Calcio/metabolismo , Masculino , Ratones Endogámicos C57BL , Granada (Fruta)/química , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química
17.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732079

RESUMEN

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Mitofagia , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Animales , Ratas , Ritmo Circadiano/fisiología , Masculino , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Simulación de Ingravidez , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Temperatura Corporal , Frecuencia Cardíaca , Ratas Sprague-Dawley , Proteolisis
18.
Alzheimers Dement ; 20(6): 4212-4233, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38753870

RESUMEN

BACKGROUND: Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS: We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS: Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aß) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS: Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS: Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.


Asunto(s)
Enfermedad de Alzheimer , Cumarinas , Modelos Animales de Enfermedad , Lisosomas , Ratones Transgénicos , Mitofagia , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Cumarinas/farmacología , Cumarinas/uso terapéutico , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Mitofagia/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Cognición/efectos de los fármacos
19.
Eur J Pharm Biopharm ; 200: 114334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768764

RESUMEN

Functional polymer-lipid hybrid nanoparticles (H-NPs) are a promising class of nanocarriers that combine the benefits of polymer and lipid nanoparticles, offering biocompatibility, structural stability, high loading capacity, and, most importantly, superior surface functionalization. Here, we report the synthesis and design of highly functional H-NPs with specificity toward the transferrin receptor (TfR), using a small molecule ligand, gambogic acid (GA). A fluorescence study revealed the molecular orientation of H-NPs, where the lipid-dense core is surrounded by a polymer exterior, functionalized with GA. Urolithin A, an immunomodulator and anti-inflammatory agent, served as a model drug-like compound to prepare H-NPs via traditional emulsion-based techniques, where H-NPs led to smaller particles (132 nm) and superior entrapment efficiencies (70 % at 10 % drug loading) compared to GA-conjugated polymeric nanoparticles (P-NPs) (157 nm and 52 % entrapment efficiency) and solid lipid nanoparticles (L-NPs) (186 nm and 29 % entrapment efficiency). H-NPs showed superior intracellular accumulation compared to individual NPs using human small intestinal epithelial (FHs 74) cells. The in vitro efficacy was demonstrated by flow cytometry analysis, in which UA-laden H-NPs showed excellent anti-inflammatory properties in cisplatin-induced injury in healthy human proximal tubular cell (HK2) model by decreasing the TLR4, NF-κß, and IL-ß expression. This preliminary work highlights the potential of H-NPs as a novel functional polymer-lipid drug delivery system, establishing the foundation for future research on its therapeutic potential in addressing chemotherapy-induced acute kidney injury in cancer patients.


Asunto(s)
Cisplatino , Nanopartículas , Polímeros , Humanos , Cisplatino/farmacología , Nanopartículas/química , Polímeros/química , Lípidos/química , Portadores de Fármacos/química , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Xantonas/farmacología , Xantonas/química , Xantonas/administración & dosificación , Línea Celular , Cumarinas/química , Cumarinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Liposomas
20.
J Adv Res ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615740

RESUMEN

INTRODUCTION: Urolithin A (UA) is a naturally occurring compound that is converted from ellagitannin-like precursors in pomegranates and nuts by intestinal flora. Previous studies have found that UA exerts tumor-suppressive effects through antitumor cell proliferation and promotion of memory T-cell expansion, but its role in tumor-associated macrophages remains unknown. OBJECTIVES: Our study aims to reveal how UA affects tumor macrophages and tumor cells to inhibit breast cancer progression. METHODS: Observe the effect of UA treatment on breast cancer progression though in vivo and in vitro experiments. Western blot and PCR assays were performed to discover that UA affects tumor macrophage autophagy and inflammation. Co-ip and Molecular docking were used to explore specific molecular mechanisms. RESULTS: We observed that UA treatment could simultaneously inhibit harmful inflammatory factors, especially for InterleuKin-6 (IL-6) and tumor necrosis factor α (TNF-α), in both breast cancer cells and tumor-associated macrophages, thereby improving the tumor microenvironment and delaying tumor progression. Mechanistically, UA induced the key regulator of autophagy, transcription factor EB (TFEB), into the nucleus in a partially mTOR-dependent manner and inhibited the ubiquitination degradation of TFEB, which facilitated the clearance of damaged mitochondria via the mitophagy-lysosomal pathway in macrophages under tumor supernatant stress, and reduced the deleterious inflammatory factors induced by the release of nucleic acid from damaged mitochondria. Molecular docking and experimental studies suggest that UA block the recognition of TFEB by 1433 and induce TFEB nuclear localization. Notably, UA treatment demonstrated inhibitory effects on tumor progression in multiple breast cancer models. CONCLUSION: Our study elucidated the anti-breast cancer effect of UA from the perspective of tumor-associated macrophages. Specifically, TFEB is a crucial downstream target in macrophages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA