RESUMEN
The stridulation in the subfamily Triatominae has been identified as a means of communication between species, produced by the friction of the proboscis on the prosternal stridulatory groove. Despite its biological significance, this phenomenon remains understudied, with the signal's production seemingly contingent upon the morphology of the stridulatory groove. In this study, we examined the morphology of stridulatory grooves in females and males of five species and two subspecies of Mexican triatomines using morphometric and scanning electron microscopical analysis. Our findings reveal that all analyzed species exhibit triangular-shaped stridulatory grooves with parallel ridges covering the entire groove, bordered on each side, and covered with setae. Surprisingly, we observed noticeable differences in the number of ridges and inter-ridge distance between the species Triatoma lecticularia and Triatoma rubida (p < 0.001 and p < 0.009, respectively), indicating sexual dimorphism in this aspect, a phenomenon not previously reported in the morphology of this structure. Our findings shed light on the intricate morphology of the stridulatory groove in Mexican triatomines, suggesting potential implications for their behavior and intra-specific communication.
Asunto(s)
Triatoma , Animales , México , Triatoma/fisiología , Triatoma/clasificación , Femenino , Masculino , Microscopía Electrónica de Rastreo , Comunicación AnimalRESUMEN
This study aimed to assess the diversity patterns of sand fly fauna across different strata and detect Leishmania DNA in these insects in the Mapinguari National Park in Rondônia and Amazonas states, Northern Brazil. Sand flies were collected with "HP" light traps in the canopy (15 m) and at ground level (1 m) on two trails, during August and November 2021 and March and August 2022. Polymerase chain reaction and DNA sequencing were used to identify Leishmania species. A total of 8,040 individuals (2,303â - 28.64 %, 5,737â - 71.36 %) were collected and 53 species and 13 genera were identified. The most abundant species were Psychodopygus chagasi (21.00 %), Trichophoromyia ubiquitalis (13.61 %) Psychodopygus davisi (11.69 %), Nyssomyia fraihai (10.58 %), Nyssomyia antunesi (6.68 %) and Nyssomyia richardwardi (5.55 %). Species diversity was greater in the canopy (Shannon index H' = 10.8 common species) when compared to ground level (H' = 10.5 common species). We observed a minimum infection rate of 0.45 % (22/4,868 females), in which Leishmania braziliensis DNA was found in Ps. chagasi and Le. lainsoni DNA in Ps. chagasi, Ny. richardwardi, Ps. ayrozai and Th. ubiquitalis. The minimum infection rate of Leishmania in the canopy was 0.47 % (19/4,031) and in the ground was 0.52 % (3/567). In the present study, we observed Le. lainsoni DNA in females of Ny. richardwardi for the first time. The data presented in this study contribute to understanding sand fly diversity and its distribution between the states of Rondônia and Amazonas. They may be useful for implementing targeted control measures to reduce the spread of leishmaniasis and implement entomological surveillance strategies.
RESUMEN
A major challenge in defining the vector status of phlebotomine sand flies is selecting the appropriate criteria. Vectors can be graded by importance, with successful transmission as the highest grade. Potential vectors are often identified based on high frequency in transmission foci, anthropophily, and more recently by identification of DNA in field samples. However, a species' ability to transmit a pathogen depends not only on its intrinsic biology of sand fly-Leishmania interactions but also on ecological parameters, which are rarely evaluated. This study aimed to analyze the literature data describing characteristics of Colombian sand flies related to their role as vectors of Leishmaniinae parasites. Based on information contained in scientific publications using combinations of five criteria, sand fly species were graded into five levels, and 26 species were considered as potential or proven leishmaniasis vectors in Colombia. Levels one to four refer to potential or suspected status, while level five denotes proven vectors. Studying vectors in a regional context is crucial because species' behaviors vary with environmental and ecological conditions, meaning a species may be a key vector in one area but not in another. A better understanding of vector-parasite interactions will aid in developing innovative control strategies and formulating significant epidemiological perspectives.
RESUMEN
Infectious diseases, especially zoonotic, represent a significant global threat to both human and animal health. Ticks are among the primary vectors of pathogens affecting wild and domestic animals, some of which can also cause severe human diseases. To effectively face zoonotic diseases, the "One Health" approach is being promoted to integrate the health of human, animals, and ecosystems. Here, we identify the associations between ticks, rickettsiae, wild and domestic mammals, and humans in the Andean region of Colombia. A total of 366 ticks of 17 species belonging to the genera Amblyomma, Dermacentor, Ixodes, Ornithodoros, and Rhipicephalus were collected as free-living organisms, or parasitizing humans, wild (22 species) and domestic (3 species) mammals. Infection with Rickettsia parkeri strain NOD, Rickettsia cf. monacensis and 'Candidatus Rickettsia tarasevichiae' was detected in 3.4% of the ticks analyzed (n = 3). This study highlights the diversity of ticks in humans and wild and domestic mammals in Colombia. It also underscores the risk these ectoparasites represent to human and animal health due to the potential transmission of zoonotic pathogens such as Rickettsia spp.
RESUMEN
Chagas disease is a key vector-borne disease. This illness is caused by Trypanosoma cruzi Chagas, which is transmitted by triatomine bugs. Largely, the control of this disease relies on reducing such contact. We optimized the performance of a box trap in laboratory conditions to capture four triatomine species: Triatoma pallidipennis (Stål), Triatoma infestans Klug, Triatoma phyllosoma (Burmeister), and Rhodnius prolixus Stål. We varied four components for a box trap: material, color, height, and bait attractants. All species were captured more in corrugated cardboard traps than in other trap material. Moreover, T. infestans and R. prolixus were also captured in plywood traps. T. pallidipennis preferred traps of 15 × 15 × 4 cm and 20 × 20 × 4 cm, while T. phyllosoma and T. infestans were more captured in traps of 10 × 10 × 4 cm, and 15 × 15 × 4 cm. Rhodnius prolixus was more captured to 10 × 10 × 4 cm traps. T. pallidipennis was trapped with traps of any color tested, T. phyllosoma and T. infestans were captured more in red and yellow traps, and R. prolixus was mostly captured in blue, violet, and yellow traps. Triatoma pallidipennis was captured at any height above the ground, while T. phyllosoma, T. infestans, and R. prolixus were mostly captured 50, 100, and 150 cm above the ground. Regarding the lure, T. pallidipennis was trapped with four aldehydes + lactic acid + ammonia; T. infestans and R. prolixus were trapped with a blend of four aldehydes + lactic acid, a blend of the four aldehydes + ammonia, and a blend of four aldehydes + lactic acid + ammonia. Triatoma phyllosoma was trapped with any lure tested. These results showed that the trap boxes offer an alternative method for controlling Chagas disease.
Asunto(s)
Rhodnius , Triatoma , Animales , Rhodnius/parasitología , Enfermedad de Chagas/transmisión , Enfermedad de Chagas/prevención & control , Control de Insectos/métodos , Control de Insectos/instrumentación , Trypanosoma cruzi , Insectos Vectores/fisiologíaRESUMEN
Stomoxys calcitrans L. (Diptera: Muscidae), the stable fly, is a hematophagous insect of great veterinary importance, because it is a mechanical vector of diverse pathogens in livestock. The saliva of blood-feeding insects presents important pharmacologically active molecules that impair blood clotting, promote vasodilation and modulate the host immune system response, crucial processes for successful feeding. These properties also enable pathogens' transmission. In the present work, we describe an efficient protocol to dissect S. calcitrans salivary glands, their morphological characteristics and lipid profile. The mean length of the tubular gland is 3.23 mm with a bulbous posterior end and a narrow anterior end. Histological analysis revealed a monolayer of large polygonal epithelial cells with voluminous nuclei and high lipid content in their cytoplasm. Ultrastructural analysis showed that the epithelium is rich in mitochondria, free ribosomes, Golgi complex cisternae, presenting a great extension of rough endoplasmic reticulum that contains an electron-dense material. Lipid analysis by thin-layer chromatography showed that neutral fatty acids and phosphatidylcholine are predominant in the fly salivary glands. Lysophosphatidylcholine, an important signalling biomolecule involved in different metabolic processes, including host's immunomodulation and pathogens proliferation and differentiation, is also present.
Stomoxys calcitrans L. (Diptera: Muscidae), a moscadosestábulos, é um inseto hematófago de grande importância veterinária, uma vez que é vetor mecânico de diversos patógenos que infectam animais da pecuária. A saliva de insetos que se alimentam de sangue apresenta importantes moléculas farmacologicamente ativas que impedem coagulação sanguínea, promovem vasodilatação e modulam o sistema imune do hospedeiro, processos cruciais para uma alimentação bem sucedida. Tais propriedades também permitem a transmissão de patógenos. No presente trabalho, nós descrevemos um protocolo eficiente para dissecar as glândulas salivares de S. calcitrans, suas características morfológicas e perfil lipídico. O comprimento médio da glândula tubular é 3.23 mm com uma porção posterior bulbosa e porção anterior estreita. Análises histológicas revelaram uma monocamada de células epiteliais largas e poligonais com núcleos volumosos e alto conteúdo lipídico em seus citoplasmas. Análises ultraestruturais mostraram um epitélio rico em mitocôndria, ribossomos livres, cisternas do complexo de Golgi, apresentando uma grande extensão de retículo endoplasmático que contém um material eletrodenso. A análise lipídica mostrou que ácidos graxos neutros e fosfatidilcolina predominam nas glândulas salivares da mosca. Lisofosfatidilcolina, uma importante biomolécula sinalizadora envolvida em diferentes processos metabólicos, incluindo imunomodulação do hospedeiro e proliferação e diferenciação de patógenos, também se encontra presente.
RESUMEN
Chagas disease is considered one of the most important human parasitosis in the United States. This disease is mainly transmitted by insects of the subfamily Triatominae. The chemical vector control is the main tool for reducing the incidence of the disease. However, the presence of triatomines after pyrethroids spraying has been reported in some regions, as in the case of Triatoma infestans in Argentina and Bolivia. The presence of insects can be explained by the colonization from neighbouring areas, the reduction of insecticide dose to sublethal levels due to environmental factors, and/or by the evolution of insecticide resistance. In the last two scenarios, a proportion of the insects is not killed by insecticide and gives rise to residual populations. This article focuses on the toxicological processes associated with these scenarios in triatomines. Sublethal doses may have different effects on insect biology, that is, sublethal effects, which may contribute to the control. In addition, for insect disease vectors, sublethal doses could have negative effects on disease transmission. The study of sublethal effects in triatomines has focused primarily on the sequence of symptoms associated with nervous intoxication. However, the effects of sublethal doses on excretion, reproduction and morphology have also been studied. Rhodnius prolixus and T. infestans and pyrethroids insecticides were the triatomine species and insecticides, respectively, mainly studied. Insecticide resistance is an evolutionary phenomenon in which the insecticide acts as a selective force, concentrating on the insect population's pre-existing traits that confer resistance. This leads to a reduction in the susceptibility to the insecticide, which was previously effective in controlling this species. The evolution of resistance in triatomines received little attention before the 2000s, but after the detection of the first focus of resistance associated with chemical control failures in T. infestans from Argentina in 2002, the study of resistance increased remarkably. A significant number of works have studied the geographical distribution, the resistance mechanisms, the biological modifications associated with resistance, the environmental influences and the genetic of T. infestans resistant to pyrethroid insecticides. Currently, studies of insecticide resistance are gradually being extended to other areas and other species. The aim of this article was to review the knowledge on both phenomena (sublethal effects and insecticide resistance) in triatomines. For a better understanding of this article, some concepts and processes related to insect-insecticide interactions, individual and population toxicology and evolutionary biology are briefly reviewed. Finally, possible future lines of research in triatomine toxicology are discussed.
RESUMEN
Cowpea mild mottle virus (CPMMV, genus Carlavirus, family Betaflexividae) is an economically important virus infecting soybeans in Brazil, where it was initially identified in 1983. CPMMV is transmitted by the whitefly, Bemisia tabaci, and occasionally by seeds. Over the last three decades, the most invasive B. tabaci Middle East-Asia Minor 1 (MEAM1), and lately the Mediterranean (MED) cryptic species, have replaced the indigenous species in Brazil, with MEAM1 being predominant. In this study, we investigated the transmission properties of CPMMV by MEAM1 and MED, and their distribution in major soybean-growing areas in São Paulo State. Our results from transmission assays with a single insect revealed that MED is a more efficient vector compared to MEAM1, transmitting the virus within a two-minute inoculation access period. B. tabaci MEAM1 is still the predominant whitefly species in São Paulo State, but MED was also identified in different places, mainly in mixed infestations with MEAM1. Some areas transitioned to a predominance of MED over the three years, while others, where MED had previously been detected, showed a reduction in the insects during the same period. Understanding the transmission dynamics of CPMMV and the distribution of its vectors is crucial for implementing effective management strategies to control the virus spread and protect soybean crops. Further research into the mechanisms driving the shifts in whitefly species dominance and CPMMV distribution will be essential for sustaining soybean production in Brazil.
RESUMEN
PURPOSE: The flea Ctenocephalides felis (Siphonaptera: Pulicidae), parasitizes dogs and cats globally, acting as a vector for various pathogens affecting both animals and humans. Growing interest in environmentally friendly, plant-based products prompted this study. The aim of the study was to determine the chemical composition of essential oils (EOs) from Copaifera reticulata, Citrus paradisi, Lavandula hybrida and Salvia sclarea, assessing their insecticidal and repellent properties, determining lethal concentrations (LC50 and LC90), and evaluating residual efficacy in vitro against Ctenocephalides felis felis. METHODS: Gas Chromatography with Flame Ionization Detector analyzed EO composition. In vitro tests involved preparing EO solutions at various concentrations. Ten specimens from each life stage (egg, larva, pupa, adult) were used for insecticidal activity assessment. Adulticidal activity was assessed using 10 cm2 filter paper strip, each treated with 0.200 mL of the test solution. Immature stages activities were evaluated using 23.76 cm2 discs of the same filter paper, each treated with 0.470 mL of the test solution. Mortality percentage was calculated using (number of dead insects × 100) / number of incubated insects. Probit analysis calculated LC50 values with a 95% confidence interval. RESULTS: Major EO constituents were ß-caryophyllene (EOCR), linalool (EOLH), linalyl acetate (EOSS), and limonene (EOCP). LC50 values were obtained for all stages except for the essential oil of C. paradisi. All oils showed repellent activity at 800 µg/cm2. OECR exhibited greater residual efficacy. CONCLUSION: Each EO demonstrated superior insecticidal activity against specific C. felis felis stages.
Asunto(s)
Ctenocephalides , Repelentes de Insectos , Insecticidas , Aceites Volátiles , Salvia , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Salvia/química , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Insecticidas/farmacología , Insecticidas/química , Ctenocephalides/efectos de los fármacos , Fabaceae/química , Lavandula/química , Larva/efectos de los fármacos , Pupa/efectos de los fármacos , Citrus/química , Monoterpenos Acíclicos/farmacología , Monoterpenos/farmacología , Monoterpenos/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Dosificación Letal MedianaRESUMEN
Heartworm infection is a chronic disease with clinical signs and effects ranging from an asymptomatic condition to severe disease and death. The prevalence of heartworm disease in the state of Rio de Janeiro has been reported to be high (21.3%). The present study was conducted to evaluate the seroprevalence and risk factors of heartworm infection for the canine population with access to veterinary services in different areas of the state of Rio de Janeiro, Brazil. A total of 1787 canine blood samples were obtained from 135 practices across 8 different areas of Rio de Janeiro state (Rio de Janeiro municipality, São Gonçalo municipality, Niterói municipality, Baixada Fluminense, and the northern, southern, eastern, and mountainous areas) and tested for the presence of Dirofilaria immitis antigens and antibodies against several tick-borne disease pathogens using a commercial immunochromatography technique (Vetscan® Flex 4 Rapid Test; Zoetis; NJ USA). Pet owners reported living conditions, physical characteristics, demographics, and clinical signs for evaluation of risk factors for heartworm infection. Only two evaluated risk factors were shown to enhance the risk for D. immitis infection, including having a short hair coat vs. having a medium or long hair coat (OR 2.62) or positive for antibodies to tick-borne disease parasites (OR 3.83). Clinical signs reported for dogs with heartworm disease were typical for that condition. The overall prevalence of heartworm disease in the state was 8.2%, ranging from 2.4% in the mountainous region to 29.4% in the eastern area. It could not be determined if veterinarians were not diligent about dispensing heartworm preventatives or if poor levels of compliance by dog owners were responsible for higher infection rates in some areas of the state.
Asunto(s)
Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Animales , Perros , Dirofilariasis/epidemiología , Brasil/epidemiología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Estudios Seroepidemiológicos , Factores de Riesgo , Dirofilaria immitis/inmunología , Femenino , Masculino , Anticuerpos Antihelmínticos/sangre , PrevalenciaRESUMEN
Mosquitoes can transmit several pathogenic viruses to humans, but their natural viral community is also composed of a myriad of other viruses such as insect-specific viruses (ISVs) and those that infect symbiotic microorganisms. Besides a growing number of studies investigating the mosquito virome, the majority are focused on few urban species, and relatively little is known about the virome of sylvatic mosquitoes, particularly in high biodiverse biomes such as the Brazilian biomes. Here, we characterized the RNA virome of 10 sylvatic mosquito species from Atlantic forest remains at a sylvatic-urban interface in Northeast Brazil employing a metatranscriptomic approach. A total of 16 viral families were detected. The phylogenetic reconstructions of 14 viral families revealed that the majority of the sequences are putative ISVs. The phylogenetic positioning and, in most cases, the association with a high RNA-dependent RNA polymerase amino acid divergence from other known viruses suggests that the viruses characterized here represent at least 34 new viral species. Therefore, the sylvatic mosquito viral community is predominantly composed of highly divergent viruses highlighting the limited knowledge we still have about the natural virome of mosquitoes in general. Moreover, we found that none of the viruses recovered were shared between the species investigated, and only one showed high identity to a virus detected in a mosquito sampled in Peru, South America. These findings add further in-depth understanding about the interactions and coevolution between mosquitoes and viruses in natural environments. IMPORTANCE: Mosquitoes are medically important insects as they transmit pathogenic viruses to humans and animals during blood feeding. However, their natural microbiota is also composed of a diverse set of viruses that cause no harm to the insect and other hosts, such as insect-specific viruses. In this study, we characterized the RNA virome of sylvatic mosquitoes from Northeast Brazil using unbiased metatranscriptomic sequencing and in-depth bioinformatic approaches. Our analysis revealed that these mosquitoes species harbor a diverse set of highly divergent viruses, and the majority comprises new viral species. Our findings revealed many new virus lineages characterized for the first time broadening our understanding about the natural interaction between mosquitoes and viruses. Finally, it also provided several complete genomes that warrant further assessment for mosquito and vertebrate host pathogenicity and their potential interference with pathogenic arboviruses.
Asunto(s)
Culicidae , Filogenia , Viroma , Animales , Brasil , Viroma/genética , Culicidae/virología , Mosquitos Vectores/virología , Genoma Viral , ARN Viral/genética , Virus de Insectos/genética , Virus de Insectos/clasificación , Virus de Insectos/aislamiento & purificación , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificaciónRESUMEN
The Orthoflavivirus ilheusense (ILHV) is an arbovirus that was first isolated in Brazil in 1944 during an epidemiologic investigation of yellow fever. Is a member of the Flaviviridae family and it belongs to the antigenic complex of the Ntaya virus group. Psorophora ferox is the primary vector of ILHV and this study presents the isolation and phylogenetic analysis of ILHV in a pool of Ps. ferox collected in the state of Goiás in 2021. Viral isolation tests were performed on Vero cells and C6/36 clones. The indirect immunofluorescence test (IFI) was used to confirm the positivity of the sample. The positive sample underwent RT-qPCR, sequencing, and phylogenetic analysis. This is the first report of ILHV circulation in this municipality and presented close relationship between this isolate and another ILHV isolate collected in the city of Belém (PA).
Asunto(s)
Culicidae , Filogenia , Animales , Brasil , Células Vero , Culicidae/virología , Chlorocebus aethiops , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Mosquitos Vectores/virologíaRESUMEN
Leishmaniasis is a group of diseases caused by protozoa of the genus Leishmania and is transmitted by the bite female sand fly. The present work is characterized as a descriptive study in two areas: a forest area located in the Parque Estadual do Rio Doce, and another urban area located in the municipality of Timóteo-MG, with the objective of identifying the presence of Leishmania spp. and the blood source of the collected female sand flies. Part of the females were obtained from the Parque Estadual do Rio Doce, and part was collected using 19 ligth traps distributed in residences of Timóteo. For molecular studies of Leishmania spp. DNA, the ITS1 gene was used, and in the search for blood source, the CytB gene was used and positive samples were sequenced. The study demonstrated that there are at least three species of Leishmania circulating in the study areas: Leishmania (Viannia) braziliensis, Leishmania (Leishmania) amazonensis, and Leishmania (V.) guyanensis. Nyssomyia whitmani was the predominant sand fly species in the urban area of Timóteo with a positive diagnosis for the presence of Leishmania braziliensis DNA. We found the presence of blood from Gallus gallus (Chicken) and Sus scrofa (Pig) in sand flies. The present study demonstrates that Leishmania braziliensis is the main agent of cutaneous leishmaniasis in the study area, with the effective participation of Nyssomyia whitmani as the vector and both Gallus gallus and Sus scrofa acting as a food source for female sand flies, and helping maintaining the sand fly life.
RESUMEN
Chagas disease affects millions of people in Colombia and worldwide, with its transmission influenced by ecological, environmental, and anthropogenic factors. There is a notable correlation between vector transmission cycles and the habitats of insect vectors of the parasite. However, the scale at which these cycles operate remains uncertain. While individual triatomine ecotopes such as palms provide conditions for isolated transmission cycles, recent studies examining triatomine blood sources in various habitats suggest a more intricate network of transmission cycles, linking wild ecotopes with human dwellings. This study aims to provide further evidence on the complexity of the scale of Trypanosoma cruzi transmission cycles, by exploring the different blood sources among developmental stages of infected triatomines in different habitats. We evaluated infection rates, parasite loads, feeding sources, and the distribution of Rhodnius prolixus insects in Attalea butyracea palms across three distinct habitats in Casanare, Colombia: peridomestics, pastures, and woodlands. Our results show that there is no clear independence in transmission cycles in each environment. Analyses of feeding sources suggest the movement of insects and mammals (primarily bats and didelphids) among habitats. A significant association was found between habitat and instar stages in collected R. prolixus. The N1 stage was correlated with pasture and woodland, while the N4 stage was related to pasture. Additionally, adult insects exhibited higher T. cruzi loads than N1, N2, and N3. We observed higher T. cruzi loads in insects captured in dwelling and pasture habitats, compared with those captured in woodland areas. Effective Chagas disease control strategies must consider the complexity of transmission cycles and the interplay between domestic and sylvatic populations of mammals and vectors.
Asunto(s)
Enfermedad de Chagas , Ecosistema , Insectos Vectores , Rhodnius , Trypanosoma cruzi , Animales , Trypanosoma cruzi/fisiología , Enfermedad de Chagas/transmisión , Enfermedad de Chagas/parasitología , Rhodnius/parasitología , Rhodnius/crecimiento & desarrollo , Colombia , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Conducta Alimentaria , Humanos , Dieta , Carga de ParásitosRESUMEN
BACKGROUND: Mexico has experienced a significant reduction in malaria cases over the past two decades. Certification of localities as malaria-free areas (MFAs) has been proposed as a steppingstone before elimination is achieved throughout the country. The Mexican state of Quintana Roo is a candidate for MFA certification. Monitoring the status of insecticide susceptibility of major vectors is crucial for MFA certification. This study describes the susceptibility status of Anopheles albimanus, main malaria vector, from historically important malaria foci in Quintana Roo, using both phenotypic and genotypic approaches. METHODS: Adult mosquito collections were carried out at three localities: Palmar (Municipality of Othon P. Blanco), Buenavista (Bacalar) and Puerto Morelos (Puerto Morelos). Outdoor human-landing catches were performed by pairs of trained staff from 18:00 to 22:00 during 3-night periods at each locality during the rainy season of 2022. Wild-caught female mosquitoes were exposed to diagnostic doses of deltamethrin, permethrin, malathion, pirimiphos-methyl or bendiocarb using CDC bottle bioassays. Mortality was registered at the diagnostic time and recovery was assessed 24 h after exposure. Molecular analyses targeting the Voltage-Gated Sodium Channel (vgsc) gene and acetylcholinesterase (ace-1) gene were used to screen for target site polymorphisms. An SNP analysis was carried out to identify mutations at position 995 in the vgsc gene and at position 280 in the ace-1 gene. RESULTS: A total of 2828 anophelines were collected. The main species identified were Anopheles albimanus (82%) and Anopheles vestitipennis (16%). Mortalities in the CDC bottle bioassay ranged from 99% to 100% for all the insecticides and mosquito species. Sequence analysis was performed on 35 An. albimanus across the three localities; of those, 25 were analysed for vgsc and 10 for ace-1 mutations. All individuals showed wild type alleles. CONCLUSION: The results demonstrated that An. albimanus populations from historical malaria foci in Quintana Roo are susceptible to the main insecticides used by the Ministry of Health.
Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Mosquitos Vectores , Animales , Anopheles/genética , Anopheles/efectos de los fármacos , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , México , Femenino , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Malaria/transmisiónRESUMEN
BACKGROUND: In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS: We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS: Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS: These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.
Asunto(s)
Anopheles , Mordeduras y Picaduras , Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium , Animales , Femenino , Humanos , Anopheles/genética , Malaria/epidemiología , Perú/epidemiología , Mosquitos Vectores , Malaria Vivax/epidemiología , Estaciones del AñoRESUMEN
BACKGROUND: Orthoflavivirus ilheusense (ILHV) is a member of the Flaviviridae family. It was first isolated in 1944 from pools of Aedes serratus and Psorophora ferox mosquitoes; however, it has also been detected in species of the genus Culex, such as Cx. portesi and Cx. coronator. The objective of this study was to examine the vector competence of Cx. quinquefasciatus mosquitoes to ILHV infection and the subsequent transmission of the virus through their saliva during feeding on blood. METHODS: F1 generation females of Cx. quinquefasciatus (Ananindeua/PA) were orally infected with goose blood infected with strain BeH7445, and body, head and saliva samples were analyzed at 7, 14, and 21 dpi using the techniques of virus isolation in cells and indirect immunofluorescence. RESULTS: The presence of ILHV was not detected in the body and head samples of Cx. quinquefasciatus females at any of the three dpi's analyzed, indicating that the lineage of mosquitoes analyzed was resistant to ILHV. CONCLUSIONS: According to the results obtained in this study, the species Cx. quinquefasciatus proved resistant to ILHV, regardless of the virus titers to which it was exposed, which suggests the possibility that this species does not act as a vector in the ILHV transmission cycle.
RESUMEN
Light-Emitting Diodes (LEDs) have been effective light sources in attracting Anopheles mosquitoes, but the broad-spectrum white light, even with a wide-ranging application in lighting, have not been evaluated yet. In this study, the white light was field evaluated against the green one in the light trapping of anopheline mosquitoes by using two non-suction Silva traps and two CDC-type suction light traps. Anopheline mosquitoes were captured for two 21-night periods of collecting (2022 and 2023). In the first period, two LEDs were used per Silva trap, but three were used in the second one to increase the luminance/illuminance at traps. A CDC-type suction light trap equipped with an incandescent lamp was used in 2022 and a CDC-type suction light trap equipped with a 6 V-white light (higher luminance/illuminance) in 2023. A total of eight species and 3,289 specimens were captured in both periods. The most frequent species were Anopheles triannulatus s.l., An. goeldii, An. evansae and An. argyritarsis. In 2022, white LEDs were less attractive to anopheline mosquitoes than the other light sources, but without statistical difference among treatments (F = 2.703; P = 0.0752; df = 2). In 2023, even with an increased luminance/illuminance at traps, no statistical difference was found between the two LED-baited Silva traps (F = 6.690; P = 0.0024; df = 2), but rather between the 6 V-white-baited CDC-type suction light trap and green-baited Silva traps. Due to some drawbacks and the lower abundance of individuals caught by using white LEDs, the narrow-banded green LEDs is preferable to white ones for attracting anophelines.
Asunto(s)
Anopheles , Luz , Control de Mosquitos , Animales , Anopheles/fisiología , Anopheles/efectos de la radiación , Control de Mosquitos/métodos , Control de Mosquitos/instrumentaciónRESUMEN
In the signal analysis context, the entropy concept can characterize signal properties for detecting anomalies or non-representative behaviors in fiscal systems. In motor fault detection theory, entropy can measure disorder or uncertainty, aiding in detecting and classifying faults or abnormal operation conditions. This is especially relevant in industrial processes, where early motor fault detection can prevent progressive damage, operational interruptions, or potentially dangerous situations. The study of motor fault detection based on entropy theory holds significant academic relevance too, effectively bridging theoretical frameworks with industrial exigencies. As industrial sectors progress, applying entropy-based methodologies becomes indispensable for ensuring machinery integrity based on control and monitoring systems. This academic endeavor enhances the understanding of signal processing methodologies and accelerates progress in artificial intelligence and other modern knowledge areas. A wide variety of entropy-based methods have been employed for motor fault detection. This process involves assessing the complexity of measured signals from electrical motors, such as vibrations or stator currents, to form feature vectors. These vectors are then fed into artificial-intelligence-based classifiers to distinguish between healthy and faulty motor signals. This paper discusses some recent references to entropy methods and a summary of the most relevant results reported for fault detection over the last 10 years.
RESUMEN
BACKGROUND: To describe an oncolytic adenovirus (OAd) encoding SP-SA-E7-4-1BBL that is capable of inducing tumor regression in therapeutic assays. Herein, we tested whether the antitumor effect is given by the induction of a tumor-specific immune response, as well as the minimum dose needed to elicit antitumor protection and monitor the OAd biodistribution over time. METHODS AND RESULTS: C57BL/6 mice (n = 5) per group were immunized twice with OAds encoding SP-SA-E7-4-1BBL, SA-E7-4-1BBL, or SP-SA-4-1BBL and challenged with TC-1 cancer cells. The DNA construct SP-SA-E7-4-1BBL was employed as a control via biolistic or PBS injection. Groups without tumor development at 47 days were rechallenged with TC-1 cells, and follow-up lasted until day 90. The minimum dose of OAd to induce the antitumor effect was established by immunization using serial dilution doses. The cytometry bead assay and the ELISpot assay were used to evaluate cytokine release in response to ex vivo antigenic stimulation. The distribution profile of the OAd vaccine was evaluated in the different organs by histological, immunohistochemical and qPCR analyses. The OAd SP-SA-E7-4-1BBL-immunized mice did not develop tumors even in a rechallenge. A protective antitumor effect was observed from a dose that is one hundredth of most reports of adenoviral vaccines. Immunization with OAd increases Interferon-gamma-producing cells in response to antigen stimulation. OAd was detected in tumors over time, with significant morphological changes, contrary to nontumor tissues. CONCLUSIONS: The OAd SP-SA-E7-4-1BBL vaccine confers a prophylactic, safe, long-lasting, and antigen-dependent antitumor effect mediated by a Th1 antitumor immune response.