Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2401638121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133841

RESUMEN

This study analyzes H2O and HDO vertical profiles in the Venus mesosphere using Venus Express/Solar Occultation in the InfraRed data. The findings show increasing H2O and HDO volume mixing ratios with altitude, with the D/H ratio rising significantly from 0.025 at ~70 km to 0.24 at ~108 km. This indicates an increase from 162 to 1,519 times the Earth's ratio within 40 km. The study explores two hypotheses for these results: isotopic fractionation from photolysis of H2O over HDO or from phase change processes. The latter, involving condensation and evaporation of sulfuric acid aerosols, as suggested by previous authors [X. Zhang et al., Nat. Geosci. 3, 834-837 (2010)], aligns more closely with the rapid changes observed. Vertical transport computations for H2O, HDO, and aerosols show water vapor downwelling and aerosols upwelling. We propose a mechanism where aerosols form in the lower mesosphere due to temperatures below the water condensation threshold, leading to deuterium-enriched aerosols. These aerosols ascend, evaporate at higher temperatures, and release more HDO than H2O, which are then transported downward. Moreover, this cycle may explain the SO2 increase in the upper mesosphere observed above 80 km. The study highlights two crucial implications. First, altitude variation is critical to determining the Venus deuterium and hydrogen reservoirs. Second, the altitude-dependent increase of the D/H ratio affects H and D escape rates. The photolysis of H2O and HDO at higher altitudes releases more D, influencing long-term D/H evolution. These findings suggest that evolutionary models should incorporate altitude-dependent processes for accurate D/H fractionation predictions.

2.
Ber Wiss ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037019

RESUMEN

Monasteries were famous for their extensive libraries and richly decorated churches. Less well known are their observatories and their mathematical-physical collections with telescopes, air pumps, and friction machines. But how did the way of life in the monastery and scientific practices influence each other? This paper examines the interaction of scientific practices and religious way of life using the example of southern German monasteries in the second half of the eighteenth century. It shows how the monks pragmatically linked monastic life and research practice, thereby forming their own specific scientific culture. This closes an important gap in the understanding of scholarship in the eighteenth century by foregrounding the monasteries as places of knowledge production, which have so far received little attention alongside universities and academies.

3.
Astrobiology ; 24(6): 628-634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800952

RESUMEN

An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: empirical habitability that is constrained by the observed limits to biological activity; habitability sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and habitability sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Venus , Exobiología/métodos , Vida
4.
Life (Basel) ; 14(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38792560

RESUMEN

We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine, and the "core" nucleic acid bases purine and pyrimidine, are stable for more than one year in concentrated sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water). This work builds on our initial stability studies and is the first ever to test the reactivity and structural integrity of organic molecules subjected to extended incubation in concentrated sulfuric acid. The one-year-long stability of nucleic acid bases supports the notion that the Venus cloud environment-composed of concentrated sulfuric acid-may be able to support complex organic chemicals for extended periods of time.

5.
Front Cardiovasc Med ; 11: 1378924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803661

RESUMEN

Background: Venus P-valve™ (Venus Medtech, Hangzhou, China) is a self-expandable bioprosthetic valve that can be transcatheter-implanted in native right ventricular outflow tract (RVOT) patients. Valve implantation is technically challenging. Due to the implantation technique, left pulmonary artery (LPA) stents represent a relative contraindication to Venus P-valve. In this case series, we describe our experience in implanting Venus P-valve in patients with previous LPA stents and the use of holographic models to facilitate procedural planning. Methods and results: From January to October 2023, 17 patients were scheduled for Venus P-Valve implantation. 16/17 (94%) patients were successfully implanted. 3/16 (18.7%) patients underwent Venus P-valve implantation with LPA stents. All patients underwent pre-operative CT scan. CT data set were employed to create three-dimensional (3D) holographic models (Artiness, Milan, Italy) of the entire heart, which were useful to plan valve implantation with a modified technique. Procedural success rate was 100%. No procedural complications occurred. All three patients presented good haemodynamic and angiographic results at discharge and follow-up visits. Conclusion: This case-series underscores the feasibility of Venus P-valve implantation in patients with previous LPA stents. The use of holographic models facilitated procedural planning in these challenging anatomical scenarios.

6.
Astrobiology ; 24(4): 423-441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563825

RESUMEN

The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.


Asunto(s)
Venus , Planetas , Exobiología , Agua/química
7.
Astrobiology ; 24(4): 407-422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603526

RESUMEN

Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.


Asunto(s)
Fosfinas , Venus , Medio Ambiente Extraterrestre , Rayos Ultravioleta , Procesos Fotoquímicos , Atmósfera , Metano
8.
Space Sci Rev ; 220(3): 31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585189

RESUMEN

This work reviews possible signatures and potential detectability of present-day volcanically emitted material in the atmosphere of Venus. We first discuss the expected composition of volcanic gases at present time, addressing how this is related to mantle composition and atmospheric pressure. Sulfur dioxide, often used as a marker of volcanic activity in Earth's atmosphere, has been observed since late 1970s to exhibit variability at the Venus' cloud tops at time scales from hours to decades; however, this variability may be associated with solely atmospheric processes. Water vapor is identified as a particularly valuable tracer for volcanic plumes because it can be mapped from orbit at three different tropospheric altitude ranges, and because of its apparent low background variability. We note that volcanic gas plumes could be either enhanced or depleted in water vapor compared to the background atmosphere, depending on magmatic volatile composition. Non-gaseous components of volcanic plumes, such as ash grains and/or cloud aerosol particles, are another investigation target of orbital and in situ measurements. We discuss expectations of in situ and remote measurements of volcanic plumes in the atmosphere with particular focus on the upcoming DAVINCI, EnVision and VERITAS missions, as well as possible future missions.

9.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498680

RESUMEN

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Asunto(s)
Venus , Aminoácidos , Atmósfera/química , Solventes , Ácidos Sulfúricos/química
10.
Astrobiology ; 24(S1): S143-S163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498826

RESUMEN

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Medio Ambiente Extraterrestre/química , Planetas , Sistema Solar
11.
Chemphyschem ; 25(9): e202300973, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38345139

RESUMEN

Bacterial bioluminescence holds significant potential in the realm of optical imaging due to the inherent advantages of bioluminescence and ease of operation. However, its practical utility is hindered by its low light intensity. The fusion of bacterial luciferase with a highly fluorescent protein has been demonstrated to significantly enhance autonomous luminescence. Nevertheless, the underlying mechanism behind this enhancement remains unclear, and there is a dearth of research investigating the mechanistic aspects of bioluminescence resonance energy transfer (BRET) luminescence, whether it occurs naturally or can be achieved through experimental means. In this study, we investigated the phenomenon of bacterial luciferase-based BRET luminescence employing a range of computational techniques, including structural modeling, molecular docking, molecular dynamics simulations, as well as combined quantum mechanics and molecular mechanics calculations. The theoretical findings suggest that the BRET luminescence occurs through resonance energy transfer between the excited bioluminophore and the ground chromophore within the protein complex dimer. The proposed mechanism of the protein complex dimer offers a microscopic understanding of the intriguing BRET phenomenon and has the potential to inspire further practical applications in the field of optical imaging.


Asunto(s)
Simulación de Dinámica Molecular , Luciferasas de la Bacteria/química , Luciferasas de la Bacteria/metabolismo , Luminiscencia , Transferencia de Energía por Resonancia de Bioluminiscencia , Teoría Cuántica , Multimerización de Proteína , Transferencia Resonante de Energía de Fluorescencia , Transferencia de Energía , Simulación del Acoplamiento Molecular , Mediciones Luminiscentes
12.
Astrobiology ; 24(4): 397-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37852009

RESUMEN

The recent and still controversial claim of phosphine detection in the venusian atmosphere has reignited consideration of whether microbial life might reside in its cloud layers. If microbial life were to exist within Venus' cloud deck, these microorganisms would have to be multi-extremophiles enclosed within the cloud aerosol particles. The most straightforward approach for resolving the question of their existence is to obtain samples of the cloud particles and analyze their interior. While developing technology has made sophisticated in situ analysis possible, more detailed information could be obtained by examining samples with instrumentation in dedicated ground-based facilities. Ultimately, therefore, Venus Cloud-level Sample Return Missions will likely be required to resolve the question of whether living organisms exist in the clouds of Venus. Two multiphase mission concepts are currently under development for combining in situ analyses with a sample return component. The Venus Life Finder architecture proposes collection of cloud particles in a compartment suspended from a balloon that floats for weeks at the desired altitude, while the Novel solUtion for Venus explOration and Lunar Exploitation (NUVOLE) concept involves a glider that cruises within the cloud deck for 1200 km collecting cloud aerosol particles through the key regions of interest. Both architectures propose a rocket-driven ascent with the acquired samples transported to a high venusian orbit as a prelude to returning to Earth or the Moon. Both future conceptual missions with their combined phases will contribute valuable information relative to the habitability of the clouds at Venus, but their fulfillment is decades away. We suggest that, in the meantime, a simplification of a glider cloud-level sample collection scenario could be accomplished in a shorter development time at a lower cost. Even if the cloud particles are not organic and show no evidence of living organisms, they would reveal critical insights about the natural history and evolution of Venus.


Asunto(s)
Atmósfera , Venus , Atmósfera/análisis , Planeta Tierra , Luna , Aerosoles
13.
Astrobiology ; 24(4): 371-385, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37306952

RESUMEN

Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small, with several authors describing Venus' clouds as "uninhabitable," and that apparent signs of life there must therefore be abiotic, or artefactual. In this article, we argue that although many features of Venus can rule out the possibility that Earth life could live there, none rule out the possibility of all life based on what we know of the physical principle of life on Earth. Specifically, there is abundant energy, the energy requirements for retaining water and capturing hydrogen atoms to build biomass are not excessive, defenses against sulfuric acid are conceivable and have terrestrial precedent, and the speculative possibility that life uses concentrated sulfuric acid as a solvent instead of water remains. Metals are likely to be available in limited supply, and the radiation environment is benign. The clouds can support a biomass that could readily be detectable by future astrobiology-focused space missions from its impact on the atmosphere. Although we consider the prospects for finding life on Venus to be speculative, they are not absent. The scientific reward from finding life in such an un-Earthlike environment justifies considering how observations and missions should be designed to be capable of detecting life if it is there.


Asunto(s)
Venus , Planetas , Ácidos Sulfúricos , Agua
14.
Materials (Basel) ; 16(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37895684

RESUMEN

Biomimetic structures are inspired by elegant and complex architectures of natural creatures, drawing inspiration from biological structures to achieve specific functions or improve specific strength and modulus to reduce weight. In particular, the rapid closure of a Venus flytrap leaf is one of the fastest motions in plants, its biomechanics does not rely on muscle tissues to produce rapid shape-changing, which is significant for engineering applications. Composites are ubiquitous in nature and are used for biomimetic design due to their superior overall performance and programmability. Here, we focus on reviewing the most recent progress on biomimetic Venus flytrap structures based on smart composite technology. An overview of the biomechanics of Venus flytrap is first introduced, in order to reveal the underlying mechanisms. The smart composite technology was then discussed by covering mainly the principles and driving mechanics of various types of bistable composite structures, followed by research progress on the smart composite-based biomimetic flytrap structures, with a focus on the bionic strategies in terms of sensing, responding and actuation, as well as the rapid snap-trapping, aiming to enrich the diversities and reveal the fundamentals in order to further advance the multidisciplinary science and technological development into composite bionics.

15.
MethodsX ; 11: 102305, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37577164

RESUMEN

We present the first published method to convert data obtained by the Pioneer Venus Large Probe Neutral Mass Spectrometer (LNMS) into units of mixing ratio (ppm) and volume percent (v%) against CO2 and N2, the dominant Venus atmospheric gases, including conversion to density (kg m-3). These unit conversions are key to unlocking the untapped potential of the data, which represents a significant challenge given the scant calibration data in the literature. Herein, we show that our data treatments and conversions yield mixing ratios and volume percent values for H2O, N2, and SO2 that are within error to those reported for the gas chromatograph (LGC) on the Pioneer Venus Large Probe (PVLP). For the noble gases, we developed strategies to correct for instrument biases by treating the data as a relative scale and using PVLP and Venera-based measurements as calibration points. Together, these methods, conversions, calibrations, and comparisons afford novel unit conversions for the LNMS data and yield unified measures for Venus' atmosphere from the LNMS and LGC on the PVLP.•Conversion into mixing ratio (ppm), volume percent (v%), and density (kg m-3).•Mixing ratios are expressed against CO2 and N2.•LNMS and LGC measurements on the PVLP are consistent.

16.
Curr Biol ; 33(15): 3257-3264.e4, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37437572

RESUMEN

How the Venus flytrap (Dionaea muscipula) evolved the remarkable ability to sense, capture, and digest animal prey for nutrients has long puzzled the scientific community.1 Recent genome and transcriptome sequencing studies have provided clues to the genes thought to play a role in these tasks.2,3,4,5 However, proving a causal link between these and any aspect of the plant's hunting behavior has been challenging due to the genetic intractability of this non-model organism. Here, we use CRISPR-Cas9 methods to generate targeted modifications in the Venus flytrap genome. The plant detects prey using touch-sensitive trigger hairs located on its bilobed leaves.6 Upon bending, these hairs convert mechanical touch signals into changes in the membrane potential of sensory cells, leading to rapid closure of the leaf lobes to ensnare the animal.7 Here, we generate mutations in trigger-hair-expressed MscS-like (MSL)-family mechanosensitive ion channel genes FLYCATCHER1 (FLYC1) and FLYCATCHER2 (FLYC2)5 and find that double-mutant plants have a reduced leaf-closing response to mechanical ultrasound stimulation. While we cannot exclude off-target effects of the CRISPR-Cas9 system, our genetic analysis is consistent with these and other functionally redundant mechanosensitive ion channels acting together to generate the sensory system necessary for prey detection.


Asunto(s)
Droseraceae , Animales , Droseraceae/genética , Planta Carnívora , Transducción de Señal , Canales Iónicos/genética , Hojas de la Planta/fisiología
17.
Cardiovasc Diagn Ther ; 13(3): 487-495, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37405016

RESUMEN

Background: Previous studies have shown that neo-commissural orientation of transcatheter heart valve (THV) can influence coronary obstruction during transcatheter aortic valve replacement (TAVR), long-term durability of THV, and coronary artery access for reintervention after TAVR. Specific initial orientations of Evolut R/Pro and Acurate Neo aortic valves can improve commissural alignment. However, the method of achieving commissural alignment with the Venus-A valve remains unknown. Therefore, this study aimed to evaluate the extent of commissural and coronary alignment of the Venus-A self-expanding valve after TAVR using a standard system delivery technique. Methods: A retrospective cross-sectional study was performed. At the time of enrollment, patients who underwent pre- and post-procedural electrocardiographically-gated contrast-enhanced CT with a second-generation 64-row multidetector scanner were selected for the study. Commissural alignment was categorized as aligned (0-15° angle deviation), mild (15-30°), moderate (30-45°), or severe (45-60°) commissural misalignment (CMA). Coronary alignment was categorized as having no coronary overlap (CO) (>35°), moderate CO (20-35°), or severe CO (≤20°). The results were represented as proportions to assess the extent of commissural and coronary alignment. Results: Forty-five TAVR patients were ultimately included in the analysis. THVs were shown to be randomly implanted: 20.0% of THVs were aligned, 33.3% had mild CMA, 26.7% had moderate CMA, and 20.0% had severe CMA. The incidence of severe CO was 24.4% with the left main coronary artery, 28.9% with the right coronary artery, 6.7% with both coronary arteries, and 46.7% with one or both coronary arteries. Conclusions: The results showed that commissural or coronary alignment could not be achieved with the Venus-A valve using a standard system delivery technique. Therefore, specific methods to attain alignment with the Venus-A valve need to be identified.

18.
ACS Sens ; 8(7): 2750-2760, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37409469

RESUMEN

Bioelectronic tongues based on umami taste receptors have recently been reported for versatile applications such as food analyses. However, their practical applications are still limited, partly due to their limited stability and non-specific responses in real sample environments. Herein, we have developed a hydrogel-based bioelectronic tongue for the sensitive assessment of umami intensity in fish extract samples. In this study, the T1R1 venus flytrap of an umami taste receptor was immobilized on the gold floating electrodes of a carbon nanotube-based field-effect transistor. A polyacrylamide conducting hydrogel film was further hybridized on the sensor surface via physical adsorption, which could provide a good physiological environment to maintain the activity of receptors due to its excellent hydrophilicity and biocompatibility. The bioelectronic tongue with a receptor-embedded hydrogel structure showed a sensitive detection of umami substances down to 1 fM, and it also had a wide detection range of 10-15-10-2 M for monosodium glutamate and disodium inosinate, which covers the human taste threshold. More importantly, the proposed sensor could significantly reduce the non-specific binding of non-target molecules to a carbon nanotube channel as well as exhibit long-term stability, enabling sensitive detection of umami substances even in fish extract samples. Our hydrogel-based bioelectronic tongue provides a promising platform for future applications such as the flavor evaluation of foods and beverages.


Asunto(s)
Nanotubos de Carbono , Papilas Gustativas , Animales , Humanos , Gusto/fisiología , Hidrogeles , Lengua/fisiología
19.
BMC Cardiovasc Disord ; 23(1): 330, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386379

RESUMEN

BACKGROUND: Evidence about safety and efficacy of transcatheter aortic valve replacement (TAVR) with the Venus A-Valve system (Venus Medtech, Hangzhou, China) remains limited for patients with pure native aortic regurgitation (PNAR). OBJECTIVES: The single-center study sought to report the one-year clinical outcomes of the Venus A-Valve in the treatment of PNAR. METHODS: This study was a retrospective analysis of prospectively collected data. Data was from all consecutive patients who had PNAR and underwent TAVR with the Venus A-Valve system at our center from July 2020 and June 2021. Procedural and clinical outcomes up to one year were analyzed using Valve Academic Research Consortium-2 criteria. RESULTS: A total of 45 consecutive patients with PNAR underwent transfemoral TAVR with the Venus A-Valve system. The Mean age was 73.5 ± 5.5 years and 26.7% were female. All the TAVR procedures were performed via transfemoral access. Implantations were successful in 44 cases (97.8%). Only one patient was converted to surgical aortic valve replacement. No patient died intraoperatively. No second valve was implanted. In-hospital mortality rate was 2.3%. The one-year all-cause mortality rate was 4.7% without cardiovascular related death. No patient had moderate or severe paravalvular leakage during follow-up. At one year, the mean pressure gradient was 8.8 ± 0.9 mmHg, and left ventricular ejection fraction increased to 61.5 ± 3.6%. CONCLUSIONS: This single-center study demonstrated the safety and efficacy of transfemoral TAVR with the Venus A-Valve in the treatment of patients with PNAR.


Asunto(s)
Insuficiencia de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Femenino , Anciano , Masculino , Insuficiencia de la Válvula Aórtica/diagnóstico por imagen , Insuficiencia de la Válvula Aórtica/etiología , Insuficiencia de la Válvula Aórtica/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda
20.
Proc Natl Acad Sci U S A ; 120(25): e2220007120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307485

RESUMEN

What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus' 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus' cloud-filled atmosphere layers at 48 to 60 km above the surface hold the main requirements for life: suitable temperatures for covalent bonds; an energy source (sunlight); and a liquid solvent. Yet, the Venus clouds are widely thought to be incapable of supporting life because the droplets are composed of concentrated liquid sulfuric acid-an aggressive solvent that is assumed to rapidly destroy most biochemicals of life on Earth. Recent work, however, demonstrates that a rich organic chemistry can evolve from simple precursor molecules seeded into concentrated sulfuric acid, a result that is corroborated by domain knowledge in industry that such chemistry leads to complex molecules, including aromatics. We aim to expand the set of molecules known to be stable in concentrated sulfuric acid. Here, we show that nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine and the "core" nucleic acid bases purine and pyrimidine, are stable in sulfuric acid in the Venus cloud temperature and sulfuric acid concentration range, using UV spectroscopy and combinations of 1D and 2D 1H 13C 15N NMR spectroscopy. The stability of nucleic acid bases in concentrated sulfuric acid advances the idea that chemistry to support life may exist in the Venus cloud particle environment.


Asunto(s)
Bivalvos , Venus , Adenina , Agresión , Ácidos Sulfúricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA