Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 45(16): 1352-1363, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38376255

RESUMEN

Vibrational spectroscopy enables critical insight into the structural and dynamic properties of molecules. Presently, the majority of theoretical approaches to spectroscopy employ wavefunction-based ab initio or density functional methods that rely on the harmonic approximation. This approximation breaks down for large molecules with strongly anharmonic bonds or for molecules with large internuclear separations. An alternative to these methods involves generating molecular anharmonic potential energy surfaces (potentials) and using them to extrapolate the vibrational frequencies. This study examines the efficacy of density functional theory (DFT) and the correlation consistent Composite Approach (ccCA) in generating anharmonic frequencies from potentials of small main group molecules. Vibrational self-consistent field Theory (VSCF) and post-VSCF methods were used to calculate the fundamental frequencies of these molecules from their potentials. Functional choice, basis set selection, and mode-coupling are also examined as factors in influencing accuracy. The absolute deviations for the calculated frequencies using potentials at the ccCA level of theory were lower than the potentials at the DFT level. With DFT resulting in bending modes that are better described than those of ccCA, a multilevel DFT:ccCA approach where DFT potentials are used for single vibrational mode potentials and ccCA is used for vibrational mode-mode couplings can be utilized for larger polyatomic systems. The frequencies obtained with this multilevel approach using VCIPSI-PT2 were closer to experimental frequencies than the scaled harmonic frequencies, indicating the success of utilizing post-VSCF methods to generate more accurate representations of computed infrared spectra.

2.
Braz J Microbiol ; 53(1): 289-301, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34652743

RESUMEN

Vibrio parahaemolyticus is an important foodborne pathogenic bacterium that harbors the type III secretion system 1 (T3SS1) as an essential virulence factor. However, the pathogenesis and infection mechanism mediated by T3SS1 are not entirely clarified. Similar to previous studies on other T3SS-positive bacteria, the T3SS1 needle is a major extracellular component in V. parahaemolyticus. We recently showed that the needle gene-deletion mutant (ΔvscF) exhibited markedly decreased cytotoxicity and effector translocation during interaction with HeLa cells. To further elucidate the pathogenesis of T3SS1 during host cell infection, bacterial RNA was extracted from wild-type POR-1 and ΔvscF mutants under infected condition for comparative RNA sequencing analysis in HeLa cell. The results showed that 120 differentially expressed genes (DEGs) were identified in the ΔvscF-infected group. These encoded proteins of DEGs, such as VP2088, VP2089, and VP2091, were annotated as ABC transporter system, whereas VP0757, VP1123, and VP1289 may be new transcriptional regulators. In addition, the downregulation of T3SS1 had a positive influence on the expression of T3SS2. Moreover, the transcription of the basal body is unaffected by the needle, and there was a close relation among the tip, translocon, and needle, because bacterial adenylate cyclase two-hybrid system (BACTH system) assay indicated the interaction of VP1656, VP1670, VP1693, and VP1694 (VscF). This study provides insights into transcription mechanism of T3SS1 upon infecting HeLa cell, which is expected to better clarify the T3SS1 virulent mechanism.


Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células HeLa , Humanos , Transcriptoma , Vibriosis/microbiología , Vibriosis/patología , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
3.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34833985

RESUMEN

Proteins play an important role in biological and biochemical processes taking place in the living system. To uncover these fundamental processes of the living system, it is an absolutely necessary task to understand the structure and dynamics of the protein. Vibrational spectroscopy is an established tool to explore protein structure and dynamics. In particular, two-dimensional infrared (2DIR) spectroscopy has already proven its versatility to explore the protein structure and its ultrafast dynamics, and it has essentially unprecedented time resolutions to observe the vibrational dynamics of the protein. Providing several examples from our theoretical and experimental efforts, it is established here that two-dimensional vibrational spectroscopy provides exceptionally more information than one-dimensional vibrational spectroscopy. The structural information of the protein is encoded in the position, shape, and strength of the peak in 2DIR spectra. The time evolution of the 2DIR spectra allows for the visualisation of molecular motions.


Asunto(s)
Proteínas/química , Enlace de Hidrógeno , Conformación Proteica , Espectrofotometría Infrarroja
4.
Front Cell Infect Microbiol ; 11: 652432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869083

RESUMEN

In Vibrio parahaemolyticus, type III secretion system 1 (T3SS1) is a major virulence factor that delivers effectors into the host eukaryotic cytoplasm; however, studies on its infection mechanism are currently limited. To determine the function of the vscF gene, we constructed the vscF deletion mutant ΔvscF and complementation strain CΔvscF. Compared with those of wild-type POR-1 and CΔvscF, the cytotoxic, adherent, and apoptotic abilities of ΔvscF in HeLa cells were significantly reduced (P < 0.01). Furthermore, in infected HeLa cells, the mutant strain reduced the translocation rates of VP1683 and VP1686 effectors compared to the wild-type and complementation strains. A BLAST search showed that vscF is homologous to the MixH needle protein of Shigella flexneri, indicating that the vscF gene encodes the needle protein of T3SS1 in V. parahaemolyticus. Additional translocation assays showed that VPA0226 translocated into the HeLa eukaryotic cytoplasm via T3SS1, secretion assays showed that VPA0226 can be secreted to supernatant by T3SS1, indicating that VPA0226 belongs to the unpublished class of T3SS1 effectors. In conclusion, our data indicate an essential role of vscF in V. parahaemolyticus T3SS1 and revealed that VPA0226 can be secreted into the host cell cytoplasm via T3SS1. This study provides insights into a previously unexplored aspect of T3SS1, which is expected to contribute to the understanding of its infection mechanism.


Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Proteínas Bacterianas , Células HeLa , Humanos , Factores de Virulencia
5.
Front Chem ; 8: 623641, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585403

RESUMEN

From an astrochemical point of view ketenimine (CH2CNH) is a complex organic molecule (COM) and therefore likely to be a building block for biologically relevant molecules. Since it has been detected in the star-forming region Sagittarius B2(N), it is of high relevance in this field. Although experimental data are available for certain bands, for some energy ranges such as above 1200 cm-1 reliable data virtually do not exist. In addition, high-level ab initio calculations are neither reported for ketenimine nor for one of its deuterated isotopologues. In this paper, we provide for the first time data from accurate quantum chemical calculations and a thorough analysis of the full rovibrational spectrum. Based on high-level potential energy surfaces obtained from explicitly correlated coupled-cluster calculations including up to 4-mode coupling terms, the (ro)vibrational spectrum of ketenimine has been studied in detail by variational calculations relying on rovibrational configuration interaction (RVCI) theory. Strong Fermi resonances were found for all isotopologues. Rovibrational infrared intensities have been obtained from dipole moment surfaces determined from the distinguishable cluster approximation. A comparison of the spectra of the CH2CNH molecule with experimental data validates our results, but also reveals new insight about the system, which shows very strong Coriolis coupling effects.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 196: 289-294, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29459159

RESUMEN

The CH vibrational bands of methyl benzoate are studied to understand its coupling pattern with other vibrational bands of the biological molecule. This will facilitate to understand the biological structure and dynamics in spectroscopic as well as in microscopic study. Due to the congested spectroscopic pattern, near degeneracy, and strong anharmonicity of the CH stretch vibrations, assignment of the CH vibrational frequencies are often misleading. Anharmonic vibrational frequency calculation with multidimensional potential energy surface interprets the CH vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational frequency calculation and discuss the unexpected red shift of asymmetric CH stretch vibration of methyl group. The CD stretch vibrational band which is splitted to double peaks due to the Fermi resonance is also discussed here.


Asunto(s)
Benzoatos/análisis , Benzoatos/química , Modelos Moleculares , Análisis Espectral , Vibración
7.
Artículo en Inglés | MEDLINE | ID: mdl-28689075

RESUMEN

Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 961-78, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25459622

RESUMEN

FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory.


Asunto(s)
Alantoína/química , Dimerización , Modelos Moleculares , Teoría Cuántica , Espectrometría Raman , Electrones , Enlace de Hidrógeno , Conformación Molecular , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Termodinámica , Vibración
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 131: 545-55, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24840497

RESUMEN

This paper discusses the quality and feasibility of highly correlated ab initio techniques in a vibrational self-consistent field (VSCF) approach using acetonitrile as a model system. The topical renormalized coupled-cluster technique exploiting the similarity-transformed Hamiltonian's left eigenstates (i.e. CR-CC(2,3)) is investigated alongside the well-known Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2) and coupled cluster (CCSD(T)) methods. The inclusion of mode triple interactions is discussed and it is found that the use of an effective core potential (ECP) serves as a viable compromise during the highly demanding task of computing such contributions, thus enabling a grid-based evaluation of three mode interaction terms with coupled cluster techniques also for larger molecules. In this context, a previously proposed reduced coupling scheme [1] is investigated, confirming the applicability of this technique to a system exhibiting a rather complex electronic structure. A combination of Ahlrichs' triple-ζ valence polarized (TZVP) basis set with Dunning's set of core-valence correlation functions is found to deliver results in good agreement with experiment while being computationally very feasible. Since CH3CN exhibits four degenerate vibrational degrees of freedom, it serves as an ideal model system for critically assessing the qualities of the degenerate second-order perturbation theory corrected (DPT2) VSCF technique. Besides fundamental vibrations, a thorough investigation of overtone transitions and combination bands is conducted by means of comparing the results to both available and newly recorded experimental data.


Asunto(s)
Acetonitrilos/química , Modelos Moleculares , Teoría Cuántica , Espectrofotometría Infrarroja/métodos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 128: 653-64, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24704482

RESUMEN

FTIR, FT-Raman and UV-Vis spectra of 3-methyladenine have been recorded and investigated using quantum chemical calculations. The molecular geometry and vibrational spectra of 3-methyladenine in the ground state are computed by using HF and DFT methods with 6-311G(d,p) basis set. VSCF, CC-VSCF methods based on 2MR-QFF and PT2 (Barone method) have been utilized for computing anharmonic vibrational frequencies. These methods yield results that are in remarkable agreement with the experimental data. The magnitudes of coupling between pair of modes have been also computed. Vibrational modes are assigned with the help of visual inspection of atomic displacements. The electronic spectra, simulated at TD-B3LYP/6-311++G(d,p) level of theory, are compared to the experiment. The global quantities: electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO and LUMO energy eigenvalues are also computed at B3LYP/6-311++G(d,p) level of theory.


Asunto(s)
Adenina/análogos & derivados , Modelos Químicos , Adenina/química , Espectrofotometría/métodos
11.
Artículo en Inglés | MEDLINE | ID: mdl-23838574

RESUMEN

This study introduces an improved hybrid MP2/MP4 ab initio potential for vibrational spectroscopy calculations which is very accurate, yet without high computational demands. The method uses harmonic vibrational calculations with the MP4(SDQ) potential to construct an improved MP2 potential by coordinate scaling. This improved MP2 potential is used for the anharmonic VSCF calculation. The method was tested spectroscopically for four molecules: butane, acetone, ethylene and glycine. Very good agreement with experiment was found. For most of the systems, the more accurate harmonic treatment considerably improved the MP2 anharmonic results.


Asunto(s)
Acetona/química , Butanos/química , Etilenos/química , Glicina/química , Espectrofotometría Infrarroja/métodos , Algoritmos , Simulación por Computador , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA