Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026822

RESUMEN

Spinal cord injury (SCI) is a devastating condition with 250,000 to 500,000 new cases globally each year. Respiratory infections, e.g., pneumonia and influenza are the leading cause of death after SCI. Unfortunately, there is a poor understanding of how altered neuro-immune communication impacts an individual's outcome to infection. In humans and rodents, SCI leads to maladaptive changes in the spinal-sympathetic reflex (SSR) circuit which is crucial to sympathetic function. The cause of the impaired immune function may be related to harmful neuroinflammation which is detrimental to homeostatic neuronal function, aberrant plasticity, and hyperexcitable circuits. Soluble tumor necrosis factor (sTNF) is a pro-inflammatory cytokine that is elevated in the CNS after SCI and remains elevated for several months after injury. By pharmacologically attenuating sTNF in the CNS after SCI we were able to demonstrate improved immune function. Furthermore, when we investigated the specific cellular population which may be involved in altered neuro-immune communication we reported that excessive TNFR1 activity on excitatory INs promotes immune dysfunction. Furthermore, this observation is NF-κB dependent in VGluT2+ INs. Our data is the first report of a target within the CNS, TNFR1, that contributes to SCI-induced immune dysfunction after T9-SCI and is a potential avenue for future therapeutics.

2.
J Biomed Sci ; 31(1): 69, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992696

RESUMEN

BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.


Asunto(s)
Plasticidad Neuronal , Proteínas de Unión al ARN , Transmisión Sináptica , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Ratones Noqueados , Axones/metabolismo , Axones/fisiología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Masculino , Biosíntesis de Proteínas
3.
PNAS Nexus ; 3(7): pgae275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035036

RESUMEN

Melanin-concentrating hormone-producing neurons (MCH neurons), found mainly in the lateral hypothalamus and surrounding areas, play essential roles in various brain functions, including sleep and wakefulness, reward, metabolism, learning, and memory. These neurons coexpress several neurotransmitters and act as glutamatergic neurons. The contribution of glutamate from MCH neurons to memory- and metabolism-related functions has not been fully investigated. In a mouse model, we conditionally knocked out Slc17a6 gene, which encodes for vesicular glutamate transporter 2 (vGlut2), in the MCH neurons exclusively by using two different methods: the Cre recombinase/loxP system and in vivo genome editing using CRISPR/Cas9. Then, we evaluated several aspects of memory and measured metabolic rates using indirect calorimetry. We found that mice with MCH neuron-exclusive vGlut2 ablation had higher discrimination ratios between novel and familiar stimuli for novel object recognition, object location, and three-chamber tests. In contrast, there was no significant change in body weight, food intake, oxygen consumption, respiratory quotient, or locomotor activity. These findings suggest that glutamatergic signaling from MCH neurons is required to regulate memory, but its role in regulating metabolic rate is negligible.

4.
Acta Neuropathol ; 147(1): 98, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861157

RESUMEN

Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Femenino , Masculino , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Ácido Glutámico/metabolismo , Núcleos Talámicos Anteriores/metabolismo , Núcleos Talámicos Anteriores/patología , Calbindina 2/metabolismo , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología
5.
Curr Biol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38944034

RESUMEN

Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EPSom)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep. Inhibiting or exciting EPSom neurons reduced or increased REM sleep duration, respectively. Activation of the sole downstream target of EPSom neurons, Vglut2 cells in the lateral habenula (LHb), increased sleep via the ventral tegmental area (VTA). A simple chemogenetic scheme to periodically inhibit the LHb over 4 days selectively removed a significant amount of cumulative REM sleep. Chronic, but not acute, REM reduction correlated with mice becoming anxious and more sensitive to aversive stimuli. Therefore, we suggest that cumulative REM sleep, in part generated by the EP → LHb → VTA circuit identified here, could contribute to stabilizing reactions to habitual aversive stimuli.

6.
Cell Rep ; 43(5): 114187, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722743

RESUMEN

The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Locomoción , Mesencéfalo , Receptores de Dopamina D1 , Animales , Mesencéfalo/metabolismo , Ratones , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Ratones Endogámicos C57BL , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Masculino
7.
Neuroscience ; 546: 75-87, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38552733

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there are very limited treatment options. Dysfunction of the excitatory neurotransmitter system is thought to play a major role in the pathogenesis of this condition. Vesicular glutamate transporters (VGLUTs) are key to controlling the quantal release of glutamate. Thus, expressional changes in disease can have implications for aberrant neuronal activity, raising the possibility of a therapeutic target. There is no information regarding the expression of VGLUTs in the human medial temporal lobe in AD, one of the earliest and most severely affected brain regions. This study aimed to quantify and compare the layer-specific expression of VGLUT1 and VGLUT2 between control and AD cases in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Free-floating fluorescent immunohistochemistry was used to label VGLUT1 and VGLUT2 in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Sections were imaged using laser-scanning confocal microscopy and transporter densitometric analysis was performed. VGLUT1 density was not significantly different in AD tissue, except lower staining density observed in the dentate gyrus stratum moleculare (p = 0.0051). VGLUT2 expression was not altered in the hippocampus and entorhinal cortex of AD cases but was significantly lower in the subiculum (p = 0.015) and superior temporal gyrus (p = 0.0023). This study indicates a regionally specific vulnerability of VGLUT1 and VGLUT2 expression in the medial temporal lobe and superior temporal gyrus in AD. However, the causes and functional consequences of these disturbances need to be further explored to assess VGLUT1 and VGLUT2 as viable therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Lóbulo Temporal , Proteína 1 de Transporte Vesicular de Glutamato , Proteína 2 de Transporte Vesicular de Glutamato , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Masculino , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Anciano , Femenino , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Anciano de 80 o más Años , Persona de Mediana Edad , Inmunohistoquímica
8.
Psychopharmacology (Berl) ; 241(6): 1161-1176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347153

RESUMEN

RATIONALE: Chronic stress exposure disrupts the medial prefrontal cortex's (mPFC) ability to regulate impulses, leading to the loss of control over alcohol drinking in rodents, emphasizing the critical role of this forebrain area in regulating alcohol consumption. Moreover, chronic stress exposure causes lateralization of mPFC functions with volumetric and functional changes, resulting in hyperactivity in the right hemisphere and functional decrease in the left. OBJECTIVES: This study investigated the inhibitory role of the left prelimbic cortex (LPrL) on ethanol consumption induced by chronic social defeat stress (SDS) in male mice and to examine if inactivation of the LPrL causes disinhibition of the right mPFC, leading to an increase in ethanol consumption. We also investigated the role of lateralization and neurochemical alterations in the mPFC related to ethanol consumption induced by chronic SDS. To this end, we examined the activation patterns of ΔFosB, VGLUT2, and GAD67 in the left and right mPFC. RESULTS: Temporarily blocking the LPrL or right PrL (RPrL) cortices during acute SDS did not affect male mice's voluntary ethanol consumption in male mice. When each cortex was blocked in mice previously exposed to chronic SDS, ethanol consumption also remained unaffected. However, male mice with LPrL lesions during chronic SDS showed an increase in voluntary ethanol consumption, which was associated with enhanced ΔFosB/VGLUT2-positive neurons within the RPrL cortex. CONCLUSIONS: The results suggest that the LPrL may play a role in inhibiting ethanol consumption induced by chronic SDS, while the RPrL may be involved in the disinhibition of ethanol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas , Corteza Prefrontal , Derrota Social , Estrés Psicológico , Animales , Masculino , Estrés Psicológico/metabolismo , Consumo de Bebidas Alcohólicas/psicología , Ratones , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Ratones Endogámicos C57BL , Etanol/administración & dosificación , Etanol/farmacología , Lateralidad Funcional/efectos de los fármacos , Enfermedad Crónica
9.
Neurobiol Dis ; 193: 106452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401650

RESUMEN

A common adverse effect of Parkinson's disease (PD) treatment is L-dopa-induced dyskinesia (LID). This condition results from both dopamine (DA)-dependent and DA-independent mechanisms, as glutamate inputs from corticostriatal projection neurons impact DA-responsive medium spiny neurons in the striatum to cause the dyskinetic behaviors. In this study, we explored whether suppression of presynaptic corticostriatal glutamate inputs might affect the behavioral and biochemical outcomes associated with LID. We first established an animal model in which 6-hydroxydopamine (6-OHDA)-lesioned mice were treated daily with L-dopa (10 mg/kg, i.p.) for 2 weeks; these mice developed stereotypical abnormal involuntary movements (AIMs). When the mice were pretreated with the NMDA antagonist, amantadine, we observed suppression of AIMs and reductions of phosphorylated ERK1/2 and NR2B in the striatum. We then took an optogenetic approach to manipulate glutamatergic activity. Slc17a6 (vGluT2)-Cre mice were injected with pAAV5-Ef1a-DIO-eNpHR3.0-mCherry and received optic fiber implants in either the M1 motor cortex or dorsolateral striatum. Optogenetic inactivation at either optic fiber implant location could successfully reduce the intensity of AIMs after 6-OHDA lesioning and L-dopa treatment. Both optical manipulation strategies also suppressed phospho-ERK1/2 and phospho-NR2B signals in the striatum. Finally, we performed intrastriatal injections of LDN 212320 in the dyskenesic mice to enhance expression of glutamate uptake transporter GLT-1. Sixteen hours after the LDN 212320 treatment, L-dopa-induced AIMs were reduced along with the levels of striatal phospho-ERK1/2 and phospho-NR2B. Together, our results affirm a critical role of corticostriatal glutamate neurons in LID and strongly suggest that diminishing synaptic glutamate, either by suppression of neuronal activity or by upregulation of GLT-1, could be an effective approach for managing LID.


Asunto(s)
Discinesias , Enfermedad de Parkinson , Ratas , Ratones , Animales , Levodopa/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Oxidopamina/toxicidad , Ácido Glutámico/metabolismo , Ratas Sprague-Dawley , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Antiparkinsonianos/efectos adversos
10.
Front Endocrinol (Lausanne) ; 15: 1336854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370359

RESUMEN

Diabetic Peripheral Neuropathy (DPN) poses an escalating threat to public health, profoundly impacting well-being and quality of life. Despite its rising prevalence, the pathogenesis of DPN remains enigmatic, and existing clinical interventions fall short of achieving meaningful reversals of the condition. Notably, neurostimulation techniques have shown promising efficacy in alleviating DPN symptoms, underscoring the imperative to elucidate the neurobiochemical mechanisms underlying DPN. This study employs an integrated multi-omics approach to explore DPN and its response to neurostimulation therapy. Our investigation unveiled a distinctive pattern of vesicular glutamate transporter 2 (VGLUT2) expression in DPN, rigorously confirmed through qPCR and Western blot analyses in DPN C57 mouse model induced by intraperitoneal Streptozotocin (STZ) injection. Additionally, combining microarray and qPCR methodologies, we revealed and substantiated variations in the expression of the Amyloid Precursor Protein (APP) family in STZ-induced DPN mice. Analyzing the transcriptomic dataset generated from neurostimulation therapy for DPN, we intricately explored the differential expression patterns of VGLUT2 and APPs. Through correlation analysis, protein-protein interaction predictions, and functional enrichment analyses, we predicted the key biological processes involving VGLUT2 and the APP family in the pathogenesis of DPN and during neurostimulation therapy. This comprehensive study not only advances our understanding of the pathogenesis of DPN but also provides a theoretical foundation for innovative strategies in neurostimulation therapy for DPN. The integration of multi-omics data facilitates a holistic view of the molecular intricacies of DPN, paving the way for more targeted and effective therapeutic interventions.


Asunto(s)
Precursor de Proteína beta-Amiloide , Diabetes Mellitus Experimental , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Western Blotting , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Calidad de Vida , Estreptozocina , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
11.
Neuroscience ; 541: 14-22, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38280511

RESUMEN

Innate defensive behavior is important for animal survival. The Vglut2+ neurons in the ventral tegmental area (VTA) have been demonstrated to play important roles in innate defensive behaviors, but the neural circuit mechanism is still unclear. Here, we find that VTA - zona incerta (ZI) glutamatergic projection is involved in regulating innate fear responses. Combining calcium signal recording and chemogentics, we find that VTA-Vglut2+ neurons respond to foot shock stimulus. Inhibition of VTA-Vglut2+ neurons reduces foot shock-evoked freezing, while chemogentic activation of these neurons results in an enhanced fear response. Using viral tracing and immunofluorescence, we show that VTA - Vglut2+ neurons send direct excitatory outputs to the ZI. Moreover, we find that the activity of VTAVglut2 - ZI projection is pivotal in modulating fear response. Together, our study reveals a new VTA - ZI glutamatergic circuit in mediating innate fear response and provides a potential target for treating post-traumatic stress disorder.


Asunto(s)
Área Tegmental Ventral , Zona Incerta , Animales , Área Tegmental Ventral/fisiología , Neuronas/fisiología , Técnica del Anticuerpo Fluorescente , Miedo/fisiología
12.
Neuron ; 112(3): 488-499.e5, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38086374

RESUMEN

Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.


Asunto(s)
Dopamina , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Neuronas Dopaminérgicas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834473

RESUMEN

The amygdala has large populations of neurons utilizing specific calcium-binding proteins such as parvalbumin (PV), calbindin (CB), or calretinin (CR). They are considered specialized subsets of γ-aminobutyric acid (GABA) interneurons; however, many of these cells are devoid of GABA or glutamate decarboxylase. The neurotransmitters used by GABA-immunonegative cells are still unknown, but it is suggested that a part may use glutamate. Thus, this study investigates in the amygdala of the guinea pig relationships between PV, CB, or CR-containing cells and GABA transporter (VGAT) or glutamate transporter type 2 (VGLUT2), markers of GABAergic and glutamatergic neurons, respectively. The results show that although most neurons using PV, CB, and CR co-expressed VGAT, each of these populations also had a fraction of VGLUT2 co-expressing cells. For almost all neurons using PV (~90%) co-expressed VGAT, while ~1.5% of them had VGLUT2. The proportion of neurons using CB and VGAT was smaller than that for PV (~80%), while the percentage of cells with VGLUT2 was larger (~4.5%). Finally, only half of the neurons using CR (~53%) co-expressed VGAT, while ~3.5% of them had VGLUT2. In conclusion, the populations of neurons co-expressing PV, CB, and CR are in the amygdala, primarily GABAergic. However, at least a fraction of neurons in each of them co-express VGLUT2, suggesting that these cells may use glutamate. Moreover, the number of PV-, CB-, and CR-containing neurons that may use glutamate is probably larger as they can utilize VGLUT1 or VGLUT3, which are also present in the amygdala.


Asunto(s)
Proteínas de Unión al Calcio , Ácido gamma-Aminobutírico , Cobayas , Animales , Proteínas de Unión al Calcio/metabolismo , Calbindina 2/metabolismo , Calbindinas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Parvalbúminas/metabolismo , Glutamatos/metabolismo , Amígdala del Cerebelo/metabolismo
14.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873436

RESUMEN

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

15.
Drug Alcohol Depend Rep ; 8: 100180, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37533815

RESUMEN

Background: Initiation of use/co-use of nicotine and alcohol, commonly occurring in an episodic manner during adolescence, can imprint vulnerability to the developing brain and lead to addiction. The ventral tegmental area (VTA) is a key heterogeneous region of the mesocorticolimbic circuit involved in the binge-drinking and intoxication step of the addiction circuit. Higher human post-mortem VTA expression of vesicular glutamate transporter 2 (VGLUT2), a marker of the glutamatergic phenotype also expressed in dopaminergic [Tyrosine Hydroxylase (Th)-positive] neurons, has been associated with chronic nicotine use and co-use with alcohol. Methods: The present study aimed to map and characterize the Vglut2- and Th-expressing neurons in the VTA of adolescent male rats exposed or not to prolonged (six-weeks) episodic (three consecutive days/week) nicotine and/or alcohol administration. Nicotine (0.35 mg/kg free base) was injected subcutaneously, whereas alcohol (2 g/kg 20%) was administrated via gavage. Vglut2 and Th mRNA was assessed in the anterior and posterior VTA by use of in situ hybridization. Results: The profile of neurons varied with substance-exposure among VTA subregions. Th-only expressing neurons were more abundant in the posterior VTA of the group exposed to nicotine-only, compared to controls. The same neurons were, on the contrary, less present in the anterior VTA of animals exposed to alcohol-only, who also displayed a higher number of Vglut2-expressing neurons in the lateral anterior VTA. Conclusions: VTA Vglut2- and Th-only neurons seem differentially involved in the effects of adolescent episodic nicotine and alcohol exposure in the anterior and posterior VTA.

16.
Front Psychiatry ; 14: 1227824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502813

RESUMEN

Background: Autoantibodies against the vesicular glutamate transporter type 2 (VGlut2) can trigger impaired synaptic signaling and are described here for the first time in association with mixed dementia. Methods: We report on a 71-year-old female patient with a dementing syndrome who underwent a thorough dementia diagnosis including neuropsychological testing, magnetic resonance imaging (MRI), 18F-fluorodesoxyglucose positron emission tomography (FDG-PET), and a spinal tap to search for neural autoantibodies. Results: Our patient exhibited mixed dementia. Her CSF revealed elevated ptau 181 protein and a reduced Aß42/40 ratio indicating Alzheimer's disease (AD) pathology. In addition, neuropsychological testing showed a profile consistent with AD with impaired memory, reduced semantic word fluency, naming disorder, and impaired visuoconstructive skills. Nevertheless, in-depth neuropsychological testing also revealed marked psychomotor slowing and visuospatial perceptual impairments that are more indicative of the presence of DLB. Overall, her dementia is more likely of mixed pathology. In addition, we repeatedly detected VGlut2 autoantibodies in her serum. Conclusion: To the best of our knowledge, this report is the first to describe mixed dementia associated with VGlut2 autoantibodies.

17.
J Comp Neurol ; 531(14): 1381-1388, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37436768

RESUMEN

The principal neurons (PNs) of the lateral superior olive nucleus (LSO) are an important component of mammalian brainstem circuits that compare activity between the two ears and extract intensity and timing differences used for sound localization. There are two LSO PN transmitter types, glycinergic and glutamatergic, which also have different ascending projection patterns to the inferior colliculus (IC). Glycinergic LSO PNs project ipsilaterally while glutamatergic one's projections vary in laterality by species. In animals with good low-frequency hearing (<3 kHz) such as cats and gerbils, glutamatergic LSO PNs have both ipsilateral and contralateral projections; however, rats that lack this ability only have the contralateral pathway. Additionally, in gerbils, the glutamatergic ipsilateral projecting LSO PNs are biased to the low-frequency limb of the LSO suggesting this pathway may be an adaptation for low-frequency hearing. To further test this premise, we examined the distribution and IC projection pattern of LSO PNs in another high-frequency specialized species using mice by combining in situ hybridization and retrograde tracer injections. We observed no overlap between glycinergic and glutamatergic LSO PNs confirming they are distinct cell populations in mice as well. We found that mice also lack the ipsilateral glutamatergic projection from LSO to IC and that their LSO PN types do not exhibit pronounced tonotopic biases. These data provide insights into the cellular organization of the superior olivary complex and its output to higher processing centers that may underlie functional segregation of information.


Asunto(s)
Colículos Inferiores , Complejo Olivar Superior , Animales , Ratones , Ratas , Colículos Inferiores/fisiología , Vías Auditivas/fisiología , Gerbillinae , Núcleo Olivar/fisiología
18.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373365

RESUMEN

Pain is a complex experience that involves physical, emotional, and cognitive aspects. This review focuses specifically on the physiological processes underlying pain perception, with a particular emphasis on the various types of sensory neurons involved in transmitting pain signals to the central nervous system. Recent advances in techniques like optogenetics and chemogenetics have allowed researchers to selectively activate or inactivate specific neuronal circuits, offering a promising avenue for developing more effective pain management strategies. The article delves into the molecular targets of different types of sensory fibers such as channels, for example, TRPV1 in C-peptidergic fiber, TRPA1 in C-non-peptidergic receptors expressed differentially as MOR and DOR, and transcription factors, and their colocalization with the vesicular transporter of glutamate, which enable researchers to identify specific subtypes of neurons within the pain pathway and allows for selective transfection and expression of opsins to modulate their activity.


Asunto(s)
Optogenética , Dolor , Humanos , Optogenética/métodos , Dolor/genética , Células Receptoras Sensoriales , Transducción de Señal , Emociones
19.
Cerebellum ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289359

RESUMEN

Cerebellar nuclei (CN) constitute the sole cerebellar output to the rest of the central nervous system and play a central role in cerebellar circuits. Accumulating evidence from both human genetics and animal studies point to a crucial role for CN connectivity in neurological diseases, including several types of ataxia. However, because of the compact and restricted topography and close functional connection between the CN and the cerebellar cortex, identifying cerebellar deficits exclusively linked to CN is challenging. In this study, we have experimentally ablated large projection glutamatergic neurons of the lateral CN and evaluated the impact of this selective manipulation on motor coordination in mice. To this end, through stereotaxic surgery, we injected the lateral CN of Vglut2-Cre+ mice with an adeno-associated virus (AAV) encoding a Cre-dependent diphtheria toxin receptor (DTR), followed by an intraperitoneal injection of diphtheria toxin (DT) to ablate the glutamatergic neurons of the lateral nucleus. Double immunostaining of cerebellar sections with anti-SMI32 and -GFP antibodies revealed GFP expression and provided evidence of SMI32+ neuron degeneration at the site of AAV injection in the lateral nucleus of Vglut2-Cre+ mice. No changes were observed in Vglut2-Cre negative mice. Analysis of motor coordination by rotarod test indicated that the latency to fall was significantly different before and after AAV/DT injection in the Vglut2-Cre+ group. Elapsed time and number of steps in the beam walking test were significantly higher in AAV/DT injected Vglut2-Cre+ AAV/DT mice compared to controls. We demonstrate for the first time that partial degeneration of glutamatergic neurons in the lateral CN is sufficient to induce an ataxic phenotype.

20.
J Mol Neurosci ; 73(6): 456-468, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294481

RESUMEN

Neuropathic pain is a chronic pain caused by direct damage to the peripheral or central nervous system, characterized by hyperalgesia, allodynia, and spontaneous pain. Hydrogen sulfide (H2S) therapy has been applied for neuropathic pain treatment, although the underlying mechanisms remain unknown. In this study, we sought to ascertain whether H2S therapy could alleviate neuropathic pain in a model of chronic constriction injury (CCI) and, if so, the potential mechanism. A CCI model was established in mice through a spinal nerve ligation method. Intrathecal injection of NaHS was used to treat CCI model mice. The thermal paw withdrawal latency (TPWL) and mechanical paw withdrawal threshold (MPWT) were used for pain threshold evaluation in mice. A series of experiments including immunofluorescence, enzyme-linked immunosorbent assay, electrophysiological test, mitochondrial DNA (mtDNA) quantification, measurement of ATP content, demethylase activity, and western blot were performed to investigate the specific mechanism of H2S treatment in neuropathic pain. Mice with CCI exposure exhibited a decrease in MPWT and TPWL, an increase in IL-1ß and TNF-α expressions, elevated eEPSP amplitude, an upregulation of mtDNA, and a reduction in ATP production, whereas H2S treatment significantly reversed these changes. Furthermore, CCI exposure induced a remarkable increase in vGlut2- and c-fos-positive as well as vGlut2- and Nrf2-positive cells, an increase in Nrf2 located in the nucleus, and an upregulation of H3K4 methylation, and H2S treatment further enhanced these changes. In addition, ML385, a selective Nrf2 inhibitor, reversed the neuroprotective effects of H2S. H2S treatment mitigates CCI-induced neuropathic pain in mice. This protective mechanism is possibly linked to the activation of the Nrf2 signaling pathway in vGlut2-positive cells.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neuralgia , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuralgia/metabolismo , Transducción de Señal/fisiología , Hiperalgesia/metabolismo , ADN Mitocondrial , Adenosina Trifosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA