Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Pharm ; : 124778, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39349225

RESUMEN

The aims of this work were 1) to explore the application of shadowgraph imaging (SGI) as a real time monitoring tool to characterize ibuprofen particle behaviour during dissolution testing under various conditions in the USP 4 flow-through apparatus and 2) to investigate the potential to develop an SGI-based automated agglomeration identification method (AIM) for real time agglomerate detection during dissolution testing. The effect of surfactant addition, changes in the drug mass and flow rate, the use of sieved and un-sieved powder fractions, and the use of different drug crystal habits were investigated. Videos at every sampling time point during dissolution were taken and analysed by SGI. The AIM was developed to characterize agglomerates based on two criteria - size and solidity. All detections were confirmed by manual video observation and a reference agglomerate data set. The method was validated under new dissolution conditions with un-sieved particles. Characterisation of particle dispersion behaviour by SGI enabled interpretation of the impact of dissolution test conditions. Higher numbers of early detections reflected greater dissolution rates with increased surfactant concentration, using sieved fraction or plate-shaped crystals, but was impacted by drug mass tested. An AIM was successfully developed and applied to detect agglomerates during dissolution, suggesting potential, with appropriate method development, for application in quality control.

2.
Cancer Lett ; 589: 216836, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556105

RESUMEN

Despite the approval of immune checkpoint blockade (ICB) therapy for various tumor types, its effectiveness is limited to only approximately 15% of patients with microsatellite instability-high (MSI-H) or mismatch repair deficiency (dMMR) colorectal cancer (CRC). Approximately 80%-85% of CRC patients have a microsatellite stability (MSS) phenotype, which features a rare T-cell infiltration. Thus, elucidating the mechanisms underlying resistance to ICB in patients with MSS CRC is imperative. In this study, we demonstrate that ubiquitin-specific peptidase 4 (USP4) is upregulated in MSS CRC tumors and negatively regulates the immune response against tumors in CRC. Additionally, USP4 represses the cellular interferon (IFN) response and antigen presentation and impairs PRR signaling-mediated cell death. Mechanistically, USP4 impedes the nuclear localization of interferon regulator Factor 3 (IRF3) by deubiquitinating the K63-polyubiquitin chain of TRAF6 and IRF3. Knockdown of USP4 enhances the infiltration of T cells in CRC tumors and overcomes ICB resistance in an MC38 syngeneic mouse model. Moreover, published datasets revealed that patients showing higher USP4 expression exhibited decreased responsiveness to anti-PD-L1 therapy. These findings highlight an essential role of USP4 in the suppression of antitumor immunity in CRC.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Interferones , Síndromes Neoplásicos Hereditarios , Animales , Ratones , Humanos , Interferones/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inestabilidad de Microsatélites , Enzimas Desubicuitinizantes/genética , Factor 3 Regulador del Interferón/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
3.
Phytomedicine ; 124: 155304, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176274

RESUMEN

BACKGROUND: Oxidative stress is known as a hallmark of cerebral ischaemia‒reperfusion injury and it exacerbates the pathologic progression of ischaemic brain damage. Vialinin A, derived from a Chinese edible mushroom, possesses multiple pharmacological activities in cancer, Kawasaki disease, asthma and pathological scarring. Notably, vialinin A is an inhibitor of ubiquitin-specific peptidase 4 (USP4) that shows anti-inflammatory and antioxidative properties. However, the precise effect of vialinin A in ischaemic stroke, as well as its underlying mechanisms, remains largely unexplored. PURPOSE: The present research focuses on the impacts of vialinin A on oxidative stress and explores the underlying mechanisms involved while also examining its potentiality as a therapeutic candidate for ischaemic stroke. METHODS: Mouse ischaemic stroke was conducted by MCAO surgery. Vialinin A was administered via lateral ventricular injection at a dose of 2 mg/kg after reperfusion. Subsequent experiments were meticulously conducted at the appropriate time points. Stroke outcomes were evaluated by TTC staining, neurological score, Nissl staining and behavioural analysis. Co-IP assays were operated to examine the protein-protein interactions. Immunoblot analysis, qRT-PCR, and luciferase reporter assays were conducted to further investigate its underlying mechanisms. RESULTS: In this study, we initially showed that administration of vialinin A alleviated cerebral ischaemia‒reperfusion injury-induced neurological deficits and neuronal apoptosis. Furthermore, vialinin A, which is an antioxidant, reduced oxidative stress injury, promoted the activation of the Keap1-Nrf2-ARE signaling pathway and increased the protein degradation of Keap1. The substantial neuroprotective effects of vialinin A against ischaemic stroke were compromised by the overexpression of USP4. Mechanistically, vialinin A inhibited the deubiquitinating enzymatic activity of USP4, leading to enhanced ubiquitination of Keap1 and subsequently promoting its degradation. This cascade caused the activation of Nrf2-dependent antioxidant response, culminating in a reduction of neuronal apoptosis and the amelioration of neurological dysfunction following ischaemic stroke. CONCLUSIONS: This study demonstrates that inhibition of USP4 to activate Keap1-Nrf2-ARE signaling pathway may represent a mechanism by which vialinin A conferred protection against cerebral ischaemia‒reperfusion injury and sheds light on its promising prospects as a therapeutic intervention for ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Compuestos de Terfenilo , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Estrés Oxidativo , Daño por Reperfusión/metabolismo
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1749-1762, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37728623

RESUMEN

In this study, we aimed to explore the effects of curcumin on the progression of colorectal cancer and its underlying mechanisms involved. Cell proliferation, apoptosis and invasion were determined through CCK-8 assay, colony formation assay, EdU assay, flow cytometry, and transwell invasion assay, respectively. The protein expression of Bax, MMP2, USP4 and LAMP3 was measured using western blot. Pearson correlation coefficient was used to evaluate the relationship between USP4 and LAMP3. Co-IP was also conducted to determine the interaction between USP4 and LAMP3. Xenograft tumor model was established to explore the role of curcumin in colorectal cancer in vivo. IHC was utilized to measure the expression of Bax, MMP2, USP4 and LAMP3 in tumor tissues from mice. Curcumin significantly accelerated cell apoptosis, and inhibited cell proliferation and invasion in LoVo and HCT-116 cells. LAMP3 was augmented in colorectal cancer tissues and cells, and curcumin could reduce the expression of LAMP3. Curcumin decreased LAMP3 expression to exhibit the inhibition role in the progression of colorectal cancer. USP4 interacted with LAMP3, and positively regulated LAMP3 expression in colorectal cancer cells. LAMP3 overexpression could reverse the suppressive effects of USP4 knockdown on the development of colorectal cancer. Curcumin downregulated USP4 to impeded the progression of colorectal cancer via repressing LAMP3 expression. In addition, curcumin obviously restrained tumor growth in mice through downregulating USP4 and LAMP3 expression. These data indicated that curcumin exert the anti-tumor effects on the development of colorectal cancer through modulating the USP4/LAMP3 pathway.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Humanos , Animales , Ratones , Curcumina/farmacología , Curcumina/uso terapéutico , Línea Celular Tumoral , Metaloproteinasa 2 de la Matriz , Proteína X Asociada a bcl-2 , Proliferación Celular , Apoptosis , Neoplasias Colorrectales/metabolismo , Movimiento Celular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacología , Proteína 3 de la Membrana Asociada a Lisosoma , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/farmacología
5.
AAPS PharmSciTech ; 24(7): 199, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783877

RESUMEN

The performance of a pharmaceutical formulation, such as the drug (API) release rate, is significantly influenced by the properties of the materials used, the composition of the final product and the tablet compression process parameters. However, in some cases, the knowledge of these input parameters does not necessarily provide a reliable description or prediction of tablet performance. Therefore, the knowledge of tablet microstructure is desirable to understand such formulations. Commonly used analytical techniques, such as X-ray tomography and intrusion mercury porosimetry, are not widely used in pharmaceutical companies due to their price and/or toxicity, and therefore, efforts are made to develop a tool for fast and easy microstructure description. In this work, we have developed an image-based method for microstructure description and applied it to a model system consisting of ibuprofen and CaHPO4∙2H2O (API and excipient with different deformability). The obtained parameter, the quadratic mean of the equivalent diameter of the non-deformable, brittle excipient CaHPO4∙2H2O, was correlated with tablet composition, compression pressure and API release rate. The obtained results demonstrate the possibility of describing the tablet dissolution performance in the presented model system based on the microstructural parameter, providing a possible model system for compressed solid dosage forms in which a plastic component is present and specific API release is required.


Asunto(s)
Excipientes , Modelos Biológicos , Excipientes/química , Comprimidos/química , Composición de Medicamentos , Ibuprofeno/química
6.
Toxicol Lett ; 386: 30-33, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716589

RESUMEN

We report the successful evaluation of a US Pharmacopeia Apparatus 4 (USP-4) system in measuring the dissolution profiles of man-made vitreous fibers (MMVF)1. Glass and stone wool fibers with different (high- and low-) solubility profiles were tested in closed-loop configuration using a sodium/potassium phosphate buffer solution or an acetate buffer, respectively. Results confirm a need to operate in diluted conditions to avoid silicon saturation in the simulant solution and suppression of fiber dissolution. A clear fiber-to-fiber differentiation with good cell-to-cell reproducibility was achieved. These findings support the continued development of a USP-4 protocol for MMVF in vitro acellular testing.


Asunto(s)
Vidrio , Humanos , Animales , Solubilidad , Reproducibilidad de los Resultados
7.
J Cancer Res Clin Oncol ; 149(12): 10675-10683, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37308746

RESUMEN

INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) is among the most common cancers in the world with a low survival rate and common diagnosis at late stages. Deubiquitination of proteins is involved in tumor growth, metastasis, apoptosis, and immunosuppressive pathways. The impact of the ubiquitin-specific protease (USP4) on survival was only scarcely investigated so far. The goal of our research was to analyze the association of USP4 expression with prognosis and clinicopathological features in HNSCC. METHODS: USP4 mRNA levels were derived from The Cancer Genome Atlas (TCGA) for a cohort of 510 patients. Protein expression of USP4 was analyzed by immunohistochemistry in a second cohort of 113 patients. Associations between USP4 levels and overall survival, disease-free survival and clinicopathological data were analyzed. RESULTS: High levels of USP4 mRNA were associated with prolonged overall survival in univariable analysis. There was no more association with survival after correction for the confounders HPV, stage and smoker status. High USP4 mRNA levels were linked to a lower T-stage, the patient's age at diagnosis, and a positive HPV status. USP4 protein levels were not associated with prognosis or other features. CONCLUSION: Since high USP4 mRNA was not an independent prognostic marker, we assume that the association is a result of the correlation of high USP4 mRNA with an HPV-positive status. Therefore, further investigation of USP4 mRNA and its association with the HPV status of HNSCC patients is warranted.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Proteasas Ubiquitina-Específicas , Humanos , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/complicaciones , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/complicaciones , Proteasas Ubiquitina-Específicas/genética
8.
Int J Pharm ; 640: 123042, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37178789

RESUMEN

Currently there are no compendial assays for testing drug release from rectal suppositories. It is therefore essential to study different in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for identifying a suitable technique to compare in vitro drug release and to predict in vivo performance of rectal suppositories. In the present study, three different rectal suppository formulations of mesalamine (CANASA, Generic, and In-house) were studied for in vitro bioequivalence. All the different suppository products were characterized by performing weight variation, content uniformity, hardness, melting time, and pH tests. Viscoelastic behavior of the suppositories was also tested both in presence and absence of mucin. Four different IVRT techniques such as Dialysis, Horizontal Ussing Chamber, Vertical Franz cell, and USP apparatus 4. IVPT studies were performed using Horizontal Ussing chamber and Vertical Franz cell methods. Q1/Q2 equivalent products (CANASA, Generic) and a half-strength product were studied to understand the reproducibility, bio relevance, and discriminatory ability of the IVRT and IVPT methods. This study is the first of its kind where molecular docking studies were performed to determine the potential interactions of drug (mesalamine) with mucin, IVRT studies were conducted with and without the presence of mucin, and porcine rectal mucosa was used to perform IVPT tests. The USP 4 method and Horizontal Ussing chamber methods were found to be suitable IVRT and IVPT techniques, respectfully, for rectal suppositories. RLD (Reference Listed Drug) and Generic rectal suppositories were found to exhibit similar release rate and permeation profiles obtained from USP 4, and the IVPT studies, respectfully. Wilcoxon Rank Sum/Mann-Whitney rank test, conducted for the IVRT profiles obtained using USP 4 method, proved the sameness of RLD and Generic suppository products.


Asunto(s)
Mesalamina , Mucinas , Animales , Porcinos , Supositorios , Reproducibilidad de los Resultados , Simulación del Acoplamiento Molecular
9.
FASEB J ; 37(5): e22900, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37039823

RESUMEN

Ubiquitin-specific protease 4 (USP4) is highly overexpressed in colon cancer and acts as a potent protooncogenic protein by deubiquitinating ß-catenin. However, its prominent roles in tumor formation and migration in cancer cells are not fully understood by its deubiquitinating enzyme (DUB) activity on ß-catenin. Thus, we investigated an additional role of USP4 in cancer. In this study, we identified cortactin (CTTN), an actin-binding protein involved in the regulation of cytoskeleton dynamics and a potential prognostic marker for cancers, as a new cellular interacting partner of USP4 from proximal labeling of HCT116 cells. Additionally, the role of USP4 in CTTN activation and promotion of cell dynamics and migration was investigated in HCT116 cells. We confirmed that interacting of USP4 with CTTN increased cell movement. This finding was supported by the fact that USP4 overexpression in HCT116 cells with reduced expression of CTTN was insufficient to promote cell migration. Additionally, we observed that USP4 overexpression led to a significant increase in CTTN phosphorylation, which is a requisite mechanism for cell migration, by regulating Src/focal adhesion kinase (FAK) binding to CTTN and its activation. Our results suggest that USP4 plays a dual role in cancer progression, including stabilization of ß-catenin as a DUB and interaction with CTTN to promote cell dynamics by inducing CTTN phosphorylation. Therefore, this study demonstrates that USP4 is important for cancer progression and is a good target for treating or preventing cancer.


Asunto(s)
Neoplasias del Colon , beta Catenina , Humanos , Células HCT116 , beta Catenina/metabolismo , Cortactina/metabolismo , Movimiento Celular/fisiología , Proteasas Ubiquitina-Específicas/metabolismo
10.
Front Biosci (Landmark Ed) ; 27(10): 286, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36336860

RESUMEN

BACKGROUND: It has been reported that ubiquitin specific peptidase 4 (USP4) was functional in several tumors, but its function and mechanism in gastric cancer were still unknown. METHODS: Bioinformatic tools were used to predict the prognosis of gastric cancer patients and the expression levels of USP4 in gastric cancer. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting were carried out to detect the messenger RNA (mRNA) and protein levels. Cell viability of gastric cancer was evaluated by Cell Counting Kit-8 (CCK-8) assay. Cell line-derived xenograft models were established to evaluate the tumor growth of gastric cancer. Luciferase assay and immunoblotting were used to determine the activation of nuclear factor kappa B (NF-κB) signaling. RESULTS: The public database Kaplan-Meier Plotter showed that gastric cancer patients with high USP4 expression had a shorter overall survival or post-progression survival than the patients with decreased USP4. Further studies indicated that USP4 was elevated in gastric cancer tumor tissues. In contrast, knockdown of USP4 markedly inhibited gastric cancer cell growth, and suppressed the tumor growth of gastric cancer. Further studies revealed that USP4 knockdown significantly suppressed NF-κB-driven luciferase activity, and inhibited the phosphorylation of NF-κB p65 in gastric cancer cells. Additionally, qRT-PCR analysis showed that USP4 knockdown significantly downregulated the expressions of cyclin D2 (CCND2) and B cell leukemia/lymphoma 2 (BCL2). We also found that USP4 knockdown decreased the expressions of phosphatase of regenerating liver-3 (PRL-3), in contrast, overexpression of PRL-3 attenuated the inhibitory effects of USP4 knockdown on NF-κB signaling and cell viability in gastric cancer cells. Finally, PR-619, which has been proven to inhibit the activities of USP4 and other deubiquitinases, could inhibit cell viability and NF-κB signaling in gastric cancer cells. CONCLUSIONS: This study indicated that elevated USP4 predicted a poor index for gastric cancer patients, and mediated gastric cancer cell growth by regulating PRL-3/NF-κB signaling, which suggested USP4 may be a novel therapeutic target for gastric cancer.


Asunto(s)
FN-kappa B , Neoplasias Gástricas , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Gástricas/patología , Línea Celular Tumoral , Proteínas Oncogénicas , Enzimas Desubicuitinizantes , Proliferación Celular/genética , Proteasas Ubiquitina-Específicas/genética
11.
Fish Shellfish Immunol ; 131: 1019-1026, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36372204

RESUMEN

Ubiquitin-specific protease 4 (USP4) is pivotal in negatively regulating the Toll-like receptor (TLR) signaling-mediated innate immune response. Although USP4 has been well studied in mammals, its role in TLR signaling pathways in fish remains largely unknown. In this study, we investigated the role of USP4 (OmUSP4) in regulating TLR response in rainbow trout Oncorhynchus mykiss. OmUSP4 contained the characteristic domains conserved in other USP4s: domain in USP (DUSP), ubiquitin-like (UBL), and the bi-part catalytic domain known as USP. OmUSP4 expression was increased in RTH-149 cells by stimulation with fish-pathogenic bacteria and bacterial ligands. Gain- and loss-of-function experiments revealed that OmUSP4 mitigated the activation of MAPKs and NF-κB, as well as the expression of pro-inflammatory cytokines in LPS-stimulated cells. OmUSP4 interacted with TAK1, a critical mediator in TLR-mediated NF-κB signaling pathways. LPS stimulation increased the K63-linked polyubiquitination of TAK1, which was significantly suppressed when OmUSP4 was compelled to be overexpressed. These results imply that OmUSP4 might function like mammals to downregulate LPS-induced inflammation in rainbow trout by removing the K63-linked ubiquitin chain on TAK1.


Asunto(s)
Oncorhynchus mykiss , Animales , Ubiquitina , FN-kappa B/genética , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/veterinaria , Mamíferos/metabolismo
12.
Molecules ; 27(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144645

RESUMEN

The para-terphenyl derivative vialinin A (Vi-A), isolated from Thelephora fungi, has been characterized as a potent inhibitor of the ubiquitin-specific protease 4 (USP4). Blockade of USP4 contributes to the anti-inflammatory and anticancer properties of the natural product. We have investigated the interaction of Vi-A with USP4 by molecular modeling, to locate the binding site (around residue V98 within the domain in USP segment) and to identify the binding process and interaction contacts. From this model, a series of 32 p-terphenyl compounds were tested as potential USP4 binders, mainly in the vialinin, terrestrin and telephantin series. We identified 11 compounds presenting a satisfactory USP4 binding capacity, including two fungal products, vialinin B and aurantiotinin A, with a more favorable empirical energy of USP4 interaction (ΔE) than the reference product Vi-A. The rare p-terphenyl aurantiotinin A, isolated from the basidiomycete T. aurantiotincta, emerged as a remarkable USP4 binder. Structure-binding relationships have been identified and discussed, to guide the future design of USP4 inhibitors based on the p-terphenyl skeleton. The docking study should help the identification of other protease inhibitors from fungus.


Asunto(s)
Basidiomycota , Productos Biológicos , Compuestos de Terfenilo , Antiinflamatorios , Basidiomycota/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Compuestos de Terfenilo/química , Proteasas Ubiquitina-Específicas
13.
J Transl Med ; 20(1): 426, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36138468

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of cancer. Abnormally expressed lncRNA can be used as a diagnostic marker for cancer. In this study, we aim to investigate the clinical significance of MIR99AHG expression in lung adenocarcinoma (LUAD), and its biological roles in LUAD progression. METHODS: The relative expression of MIR99AHG in LUAD tissues and cell lines was analyzed using public databases and RT-qPCR. The biological functions of MIR99AHG were investigated using a loss-of-function approach. The effect of MIR99AHG on lung fibrosis was assessed by scratch assay, invasion assay and lung fibrosis rat model. FISH, luciferase reporter assay and immunofluorescence were performed to elucidate the underlying molecular mechanisms. RESULTS: LncRNA MIR99AHG expression level was downregulated in LUAD tissues and cell lines. Low MIR99AHG levels were associated with poorer patient overall survival. Functional analysis showed that MIR99AHG is associated with the LUAD malignant phenotype in vitro and in vivo. Further mechanistic studies showed that, MIR99AHG functions as a competitive endogenous RNA (ceRNA) to antagonize miR-136-5p-mediated ubiquitin specific protease 4 (USP4) degradation, thereby unregulated the expression of angiotensin-converting enzyme 2 (ACE2), a downstream target gene of USP4, which in turn affected alveolar type II epithelial cell fibrosis and epithelial-mesenchymal transition (EMT). In summary, the MIR99AHG/miR-136-5p/USP4/ACE2 signalling axis regulates lung fibrosis and EMT, thus inhibiting LUAD progression. CONCLUSION: This study showed that downregulated MIR99AHG leads to the development of pulmonary fibrosis. Therefore, overexpression of MIR99AHG may provide a new approach to preventing LUAD progression.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , Fibrosis Pulmonar , ARN Largo no Codificante , Adenocarcinoma/genética , Enzima Convertidora de Angiotensina 2 , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis Pulmonar/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
14.
Environ Toxicol ; 37(10): 2540-2551, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35841383

RESUMEN

Lysyl-oxidase-like 3 (LOXL3) was reported to be essential in epithelial-mesenchymal transition (EMT) of cancers. However, the role of LOXL3 in hepatocellular carcinoma (HCC) remained unclear. In this study, we explored clinical significance, biological functions, and regulatory mechanisms of LOXL3 in HCC. Our study found that LOXL3 expression was markedly associated with the tumor size and clinical stage of HCC, and it was highly expressed in tumor tissues of metastatic HCC patients. High expression of LOXL3 predicted a poor prognosis of HCC. TGF-ß1 treatment elevated LOXL3 protein expression and cell invasion, and reduced cell apoptosis in HCC cell lines (SMMC-7721 and Huh-7), while downregulation of LOXL3 reversed the promotive effects of TGF-ß1 treatment on LOXL3 protein expression and cell invasion, and the inhibitory effect on cell apoptosis. Mechanistically, LOXL3 interacted with snail family transcriptional repressor 1 (Snail1) through STRING database and RIP assay, and Snail1 bound to ubiquitin-specific peptidase 4 (USP4) promoter by JASPAR database, luciferase reporter gene and Co-IP assays. Overexpression of USP4 reversed the inhibitory effect of LOXL3 silence on EMT in HCC cells through deubiquitinating and stabilizing the expression of Snail1. Moreover, LOXL3-promoted HCC EMT through Wnt/ß-catenin/Snail1 signaling pathway. In vivo study revealed that silence of LOXL3-inhibited HCC tumor growth. In conclusion, LOXL3 silence inhibited HCC invasion and EMT through Snail1/USP4-mediated circulation loop and Wnt/ß-catenin signaling pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
15.
Pharmaceutics ; 14(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35456607

RESUMEN

In this paper, the preparation method of bio-hybrid hydrogels incorporated into a system of salicylic acid-pH/thermosensitive nanocarriers to speed up the wound-healing process was developed. This combination creates a dual drug delivery system, which releases the model hydrophobic active substance-salicylic acid-in a gradual and controlled manner for an extended time. Our research team has determined the various properties of bio-hybrid hydrogels based on their physicochemical (swelling degree, and degradation), structural (FT-IR), morphological (SEM), and mechanical (elongation tests) traits. Moreover, empty pH/thermosensitive nanocarriers and their salicylic acid-containing systems were characterized using the following methods: DLS, TG/DTG, and DSC. Additionally, salicylic acid release profiles directly from thermosensitive nanocarriers were compared to the bio-hybrid matrix. These studies were conducted in PBS (pH = 7.4) for 7 days using the USP4 method. To evaluate the antibacterial properties of the obtained materials, the inhibition of growth of Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger-as the main microorganisms responsible for human infections-were tested. The obtained results indicated that the pH/thermosensitive nanocarrier-salicylic acid system and bio-hybrid hydrogels are characterized by antibacterial activity against both S. aureus and E. coli.

16.
Front Pharmacol ; 12: 710722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603025

RESUMEN

As a severe metabolic disease, type 2 diabetes mellitus (T2DM) has become a serious threat to human health in recent years. Gastrodin, as a primary chemical constituent in Gastrodia elata Blume, has antidiabetic effects. However, the possible mechanisms are unclear. The aim of the present study was to investigate the effects and possible mechanisms of gastrodin on the treatment of T2DM. In vivo, after treatment with gastrodin for 6 weeks, fasting blood glucose levels, blood lipid metabolism, and insulin sensitivity index values were remarkably reduced compared with those of the diabetic control group. The values of aspartate aminotransferase and alanine aminotransferase also showed that gastrodin alleviates liver toxicity caused by diabetes. Moreover, gastrodin relieved pathological damage to the pancreas in T2DM rats. In vitro, gastrodin alleviated insulin resistance by increasing glucose consumption, glucose uptake, and glycogen content in dexamethasone-induced HepG2 cells. The Western blotting results showed that gastrodin upregulated the expression of insulin receptors and ubiquitin-specific protease 4 (USP4) and increased the phosphorylation of GATA binding protein 1 (GATA1) and protein kinase B (AKT) in vivo and in vitro. Furthermore, gastrodin decreased the ubiquitin level of the insulin receptor via UPS4 and increased the binding of GATA1 to the USP4 promoter. Additionally, administration of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway inhibitors MK-2206 and LY294002 abolished the beneficial effects of gastrodin. Our results indicate that gastrodin promotes the phosphorylation of GATA1 via the PI3K/AKT pathway, enhances the transcriptional activity of GATA1, and then increases the expression level of USP4, thereby reducing the ubiquitination and degradation of insulin receptors and ultimately improving insulin resistance. Our study provides scientific evidence for the beneficial actions and underlying mechanism of gastrodin in the treatment of T2DM.

17.
Life Sci ; 281: 119720, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34144056

RESUMEN

AIMS: Asthma is characterized by chronic inflammation and airway hyperresponsiveness (AHR). It is controllable, but not curable. Ubiquitin-specific peptidase 4 (USP4) has been verified as a regulator of regulatory T (Treg) cells and Th17 cells in vitro. In this study, we aim to investigate whether USP4 could serve as a therapeutic target for asthma. MAIN METHODS: Age-matched USP4 wild-type and knockout mice received an intraperitoneal injection of 100 µg ovalbumin (OVA) mixed in 2 mg aluminum hydroxide in 1 × PBS on days 0, 7 and 14. On days 21 to 27, the mice were challenged with aerosolized 1% OVA in 1 × PBS for 30 min. Tissue histology, ELISA and flow cytometry were applied 24 h after the last OVA challenge. KEY FINDINGS: USP4 deficiency protected mice from OVA-induced AHR and decreased the production of several inflammatory cytokines in T cells in vivo. Compared to the lung cells isolated from WT mice, Usp4-/- lung cells decreased secretion of IL-4, IL-13 and IL-17A upon stimulation in vitro. Meanwhile, the percentage of CD4+Foxp3+ Treg cells was elevated, with more CCR6+Foxp3+ Treg cells accumulating in the lungs of OVA-challenged USP4 deficient mice than in their wild-type counterparts. Treatment with the USP4 inhibitor, Vialinin A, reduced inflammatory cell infiltration in the lungs of OVA-challenged mice in vivo. SIGNIFICANCE: We found USP4 deficiency contributes to attenuated airway inflammation and AHR in allergen-induced murine asthma, and Vialinin A treatment alleviates asthma pathogenesis and may serve as a promising therapeutic target for asthma.


Asunto(s)
Asma/inmunología , Linfocitos T Reguladores/inmunología , Proteasas Ubiquitina-Específicas/inmunología , Animales , Líquido del Lavado Bronquioalveolar , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Noqueados , Linfocitos T Reguladores/citología , Proteasas Ubiquitina-Específicas/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-34132050

RESUMEN

Nano drug delivery systems (NDDS) offer promising solution for the translation of future nanomedicines. As bioavailability and therapeutic outcomes can be improved by altering the drug release from these NDDS, it becomes essential to thoroughly understand their drug release kinetics. Moreover, U.S. Food and Drug Administration requires critical evaluation of potential safety, efficacy, and public health impacts of nanomaterials. Spiraling up market share of NDDS has also stimulated the pharmaceutical industry to develop their cost-effective generic versions after the expiry of patent and associated exclusivity. However, unlike the conventional dosage forms, the in vivo disposition of NDDS is highly intricate and different from their in vitro behavior. Significant challenges exist in the establishment of in vitro-in vivo correlation (IVIVC) due to incomplete understanding of nanoparticles' in vivo biofate and its impact on in vitro experimental protocols. A rational design of dissolution may serve as quality and quantity control tool and help develop a meaningful IVIVC for favorable economic implications. Clinically relevant drug product specifications (critical quality attributes) can be identified by establishing a link between in vitro performance and in vivo exposure. In vitro dissolution may also play a pivotal role to understand the dissolution-mediated clearance and safety of NDDS. Prevalent in vitro dissolution methods for NDDS and their limitations are discussed in this review, among which USP 4 is gaining more interest recently. Researchers are working diligently to develop biorelevant in vitro release assays to ensure optimal therapeutic performance of generic versions of these NDDS. This article focuses on these studies and presents important considerations for the future development of clinically relevant in vitro release methods. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.


Asunto(s)
Nanomedicina , Sistema de Administración de Fármacos con Nanopartículas , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Solubilidad
19.
Front Cell Dev Biol ; 9: 595159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681193

RESUMEN

The deubiquitinating enzyme (DUB)-mediated cleavage of ubiquitin plays a critical role in balancing protein synthesis and degradation. Ubiquitin-specific protease 4 (USP4), a member of the largest subfamily of cysteine protease DUBs, removes monoubiquitinated and polyubiquitinated chains from its target proteins. USP4 contains a DUSP (domain in USP)-UBL (ubiquitin-like) domain and a UBL-insert catalytic domain, sharing a common domain organization with its paralogs USP11 and USP15. USP4 plays a critical role in multiple cellular and biological processes and is tightly regulated under normal physiological conditions. When its expression or activity is aberrant, USP4 is implicated in the progression of a wide range of pathologies, especially cancers. In this review, we comprehensively summarize the current knowledge of USP4 structure, biological functions, pathological roles, and cellular regulation, highlighting the importance of exploring effective therapeutic interventions to target USP4.

20.
Bioessays ; 43(4): e2000269, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33415735

RESUMEN

Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-ß paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.


Asunto(s)
Genes Supresores de Tumor , Oncogenes , Carcinogénesis , Enzimas Desubicuitinizantes , Humanos , Oncogenes/genética , Transducción de Señal/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA