Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Virol ; : e0054024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162433

RESUMEN

Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE: Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.

2.
Mol Ther ; 32(7): 2264-2285, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702887

RESUMEN

Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.


Asunto(s)
Vesiculovirus , Animales , Humanos , Ratones , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células HEK293 , Proteínas Virales/metabolismo , Proteínas Virales/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral
3.
Cells ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667313

RESUMEN

The cellular transmembrane protein MARCH8 impedes the incorporation of various viral envelope glycoproteins, such as the HIV-1 envelope glycoprotein (Env) and vesicular stomatitis virus G-glycoprotein (VSV-G), into virions by downregulating them from the surface of virus-producing cells. This downregulation significantly reduces the efficiency of virus infection. In this study, we aimed to further characterize this host protein by investigating its species specificity and the domains responsible for its antiviral activity, as well as its ability to inhibit cell-to-cell HIV-1 infection. We found that the antiviral function of MARCH8 is well conserved in the rhesus macaque, mouse, and bovine versions. The RING-CH domains of these versions are functionally important for inhibiting HIV-1 Env and VSV-G-pseudovirus infection, whereas tyrosine motifs are crucial for the former only, consistent with findings in human MARCH8. Through analysis of chimeric proteins between MARCH8 and non-antiviral MARCH3, we determined that both the N-terminal and C-terminal cytoplasmic tails, as well as presumably the N-terminal transmembrane domain, of MARCH8 are critical for its antiviral activity. Notably, we found that MARCH8 is unable to block cell-to-cell HIV-1 infection, likely due to its insufficient downregulation of Env. These findings offer further insights into understanding the biology of this antiviral transmembrane protein.


Asunto(s)
VIH-1 , Proteínas de la Membrana , Humanos , Animales , Proteínas de la Membrana/metabolismo , Células HEK293 , Ubiquitina-Proteína Ligasas/metabolismo , Ratones , Bovinos , Macaca mulatta , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Antivirales/farmacología , Dominios Proteicos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
4.
J Med Virol ; 95(9): e29087, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37707319

RESUMEN

Understanding the cellular host factors that promote and inhibit viral entry is important for identifying viral countermeasures. CRISPR whole-genome screens can be used to rapidly discover host factors that contribute to or impair viral entry. However, when using live viruses and cellular lethality for selection, these screens can identify an overwhelming number of genes without specificity for the stage of the viral infection cycle. New screening methods are needed to identify host machinery contributing to specific steps of viral infection. Here, we developed a CRISPR whole-genome screen and counter-screen strategy based on a pseudoviral platform that allowed identification of genes specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike and vesicular stomatitis virus glycoprotein (VSV-G) mediated entry. Screening of SARS-CoV-2 spike and VSV-G on the same lentiviral pseudovirus allowed the identification of entry-specific genes relative to genes associated with retro-transcription, integration, and reporter expression from the lentiviral pseudovirus. Second, a Cre-Gag fusion protein packaged into the pseudovirus was used to bypass retro-transcription and integration by directly activating a floxed fluorescent protein reporter upon entry  reduced the number of gene hits and increase specificity for viral entry. Our approach correctly identified SARS-CoV-2 and VSV-G receptors ACE2 and low-density lipoprotein receptors, respectively, and distinguished genes associated with retroviral reporter expression from envelope-mediated entry. Moreover, the CRE-Gag fusion/flox reporter increased the screen specificity for viral entry-associated genes. Validation of a few hits demonstrates that this approach distinguishes envelope-specific host factors from genes affecting reporter expression. Overall, this approach provides a new strategy for identifying host genes influencing viral entry without the confounding complexity of live-viral screens which produce long gene lists associated with all aspects of viral pathogenesis and replication.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genes Virales , Receptores Virales
5.
J Virol ; 97(10): e0075223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37712704

RESUMEN

IMPORTANCE: The phenomenon of reversible clustering is expected to further nuance HIV immune stealth because virus surfaces can escape interaction with antibodies (Abs) by hiding temporarily within clusters. It is well known that mucin reduces HIV virulence, and the current perspective is that mucin aggregates HIV-1 to reduce infections. Our findings, however, suggest that mucin is dispersing HIV clusters. The study proposes a new paradigm for how HIV-1 may broadly evade Ab recognition with reversible clustering and why mucin effectively neutralizes HIV-1.


Asunto(s)
VIH-1 , Mucinas , Humanos , Anticuerpos Neutralizantes , Glicosilación , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/fisiología , Mucinas/metabolismo
6.
Biotechnol Rep (Amst) ; 38: e00792, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36950261

RESUMEN

Background: HIV-1-derived lentiviral vectors (LVs) are capable of transducing human cells by integrating the transgene into the host genome. In order to do that, LVs should have enough time and space to interact with the surface of the target cells. Herein, we used a microfluidic system to facilitate the transduction of BCP-ALL cells. Methods and Results: We used a SU-8 mold to fabricate a PDMS microfluidic chip containing three channels with a 50 µm height and a surface matching 96-well plates. In order to produce LVs, we used HEK293T cells to package the second generation of LVs. First, we evaluated the cell recovery from the microfluidic chip. Cell recovery assessment showcased that 3 h and 6 h of incubation in microfluidic channels containing 100,000 NALM-6 (BCP-ALL) cells with 2µL of culture media yielded 87±7.2% and 80.6 ± 10% of cell recovery, respectively. Afterward, the effects of LV-induced toxicity were evaluated using 10-30% LV concentrations in time frames ranging from 3 h to 24 h. In 96-well plates, it took 12-24 h for the viruses with 20% and 30% concentrations to affect the cell survival significantly. These effects were intensified in the microfluidic system implying that microfluidic is capable of enhancing LV transduction. Based on the evidence of cell recovery and cell survival we chose 6 h of incubation with 20% LV. Conclusion: The results from EGFP expression showcased that a microfluidic system could increase the LV transduction in BCP-ALL cells by almost 9-folds. All in all, the microfluidic system seems to be a great armamentarium in optimizing LV-based transduction.

7.
Anal Chim Acta ; 1193: 339406, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058004

RESUMEN

The COVID-19 pandemic negatively affected the economy and health security on a global scale, causing a drastic change on lifestyle, calling a need to mitigate further transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in the sensitive and rapid detection of various molecules including viruses, through the identification of characteristic peaks of their outer membrane proteins. Accurate detection can be developed through the synergistic integration effect among SERS-active substrate, the appropriate laser wavelength, and the target analyte. In this study, gold nanocavities (Au NC) and Au nanoparticles upon ZrO2 nano-bowls (Au NPs/pZrO2) were tested and used as SERS-active substrates in detecting SARS-CoV-2 pseudovirus containing S protein as a surface capsid glycoprotein (SARS-CoV-2 S pseudovirus) and vesicular stomatitis virus G (VSV-G) pseudo-type lentivirus (VSV-G pseudovirus) to demonstrate their virus detection capability. The optimized Au NCs and Au NPs/pZrO2 substrates were then verified by examining the repetition of measurement, reproducibility, and detection limit. Due to the difference in geometry and composition of the substrates, the characteristic peak-positions of live SARS-CoV-2 S and VSV-G pseudoviruses in the obtained Raman spectra vary, which were also compared with those of inactivated ones. Based on the experimental results, SERS mechanism of each substrate to detect virus is proposed. The formation of hot spots brought by the synergistic integration effect among substrate, analyte, and laser induction may result differences in the obtained SERS spectra.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Oro , Humanos , Pandemias , Reproducibilidad de los Resultados , SARS-CoV-2 , Espectrometría Raman
8.
J Extracell Vesicles ; 10(13): e12171, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807503

RESUMEN

Extracellular vesicles (EVs) secreted by living cells are expected to deliver biological cargo molecules, including RNA and proteins, to the cytoplasm of recipient cells. There is an increasing need to understand the mechanism of intercellular cargo delivery by EVs. However, the lack of a feasible bioassay has hampered our understanding of the biological processes of EV uptake, membrane fusion, and cargo delivery to recipient cells. Here, we describe a reporter gene assay that can measure the membrane fusion efficiency of EVs during cargo delivery to recipient cells. When EVs containing tetracycline transactivator (tTA)-fused tetraspanins are internalized by recipient cells and fuse with cell membranes, the tTA domain is exposed to the cytoplasm and cleaved by tobacco etch virus protease to induce tetracycline responsive element (TRE)-mediated reporter gene expression in recipient cells. This assay (designated as EV-mediated tetraspanin-tTA delivery assay, ETTD assay), enabled us to assess the cytoplasmic cargo delivery efficiency of EVs in recipient cells. With the help of a vesicular stomatitis virus-derived membrane fusion protein, the ETTD assay could detect significant enhancement of cargo delivery efficiency of EVs. Furthermore, the ETTD assay could evaluate the effect of potential cargo delivery enhancers/inhibitors. Thus, the ETTD assay may contribute to a better understanding of the underlying mechanism of the cytoplasmic cargo delivery by EVs.


Asunto(s)
Vesículas Extracelulares/metabolismo , Perfilación de la Expresión Génica/métodos , Genes Reporteros , Fusión de Membrana/genética , Transducción de Señal/genética , Transporte Biológico/genética , Comunicación Celular/genética , Membrana Celular/metabolismo , Citoplasma/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Tetraciclina/metabolismo , Tetraspaninas/metabolismo , Transactivadores/metabolismo , Transfección
9.
Acta Naturae ; 13(3): 114-121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707904

RESUMEN

Targeting protein therapeutics to specific cells and tissues is a major challenge in modern medicine. Improving the specificity of protein therapeutic delivery will significantly enhance efficiency in drug development. One of the promising tools for protein delivery is extracellular vesicles (EVs) that are enveloped by a complex lipid bilayer. EVs are secreted by almost all cell types and possess significant advantages: biocompatibility, stability, and the ability to penetrate the blood-brain barrier. Overexpression of the vesicular stomatitis virus protein G (VSV-G) was shown to promote EV formation by the producer cell. We have developed an EV-based system for targeted delivery of protein cargoes to antigen-presenting cells (APCs). In this study, we show that attachment of a recombinant llama nanobody α-CD206 to the N-terminus of a truncated VSV-G increases the selectivity of EV cargo delivery mainly to APCs. These results highlight the outstanding technological and biomedical potential of EV-based delivery systems for correcting the immune response in patients with autoimmune, viral, and oncological diseases.

10.
Pharmaceutics ; 13(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064144

RESUMEN

Delivering protein therapeutics specifically into target cells and tissues is a promising avenue in medicine. Advancing this process will significantly enhance the efficiency of the designed drugs. In this regard, natural membrane-based systems are of particular interest. Extracellular vesicles (EVs), being the bilayer lipid particles secreted by almost all types of cells, have several principal advantages: biocompatibility, carrier stability, and blood-brain barrier penetrability, which make them a perspective tool for protein therapeutic delivery. Here, we evaluate the engineered genetically encoded EVs produced by a human cell line, which allow efficient cargo loading. In the devised system, the protein of interest is captured by self-assembling structures, i.e., "enveloped protein nanocages" (EPN). In their turn, EPNs are encapsulated in fusogenic EVs by the overexpression of vesicular stomatitis virus G protein (VSV-G). The proteomic profiles of different engineered EVs were determined for a comprehensive evaluation of their therapeutic potential. EVs loading mediated by bio-safe Fos-Jun heterodimerization demonstrates an increased efficacy of active cargo loading and delivery into target cells. Our results emphasize the outstanding technological and biomedical potential of the engineered EV systems, including their application in adoptive cell transfer and targeted cell reprogramming.

11.
Cytotherapy ; 23(9): 787-792, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119434

RESUMEN

BACKGROUND AIMS: Vesicular stomatitis virus G (VSV-G)-pseudotyped lentiviral vectors (LVs) are widely used to reliably generate genetically modified, clinical-grade T-cell products. However, the results of genetically modifying natural killer (NK) cells with VSV-G LVs have been variable. The authors explored whether inhibition of the IKK-related protein kinases TBK1 and IKKε, key signaling molecules of the endosomal TLR4 pathway, which is activated by VSV-G, would enable the reliable transduction of NK cells by VSV-G LVs. METHODS: The authors activated NK cells from peripheral blood mononuclear cells using standard procedures and transduced them with VSV-G LVs encoding a marker gene (yellow fluorescent protein [YFP]) or functional genes (chimeric antigen receptors [CARs], co-stimulatory molecules) in the presence of three TBK1/IKKε inhibitors (MRT67307, BX-795, amlexanox). NK cell transduction was evaluated by flow cytometry and/or western blot and the functionality of expressed CARs was evaluated in vitro. RESULTS: Blocking TBK1/IKKε during transduction of NK cells enabled their efficient transduction by VSV-G LVs as judged by YFPexpression of 40-50%, with half maximal effective concentrations of 1.1 µM (MRT67307), 5 µM (BX-795) and 24.8 µM (amlexanox). Focusing on MRT67307, the authors successfully generated NK cells expressing CD19-CARs or HER2-CARs with an inducible co-stimulatory molecule. CAR NK cells exhibited increased cytolytic activity and ability to produce cytokines in comparison to untreated controls, confirming CAR functionality. CONCLUSIONS: The authors demonstrate that inhibition of TBK1/IKKε enables the reliable generation of genetically modified NK cells using VSV-G LVs. The authors' protocol can be readily adapted to generate clinical-grade NK cells and thus has the potential to facilitate the clinical evaluation of genetically modified NK cell-based therapeutics in the future.


Asunto(s)
Quinasa I-kappa B , Estomatitis Vesicular , Animales , Vectores Genéticos/genética , Humanos , Quinasa I-kappa B/genética , Células Asesinas Naturales , Lentivirus/genética , Leucocitos Mononucleares , Proteínas Serina-Treonina Quinasas/genética , Transducción Genética
12.
ACS Biomater Sci Eng ; 7(7): 3351-3360, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34111927

RESUMEN

An effective drug delivery system (DDS) relies on an efficient cellular uptake and faster intracellular delivery of theranostic agents, bypassing the endosomal mediated degradation of the payload. The use of viral nanoparticles (VNPs) permits such advancement, as the viruses are naturally evolved to infiltrate the host cells to deliver their genetic material. As a proof of concept, we bioengineered the vesicular stomatitis virus glycoprotein (VSV-G)-based near-infrared (NIR) active viral nanoconstructs (NAVNs) encapsulating indocyanine green dye (ICG) for NIR bioimaging. NAVNs are spherical in size and have the intrinsic cellular-fusogenic properties of VSV-G. Further, the NIR imaging displaying higher fluorescence intensity in NAVNs treated cells suggests enhanced cellular uptake and delivery of ICG by NAVNs compared to the free form of ICG. The overall study highlights the effectiveness of VSV-G-based VNPs as an efficient delivery system for NIR fluorescence imaging.


Asunto(s)
Nanopartículas , Proteínas Virales , Sistemas de Liberación de Medicamentos , Fluorescencia , Verde de Indocianina
13.
Cytotherapy ; 23(5): 452-458, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33715950

RESUMEN

BACKGROUND AIMS: Viral vectors are commonly used to introduce chimeric antigen receptor (CAR) constructs into cell therapy products for the treatment of human disease. They are efficient at gene delivery and integrate into the host genome for subsequent replication but also carry risks if replication-competent lentivirus (RCL) remains in the final product. An optimal CAR T-cell product should contain sufficient integrated viral material and no RCL. Current product testing methods include cell-based assays with slow turnaround times and rapid quantitative polymerase chain reaction (PCR)-based assays that suffer from high result variability. The authors describe the development of a droplet digital PCR (ddPCR) method for detection of the vesicular stomatitis virus G glycoprotein envelope sequence, required for viral assembly, and the replication response element to measure integration of the CAR construct. METHODS: Assay validation included precision, linearity, sensitivity, specificity and reproducibility over a range of low to high concentrations. RESULTS: The limit of detection was 10 copies/µL, whereas negative samples showed <1.3 copies/µL. Within and between assay imprecision coefficients of variation across the reportable range (10-10 000 copies/µL) were <25%. Accuracy and linearity were verified by comparing known copy numbers with measured copy numbers (R2 >0.9985, slope ~0.9). Finally, serial measurements demonstrated very good long-term reproducibility (>95% of replicate results within the originally established ± two standard deviations). CONCLUSIONS: DDPCR has excellent reproducibility, linearity, specificity and sensitivity for detecting RCL and assuring the safety of patient products in a rapid manner. The technique can also likely be adapted for the rapid detection of other targets during cell product manufacturing, including purity, potency and sterility assays.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Lentivirus/genética , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Quiméricos de Antígenos/genética , Reproducibilidad de los Resultados , Linfocitos T
14.
Hum Gene Ther ; 32(17-18): 936-948, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33678011

RESUMEN

Lentiviral vectors are one of the most commonly used viral delivery systems for gene therapy. Vesicular stomatitis virus-G envelope glycoprotein (VSV G)-pseudotyped lentiviral vectors have been widely used in clinical studies for treatment of virus infections and genetic deficient diseases. However, the efficiency of lentiviral vector transduction has been long recognized as a limiting factor in clinical gene therapy application, especially in transducing hematopoietic stem cells. MARCH8 (membrane-associated RING-CH 8), an E3 ubiquitin ligase, has been reported to target and downregulate VSV G. Results in this study show that MARCH8 induces ubiquitination and lysosome degradation of VSV G, and knockout of MARCH8 in virus-producing cells increases lentiviral vector transduction by elevating the level of VSV G protein. We then engineered VSV G mutant that has the lysine residues in the cytoplasmic domain substituted for arginine, and showed that this G mutant resists degradation by MARCH8, and allows the enhancement of transduction efficiency of lentiviral vector particles than the parental VSV G protein. This engineered VSV G mutant thus further advances the lentiviral vector system as a powerful tool in gene therapy.


Asunto(s)
Vectores Genéticos , Estomatitis Vesicular , Animales , Terapia Genética , Vectores Genéticos/genética , Glicoproteínas , Lentivirus/genética , Transducción Genética , Proteínas del Envoltorio Viral/genética
15.
mBio ; 12(2)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727347

RESUMEN

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.IMPORTANCE Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into how host cell factors antagonize viral replication, perhaps opening new avenues for therapeutic intervention in the replication of a diverse group of highly pathogenic enveloped viruses.


Asunto(s)
Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Interferones/farmacología , Espacio Intracelular/metabolismo , Proteínas de la Membrana/genética , Mutación , Virus ARN/clasificación , Virus ARN/metabolismo , Especificidad de la Especie , Ubiquitina-Proteína Ligasas/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Virión/metabolismo , Replicación Viral
16.
bioRxiv ; 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33532773

RESUMEN

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell-surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.

17.
Biochem Biophys Res Commun ; 534: 980-987, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131770

RESUMEN

Virosomes as membranous vesicles with viral fusion protein in their membrane are versatile vehicles for cargo delivery. The vesicular stomatitis virus glycoprotein (VSV-G) is a common fusogenic protein used in virosome preparation. This glycoprotein has been used in liposomal systems so far, but in this study, we have tried to use the niosomal form instead of liposome for. Niosomes are vesicular systems composed of non-ionic surfactants. Niosomes were constructed by the thin-film hydration method. VSV-G gene in pMD2.G plasmid was expressed in the HEK293T cell line and then was reconstituted in the niosome bilayer. The formation of niosomal virosomes was confirmed with different methods such as SDS-PAGE gel, western blotting, and transmission electron microscopy (TEM). The efficiency of niosomal virosome was investigated with the pmCherry reporter gene. SDS-PAGE and western blotting proved the expression and successful insertion of protein into the bilayer. The TEM images showed the spike projection of VSV-G on the surface of niosomes. The transfection results showed high efficiency of niosomal virosomes as a novel carrier. This report has verified that niosome could be used as an efficient bilayer instead of liposome to construct virosomes.


Asunto(s)
Técnicas de Transferencia de Gen , Genes Reporteros , Glicoproteínas/genética , Vesiculovirus/genética , Proteínas Virales/genética , Virosomas/genética , Expresión Génica , Glicoproteínas/química , Células HEK293 , Humanos , Liposomas/química , Plásmidos/administración & dosificación , Plásmidos/genética , Transfección , Estomatitis Vesicular/virología , Vesiculovirus/química , Proteínas Virales/química , Virosomas/química
18.
Methods Mol Biol ; 2233: 115-129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222131

RESUMEN

Constitutive secretion is predominantly measured by collecting the media from cells and performing plate-based assays. This approach is particularly sensitive to changes in cell number, and a significant amount of effort has to be spent to overcome this. We have developed a panel of quantitative flow cytometry-based assays and reporter cell lines that can be used to measure constitutive secretion. These assays are insensitive to changes in cell number making them very robust and well suited to functional genomic and chemical screens. Here, we outline the key steps involved in generating and using these assays for studying constitutive secretion.


Asunto(s)
Bioensayo/métodos , Secreciones Corporales/metabolismo , Citometría de Flujo/métodos , Línea Celular , Humanos
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-912075

RESUMEN

Objective:To establish VSV-G qPCR assay for detection of replication competent lentivirus(RCL) and verify its application.Methods:A real-time fluorescent quantitative PCR for VSV-G envelope gene was developed. Several parameters including specificity, linear, amplification efficiency, precision, trueness, dynamic range, limit of detection, limit of quantification and robustness were verified. Preliminary application on CAR-T cells, end of production cells and the harvest of lentivirus vector was performed by using the method developed.Results:The real-time fluorescent quantitative PCR assay for VSV-G was specific for the detection VSV-G without specific amplification on 293T, PBMC and C8166 cells. The linear range of the assay was 1×10 2 copies/test-1×10 9 copies/test with a R2 value more than 0.998 and amplification efficiency between 93% and 98%. The precision (relative standard deviation) of the assay was less than 12% and the trueness (the rate of recovery) of the assay was between 85% and 106%. The limit of detection (LOD) and limit of quantification (LOQ) of the assay was 5 copies/test and 40 copies/test. In addition, the robustness of the assay was also well. All the results of validation illustrated that the assay could meet the detection requirements. All of the 54 samples including CAR-T cells, lentivirus vector and end of product cells after amplification and passage on C8166 cells were negative of RCL by using the established assay. Conclusions:The real-time fluorescent quantitative PCR for VSV-G were established successfully. All of the validation results illustrated that the assay could meet the detection requirements. The application of the assay was conducive to further enhance the safety of the lentivirus vector related products.

20.
Mol Ther Methods Clin Dev ; 19: 438-446, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33294492

RESUMEN

Current approaches for hematopoietic stem cell gene therapy typically involve lentiviral gene transfer in tandem with a conditioning regimen to aid stem cell engraftment. Although many pseudotyped envelopes have the capacity to be immunogenic due to their viral origins, thus far immune responses against the most common envelope, vesicular stomatitis virus glycoprotein G (VSV-G), have not been reported in hematopoietic stem cell gene therapy trials. Herein, we report on two Fanconi anemia patients who underwent autologous transplantation of a lineage-depleted, gene-modified hematopoietic stem cell product without conditioning. We observed the induction of robust VSV-G-specific immunity, consistent with low/undetectable gene marking in both patients. Upon further interrogation, adaptive immune mechanisms directed against VSV-G were detected following transplantation in both patients, including increased VSV-G-specific T cell responses, anti-VSV-G immunoglobulin G (IgG), and cytotoxic responses that can specifically kill VSV-G-expressing target cell lines. A proportion of healthy controls also displayed preexisting VSV-G-specific CD4+ and CD8+ T cell responses, as well as VSV-G-specific IgG. Taken together, these data show that VSV-G-pseudotyped lentiviral vectors have the ability to elicit interfering adaptive immune responses in the context of certain hematopoietic stem cell transplantation settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA