Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174795, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029749

RESUMEN

Air pollution represents a complex phenomenon defined by the presence of various gases and particulate matter, leading to intricate spatio-temporal fluctuations. This study aims to enhance our understanding of how meteorological factors influence trace gases and aerosols, exacerbating air pollution in various geographical locations, specifically in Beijing's Fengtai (BJFT), Taiyuan City (SXTY), and Hefei's Science Island (HFDP). The study employs 2D-MAX-DOAS observations and utilizes the Random Forest (RF) model to decouple the influence of meteorological conditions from pollutant data. The vertical profile of nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (HCHO), and aerosols at each study site was classified into four distinct layers, followed by conducting a meteorological decoupling analysis on each layer. This decoupling analysis demonstrates that meteorology significantly influences aerosols across all sites, with reductions ranging from 75 % to 95 % after de-weathering. SO2 shows minimal susceptibility, with the changes ranging from ±20 % to ±60 % after de-weathering. Among all sites, BJFT's pollutants exhibit less susceptibility overall, while pollutants at HFDP are more susceptible. The findings further reveal significant meteorological interventions in pollutants in surface layers (0.05 km and 0.2-0.4 km) at BJFT, with some exceptions at SXTY. However, pollutants, particularly NO2 and aerosols in higher layers (0.6-0.8 km and 1.0-1.2 km) at HFDP, also experience significant meteorological interferences. The findings at HFDP and SXTY reveal that removing meteorological influence also adjusts the profile shape of pollutants. For instance, the NO2 profile at HFDP during the winter season shifted from a bimodal to an exponential shape after de-weathering. Overall, this study sheds light on the complex interplay between meteorological factors and trace gases at various altitudes across different geographic locations, offering insights crucial for holistic and effective pollution mitigation strategies.

2.
Sci Total Environ ; 945: 174076, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908583

RESUMEN

Chlorophyll-a (Chl-a) is a crucial pigment in algae and macrophytes, which makes the concentration of total Chl-a in the water column (total Chl-a) an essential indicator for estimating the primary productivity and carbon cycle of the ocean. Integrating the Chl-a concentration at different depths (Chl-a profile) is an important way to obtain the total Chl-a. However, due to limited cost and technology, it is difficult to measure Chl-a profiles directly in a spatially continuous and high-resolution way. In this study, we proposed an integrated strategy model that combines three different machine learning methods (PSO-BP, random forest and gradient boosting) to predict the Chl-a profile in the Mediterranean by using several sea surface variables (photosynthetically active radiation, spectral irradiance, sea surface temperature, wind speed, euphotic depth and KD490) and subsurface variables (mixed layer depth) observed by or estimated from satellite and BGC-Argo float observations. After accuracy estimation, the integrated model was utilized to generate the time series total Chl-a in the Mediterranean from 2003 to 2021. By analysing the time series results, it was found that seasonal fluctuation contributed the most to the variation in total Chl-a. In addition, there was an overall decreasing trend in the Mediterranean phytoplankton biomass, with the total Chl- decreasing at a rate of 0.048 mg/m2 per year, which was inferred to be related to global warming and precipitation reduction based on comprehensive analysis with sea surface temperature and precipitation data.


Asunto(s)
Clorofila A , Monitoreo del Ambiente , Fitoplancton , Monitoreo del Ambiente/métodos , Clorofila A/análisis , Mar Mediterráneo , Clorofila/análisis , Imágenes Satelitales , Agua de Mar/química , Estaciones del Año , Región Mediterránea , Aprendizaje Automático
3.
Mar Pollut Bull ; 203: 116461, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754320

RESUMEN

Microplastics (MPs) pose significant risks to marine ecosystems and human health, necessitating accurate predictions of their distributions in aquatic environments for effective risk mitigation. However, understanding MP transport dynamics is challenging because of the inadequate representation of MP characteristics such as size, shape, and density in numerical models. Further, the accuracy of the MP vertical profiles in existing models has not been thoroughly validated. Thus, we developed an MP transport model within the Finite Volume Community Ocean Model framework (FVCOM-MP) by integrating MP characteristics. We validated FVCOM-MP against experimental and analytical data, focusing on various MP transport modes and transitions. FVCOM-MP successfully replicates MP profiles in different transport modes, including the bedload, surface load, suspended load, and mixed load modes. Additionally, we introduce phase diagrams for classifying MP transport modes based on particle characteristics, enhancing our understanding of MP dynamics in aquatic systems. The transport modes for a number of real-world MP particles, including fishing line, plastic bag/bottle fragments, synthetic fibers, tire wear particles, polyvinyl chloride and expanded polystyrene pellets, were analyzed with these phase diagrams.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Tamaño de la Partícula , Modelos Teóricos , Plásticos , Modelos Químicos
4.
Environ Sci Technol ; 58(9): 4291-4301, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385161

RESUMEN

Photochemical ozone (O3) formation in the atmospheric boundary layer occurs at both the surface and elevated altitudes. Therefore, the O3 formation sensitivity is needed to be evaluated at different altitudes before formulating an effective O3 pollution prevention and control strategy. Herein, we explore the vertical evolution of O3 formation sensitivity via synchronous observations of the vertical profiles of O3 and proxies for its precursors, formaldehyde (HCHO) and nitrogen dioxide (NO2), using multi-axis differential optical absorption spectroscopy (MAX-DOAS) in urban areas of the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions in China. The sensitivity thresholds indicated by the HCHO/NO2 ratio (FNR) varied with altitude. The VOC-limited regime dominated at the ground level, whereas the contribution of the NOx-limited regime increased with altitude, particularly on heavily polluted days. The NOx-limited and transition regimes played more important roles throughout the entire boundary layer than at the surface. The feasibility of extreme NOx reduction to mitigate the extent of the O3 pollution was evaluated using the FNR-O3 curve. Based on the surface sensitivity, the critical NOx reduction percentage for the transition from a VOC-limited to a NOx-limited regime is 45-72%, which will decrease to 27-61% when vertical evolution is considered. With the combined effects of clean air action and carbon neutrality, O3 pollution in the YRD and PRD regions will transition to the NOx-limited regime before 2030 and be mitigated with further NOx reduction.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , China
5.
Sci Total Environ ; 915: 170039, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38219998

RESUMEN

High mass concentration of organic aerosol (OA) and its fraction in PM2.5 (particle matter with radius <2.5 µm) were observed in the low layer over a rural site of the North China Plain (NCP) in winter 2018. The mass fraction of OA in PM2.5 was 65.5 % at ground level (5 m above ground), and decreased to 37.1 % in layer of 200-1000 m. In addition, there was a sharp decrease of OA at around the top of planetary boundary layer (PBL), which was distinctly different from the vertical distributions of secondary inorganic aerosols (SIA, e.g., nitrate (NO3-), ammonium (NH4+), and sulfate (SO42-)). The altitude with sharp decrease of OA was very low in the morning and evening, e.g., the sharp decrease of OA occurred at a height <50 m at nighttime on Dec. 19, while was elevated in the noon with the PBL development. Furthermore, OA at ground level exhibited a distinct diurnal variation with a night-to-day ratio of 2.3, which was much larger than those of SIA and inactive CO. All the above results indicated the extremely high OA concentration at the rural site was mainly attributed to direct emission from local sources, such as the combustion of coal and biomass for heating. The extremely high OA could be expected in vest rural areas of the NCP in winter because the farmer activities are very similar to the investigated rural site, underscoring the urgency to mitigate OA emission in rural area for improving the local as well as the regional air quality.

6.
Sci Total Environ ; 915: 169159, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232854

RESUMEN

The insufficient study on vertical observations of main atmospheric reactive nitrogen oxides (NO2 and HONO) posed a great challenge to evaluate their intertransport between urban and agricultural areas, and to further learn the atmospheric nitrogen chemistry and the atmospheric oxidation capacity at high altitudes. A stereoscopic measurement campaign (satellite remote sensing, hyperspectral unmanned aerial vehicle (UAV) remote sensing and MAX-DOAS observation) was performed in a typical inland city Hefei and its surrounding agricultural fields from June to October 2022. Average aerosol vertical profiles exhibited a Gaussian shape above 100 m with maximum values of 0.67 km-1 and 0.55 km-1 at 300-400 m layer at Anhui University (AHU) and Changfeng (CF), respectively. The distinct layered structure was mainly attributed to regional transport. Average H2O and NO2 vertical profiles all showed a Gaussian shape and an exponential shape at AHU and CF, respectively. Moreover, the diurnal evolution of H2O profiles performed one peak and bi-peak patterns at AHU and CF, respectively, whereas the diurnal evolution of NO2 at two stations all exhibited bi-peak patterns attributed to vehicle emissions. Average HONO vertical profiles showed an exponential shape and a Gaussian shape at AHU and CF, respectively. Higher HONO (> 0.05 ppb) above 1.0 km at 14:00-16:00 was observed at CF. The transport flux analysis showed that the northern transport flux always larger than southern transport flux for aerosol and H2O. The maximum northern transport fluxes appeared at 300 m and surface for aerosol and H2O, respectively. It indicated that surrounding agricultural fields was an important source of atmospheric H2O of city. The southern transport flux was larger than northern transport flux for NO2, with a maximum net transport flux of 9.20 ppb m s-1 at 100 m. It demonstrated that NO2 transported from urban areas was an important source of NO2 in agricultural fields. For HONO, the southern transport flux was larger than northern transport flux under 100 m, whereas it was opposite above 100 m. It indicated that the HONO distributed at high altitudes at agricultural fields had potential to enhance the atmospheric oxidation capacity of urban area. The net horizontal transport fluxes of HONO of our defined cropland were 5.25 µg m-2 s-1 and -3.65 µg m-2 s-1 during non-fertilization and fertilization periods, respectively. It indicated that the cropland could obviously export HONO to surrounding atmosphere during the fertilization period. Deducing the contribution of direct emission, heterogeneous process was a major source of HONO at urban and agricultural areas. The average surface conversion rate of NO2-to-HONO (CHONO) was 0.01467 h-1, and this value decreased with the increase of height at urban station. While average surface CHONO was 0.0322 h-1 at agricultural fields, which was ~1.2-2.8 times higher than that at urban area. The CHONO at agricultural fields significantly increased with the increase of height. The average CHONO at 1.0 km was ~2.0-3.6 times higher than that at surface. That suggested that the heterogeneous process was the main HONO source at high altitudes at CF, and this process obviously correlated with aerosol and H2O. The higher OH production from HONO (P(OH)HONO) occurred at 0-200 m and 100-400 m with averaged values of 0.31 ppb h-1 and 0.39 ppb h-1 at AHU and CF, respectively. The high P(OH)HONO above 1.0 km at CF from September to October was strongly correlated with high O3 (> 80 ppb). This study emphasized the importance of the stereoscopic of HONO on the analysis of its distribution, evolution, source and atmospheric oxidizing contribution.

7.
J Environ Sci (China) ; 138: 10-18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135378

RESUMEN

The ozone (O3) pollution in China drew lots of attention in recent years, and the Sichuan Basin (SCB) was one of the regions confronting worsening O3 pollution problem. Many previous studies have shown that regional transport is an important contributor to O3 pollution. However, very few features of the O3 profile during transport have been reported, especially in the border regions between different administrative divisions. In this study, we conducted tethered balloon soundings in SCB during the summer of 2020 and captured a nocturnal O3 transport event during the campaign. Vertically, the O3 transport occurred in the bottom of the residual layer, between 200 and 500 m above ground level. Horizontally, the transport pathway was directed from southeast to northwest based on the analysis of the wind field and air mass trajectories. The effect of transport in the residual layer on the surface O3 concentration was related to the spatial distribution of O3. For cities with high O3 concentrations in the upwind region, the transport process would bring clean air masses and abate pollution. For downwind lightly polluted cities, the transport process would slow down the decreasing or even increase the surface O3 concentration during the night. We provided observational facts on the profile features of a transboundary O3 transport event between two provincial administrative divisions, which implicated the importance of joint prevention and control measures. However, the sounding parameters were limited and the quantitative analysis was preliminary, more integrated, and thorough studies of this topic were called for in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , Estaciones del Año , China
8.
Heliyon ; 9(8): e18641, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560661

RESUMEN

Based on the simulation of the fluid-structure interaction response, the cause of an overturning of a gantry crane induced by a downburst in Shenzhen is studied in this paper. According to the results, (1) Vicroy's downburst model could establish the steady-state wind field of the downburst more reasonably when there was only low-level wind speed observation data, and its simulation results were close to the two-dimensional downburst numerical simulation results; (2) Compared with the normal exponential vertical profile of wind speed, the disturbance caused by the front girder of the double-girder gantry crane structure under the downburst wind field was more severe, which increases the probability of the gantry crane overturning. (3) The downwind displacement of the main girder of the gantry crane under the condition of downburst is far greater than that under the normal condition. At the same time, under the condition of downburst, the pressure difference on the surface of the gantry crane was greater, and the distribution of the support reaction force was more uneven, resulting in a stronger overturning tendency of the gantry crane. (4) Under the condition of downburst, the overturning moment and the shearing force borne by the foundation of gantry crane exceeded the critical value to maintain the stability of the gantry crane by the gravity, resulting in the overturning of the gantry crane.

9.
J Hazard Mater ; 458: 131903, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352779

RESUMEN

Wild PAH-contaminated sites struggle to provide continuous and stable monitoring, resulting in the potential risks of contaminated soil utilization could not be evaluated effectively. This work provided a 9-months laboratory simulation which was close to the natural ecological process. These results believed that PAH-degrading bacteria (PDB) preferred to degrade organic extracted PAH (PAH_OS) and fresh bound-PAH (79.36-99.97%). The formation and migration efficiency of PAH binding with HA humic acid (HA) (PAH_HA) was lower than that of PAH binding with fulvic acid (FA) and humin (HM) (PAH_FA and PAH_HM), leading to PAH_HA had more persistent retention and influenced bacterial communities in shallow soils. Besides, phylum Proteobacteria gradually dominated the bacterial community and decreased 12.05-20.48% diversity at all depths during the biological self-purification process. Although the effect of this process enhanced the abundance of 28 genes 16 s rRNA and three PAH-degrading genes (PDGs) by 5.91-2047.34 times (phe, nahAc and nidA), the top 30 genera maintained their ecological characteristics. This study provided insights into the important influencing factor and mechanism of the biological self-purification processes and discerned the linkages between bacterial communities and environmental variables in the vertical profile, which is important to the isolation and application of PDB and ecological risk assessment.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Bacterias/genética , Bacterias/metabolismo , Microbiología del Suelo
10.
Sci Total Environ ; 895: 165190, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385506

RESUMEN

The distribution and transport of atmospheric microplastics (AMPs) have raised concerns regarding their potential effects on the environment and human health. Although previous studies have reported the presence of AMPs at ground level, there is a lack of comprehensive understanding of their vertical distribution in urban environments. To gain insight into the vertical profile of AMPs, field observations were conducted at four different heights (ground level, 118 m, 168 m and 488 m) of the Canton Tower in Guangzhou, China. Results showed that the profiles of AMPs and other air pollutants had similar layer distribution patterns, although their concentrations differed. The majority of AMPs were composed of polyethylene terephthalate and rayon fibers ranging from 30 to 50 µm. As a result of atmospheric thermodynamics, AMPs generated at ground level were only partially transported upward, leading to a decrease in their abundance with increasing altitude. The study found that the stable atmospheric stability and lower wind speed between 118 m and 168 m resulted in the formation of a fine layer where AMPs tended to accumulate instead of being transported upward. This study for the first time delineated the vertical profile of AMPs within the atmospheric boundary layer, providing valuable data for understanding the environmental fate of AMPs.

11.
Environ Sci Pollut Res Int ; 30(33): 80014-80028, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37291343

RESUMEN

The representativeness of ambient air quality of an in situ measurement is key in the use and correct interpretation of the measured concentration values. Though the horizontal representativeness aspect is generally not neglected in air pollution studies, a detailed, high-resolution vertical distribution of ambient air pollutant concentrations is rarely addressed. The aim of this study is twofold: (i) to explore the vertical distribution of ground-level ozone (O3) concentrations measured at four heights above the ground-namely at 2, 8, 50, and 230 m-and (ii) to examine in detail the vertical O3 concentration gradient in air columns between 2 and 8, 8 and 50, and 50 and 230 m above the ground. We use the daily mean O3 concentrations measured continuously at the Kosetice station, representing the rural Central European background ambient air quality observed during 2015-2021. We use the semiparametric GAM (generalised additive model) approach (with complexity or roughness-penalised splines implementation) to analyse the data with sufficient flexibility. Our models for both O3 concentrations and O3 gradients use (additive) decomposition into annual trend and seasonality (plus an overall intercept). The seasonal and year-to-year patterns of the modelled O3 concentrations look very similar at first glance. Nevertheless, a more detailed look through O3 gradients shows that they differ substantially with respect to their seasonal and long-term dynamics. The vertical O3 concentration gradient in 2-230 m is not uniform but changes substantially with increasing height and shows by far the highest dynamics near the ground between 2 and 8 m, differing in both the seasonal and annual aspects for all the air columns inspected. We speculate that non-linear changes of both seasonal and annual components of vertical O3 gradients are due to atmospheric-terrestrial interactions and to meteorological factors, which we will explore in a future study.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Conceptos Meteorológicos , Monitoreo del Ambiente
12.
Front Microbiol ; 14: 1184238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125153

RESUMEN

Agricultural fertilization caused the dissemination of antibiotic resistance genes (ARGs) in agro-ecological environment, which poses a global threat to crop-food safety and human health. However, few studies are known about the influence of different agricultural fertilization modes on antibiotic resistome in the paddy-upland rotation soils. Therefore, we conducted a field experiment to compare the effect of different fertilization (chemical fertilizer, slow release fertilizer and commercial organic fertilizer replacement at various rates) on soil antibiotic resistome in paddy-upland rotation fields. Results revealed that a total of 100 ARG subtypes and 9 mobile genetic elements (MGEs) occurred in paddy-upland rotation soil, among which MDR-ARGs, MLSB-ARGs and tet-ARGs were the dominant resistance determinants. Long-term agricultural fertilization remarkably facilitated the vertical accumulation of ARGs, in particular that bla ampC and tetO in relative abundance showed significant enrichment with increasing depth. It's worth noting that slow release fertilizer significantly increased soil ARGs, when comparable to manure with 20% replacing amount, but chemical fertilizer had only slight impact on soil ARGs. Fertilization modes affected soil microbial communities, mainly concentrated in the surface layer, while the proportion of Proteobacteria with the highest abundance decreased gradually with increasing depth. Furthermore, microbial community and MGEs were further proved to be essential factors in regulating the variability of ARGs of different fertilization modes by structural equation model, and had strong direct influence (λ = 0.61, p < 0.05; λ = 0. 55, p < 0.01). The results provided scientific guidance for reducing the spreading risk of ARGs and control ARG dissemination in agricultural fertilization.

13.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37050775

RESUMEN

This paper introduces a novel methodology that estimates the wind profile within the ABL by using a neural network along with predictions from a mesoscale model in conjunction with a single near-surface measurement. A major advantage of this solution compared to other solutions available in the literature is that it requires only near-surface measurements for prediction once the neural network has been trained. An additional advantage is the fact that it can be potentially used to explore the time evolution of the wind profile. Data collected by a LiDAR sensor located at the University of León (Spain) is used in the present research. The information obtained from the wind profile is valuable for multiple applications, such as preliminary calculations of the wind asset or CFD modeling.

14.
J Environ Radioact ; 262: 107150, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36934681

RESUMEN

The shapes of the deep slope (below the maximum values) of the vertical profiles of radiocesium activity concentrations in the sediment samples taken in 2003-2012 in the Lakes Juodis, Tapeliai and Red lake were studied. The Gaussian shape of the deep slope indicates the migration of radiocesium into the depths of the sediments, and this process is significantly enhanced in some places due to bioturbation caused by tench preparing for hibernation. The exponential shape of the deep slope is typical for sediments in which in winter, in the presence of an ice cover on the lake, thermodynamic mixing occurs in the surface layer caused by the effects of pore water buoyancy. In these sediments, radiocesium dissolved in the pore fluid migrates upwards into the near-bottom water, becoming a source of secondary pollution of the water column. In winter, the presence of such a process is easily determined by the emergence of a layered structure of the water column in the lake and the temperatures of the near-bottom waters exceeding 4 °C. In this case, each layer is characterized by constant standard water parameters (temperature, conductivity, concentrations of oxygen, and trace elements). Complex forms of the deep slope of the vertical profile of radiocesium activity concentrations, combining elements of the exponential and Gaussian forms, indicate the episodic presence of both migration mechanisms. A method is proposed for identifying sediments that are a source of secondary pollution of lake waters by estimating the differences between the normalized logarithms of the radiocesium activity concentrations of the deep slopes (below the maximum concentrations) of its vertical profiles in the sediments of the studied samples and the sample of the carbonate barrier sediments, which were discovered in the shallow part of Lake Juodis in 2003.


Asunto(s)
Monitoreo de Radiación , Contaminantes Químicos del Agua , Lagos , Sedimentos Geológicos/química , Agua/química , Carbonatos , Monitoreo del Ambiente
15.
Environ Sci Technol ; 57(14): 5821-5830, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36971313

RESUMEN

Arctic aerosols play a significant role in aerosol-radiation and aerosol-cloud interactions, but ground-based measurements are insufficient to explain the interaction of aerosols and clouds in a vertically stratified Arctic atmosphere. This study shows the vertical variability of a size resolved aerosol composition via a tethered balloon system at Oliktok Point, Alaska, at different cloud layers for two representative case studies (background aerosol and polluted conditions). Multimodal microspectroscopy analysis during the background case reveals a broadening of chemically specific size distribution above the cloud top with a high abundance of sulfate particles and core-shell morphology, suggesting possible cloud processing of aerosols. The polluted case also indicates broadening of aerosol size distribution at the upper layer within the clouds with the dominance of carbonaceous particles, which suggests that the carbonaceous particles play a potential role in modulating Arctic cloud properties.


Asunto(s)
Atmósfera , Atmósfera/química , Aerosoles , Regiones Árticas , Alaska
16.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991980

RESUMEN

The vertical profiles of nitrogen dioxide (NO2) and formaldehyde (HCHO) in the troposphere at the Longfengshan (LFS) regional atmospheric background station (127°36' E, 44°44' N, 330.5 m above sea level) from 24 October 2020 to 13 October 2021 were retrieved from solar scattering spectra by multi-axis differential optical absorption spectroscopy (MAX-DOAS). We analyzed the temporal variations of NO2 and HCHO as well as the sensitivity of ozone (O3) production to the concentration ratio of HCHO to NO2. The largest NO2 volume mixing ratios (VMRs) occur in the near-surface layer for each month, with high values concentrated in the morning and evening. HCHO has an elevated layer around the altitude of 1.4 km consistently. The means ± standard deviations of vertical column densities (VCDs) and near-surface VMRs were 4.69 ± 3.72 ×1015 molecule·cm-2 and 1.22 ± 1.09 ppb for NO2, and they were 1.19 ± 8.35 × 1016 molecule·cm-2 and 2.41 ± 3.26 ppb for HCHO. The VCDs and near-surface VMRs for NO2 were high in the cold months and low in the warm months, while HCHO presented the opposite. The larger near-surface NO2 VMRs appeared in the condition associated with lower temperature and higher humidity, but this relationship was not found between HCHO and temperature. We also found the O3 production at the Longfengshan station was mainly in the NOx-limited regime. This is the first study presenting the vertical distributions of NO2 and HCHO in the regional background atmosphere of northeastern China, which are significant to enhancing the understanding of background atmospheric chemistry and regional ozone pollution processes.

17.
Data Brief ; 46: 108798, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36569534

RESUMEN

The third Dutch national airborne laser scanning flight campaign (AHN3, Actueel Hoogtebestand Nederland) conducted between 2014 and 2019 during the leaf-off season (October-April) across the whole Netherlands provides a free and open-access, country-wide dataset with ∼700 billion points and a point density of ∼10(-20) points/m2. The AHN3 point cloud was obtained with Light Detection And Ranging (LiDAR) technology and contains for each point the x, y, z coordinates and additional characteristics (e.g. return number, intensity value, scan angle rank and GPS time). Moreover, the point cloud has been pre-processed by 'Rijkswaterstraat' (the executive agency of the Dutch Ministry of Infrastructure and Water Management), comes with a Digital Terrain Model (DTM) and a Digital Surface Model (DSM), and is delivered with a pre-classification of each point into one of six classes (0: Never Classified, 1: Unclassified, 2: Ground, 6: Building, 9: Water, 26: Reserved [bridges etc.]). However, no detailed information on vegetation structure is available from the AHN3 point cloud. We processed the AHN3 point cloud (∼16 TB uncompressed data volume) into 10 m resolution raster layers of ecosystem structure at a national extent, using a novel high-throughput workflow called 'Laserfarm' and a cluster of virtual machines with fast central processing units, high memory nodes and associated big data storage for managing the large amount of files. The raster layers (available as GeoTIFF files) capture 25 LiDAR metrics of vegetation structure, including ecosystem height (e.g. 95th percentiles of normalized z), ecosystem cover (e.g. pulse penetration ratio, canopy cover, and density of vegetation points within defined height layers), and ecosystem structural complexity (e.g. skewness and variability of vertical vegetation point distribution). The raster layers make use of the Dutch projected coordinate system (EPSG:28992 Amersfoort / RD New), are each ∼1 GB in size, and can be readily used by ecologists in a geographic information system (GIS) or analytical open-source software such as R and Python. Even though the class '1: Unclassified' mainly includes vegetation points, other objects such as cars, fences, and boats can also be present in this class, introducing potential biases in the derived data products. We therefore validated the raster layers of ecosystem structure using >180,000 hand-labelled LiDAR points in 100 randomly selected sample plots (10 m × 10 m each) across the Netherlands. Besides vegetation, objects such as boats, fences, and cars were identified in the sampled plots. However, the misclassification rate of vegetation points (i.e. non-vegetation points that were assumed to be vegetation) was low (∼0.05) and the accuracy of the 25 LiDAR metrics derived from the AHN3 point cloud was high (∼90%). To minimize existing inaccuracies in this country-wide data product (e.g. ships on water bodies, chimneys on roofs, or cars on roads that might be incorrectly used as vegetation points), we provide an additional mask that captures water bodies, buildings and roads generated from the Dutch cadaster dataset. This newly generated country-wide ecosystem structure data product provides new opportunities for ecology and biodiversity science, e.g. for mapping the 3D vegetation structure of a variety of ecosystems or for modelling biodiversity, species distributions, abundance and ecological niches of animals and their habitats.

18.
Sci Total Environ ; 857(Pt 1): 159232, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36208733

RESUMEN

Limited by the scarcity of in situ vertical observation data, the influences of biomass burning in Southeast Asia on major atmospheric carbonaceous compositions in downwind regions have not been thoroughly studied. In this study, aircraft observations were performed to obtain high time-resolved in situ vertical distributions of black carbon (BC) as well as carbon monoxide (CO) and carbon dioxide (CO2). Four types of profiles were revealed: Mode I (from 2000 to 3000 m, the BC, CO and CO2 concentrations were enhanced), Mode II (with increasing altitude, the BC, CO and CO2 concentrations almost decreased), Mode III (inhomogeneous vertical BC, CO and CO2 profiles with BC peaks were observed from 2500 to 3000 m) and Mode IV (the BC, CO and CO2 concentrations increased above 1500 m). Furthermore, simulations were conducted to calculate radiative forcing (RF) caused by BC and study the heating rate (HR) of BC in combination with the vertical BC profiles. A larger BC distribution in the atmosphere resulted in a sharp RF change from negative to positive values, imposing a nonnegligible influence on the atmospheric temperature profile, with maximum HR values ranging from 0.4 to 5.8 K/day. The values of the absorption Ångström exponent (AAE) were 1.46 ± 0.11 and 1.48 ± 0.17 at altitudes from 1000 to 2000 and 2000-3000 m, respectively. The average BC light absorption coefficient at the 370 nm wavelength (α BC (370)) accounted for 50.3 %-76.8 % of the α (370), while the brown carbon (BrC) light absorption coefficient at the 370 nm wavelength (α BrC (370)) contributed 23.2 %-49.7 % to the α (370) at altitudes of 1000-2000 m. At altitudes of 2000-3000 m, α BC (370) and α BrC (370) contributed 43.8 %-88.2 % and 11.8 %-56.2 % to the α (370), respectively. These findings show that calculations that consider the surface BC concentration but ignore the vertical BC distribution could result in massive uncertainties in estimating the RF and HR caused by BC. This study helped achieve a deeper understanding of the influences of biomass burning over the region of Southeast Asia on the profiles of atmospheric carbonaceous compositions and atmospheric BC absorption and its warming effect.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Aerosoles/análisis , Biomasa , Monitoreo del Ambiente/métodos , Dióxido de Carbono , Hollín/análisis , China , Asia Sudoriental , Aeronaves
19.
Sci Total Environ ; 858(Pt 3): 159881, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334675

RESUMEN

A comprehensive set of observations were collected along a sea-coast-inland area. According to these observations, the planetary boundary layer heights (PBLH) during winter and summer for sampling locations in sea, coast, and inland areas were 737 m, 483 m and 372 m, and 450 m, 645 m and 646 m, respectively. Little seasonal difference was observed for the daily variation of sensible heat flux over the sea, with the maximum of 55 W/m2 at 12:00 in winter and 27 W/m2 at 13:00 in summer. The duration of sea breeze was ∼10 h in summer and only 3 h in winter, extended to inland area ∼ 50 km and upward 920 m vertically. PM2.5 at coastal area was about 5 µg/m3 higher than inland during summer afternoon. Over the sea, PM2.5 mainly concentrated below 200 m in winter, increased with height at night and decreased with height in the morning below 300 m in summer. A typical land-sea breeze episode was analyzed with observed and simulated result. According to the observed data, the sea breeze extended to inland ∼50 km and upward 300 m vertically. From the simulating result, there was a clear temperature gradient between sea and land from surface to 400 m, when influenced by the sea breeze, the wind and temperature profiles showed different characteristics, and forming a high concentration center of PM2.5 at 300 m. These results provide insights into the structure of land-sea planetary boundary layer, and provide support for the prediction of heavy pollution episode.

20.
Chemosphere ; 312(Pt 1): 137207, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370764

RESUMEN

Soil selenium is of great significance to human health. Soil-forming parent rocks are the most critical factor that influences soil Se levels. Chengmai County, Hainan Island, has a tropical climate and diverse types of parent rocks, in which soil Se content is high. This study investigated the vertical distribution of soil Se from various parent rock substrates under tropical climatic conditions, and the factors that influence these soil Se contents, with 69 vertical soil profiles covering Chengmai County. The vertical distribution of soil Se and correlations with CIA (chemical alteration index), Al2O3, TFe2O3 (total iron oxide expressed as Fe2O3), total iodine, SOC (soil organic carbon), and pH were analysed. As per the results, the mean ± standard error of Se content in the A, B, and C horizons was 0.88 ± 0.13 mg/kg, 0.77 ± 0.08 mg/kg and 0.45 ± 0.05 mg/kg, respectively. The parent rock strictly controlled the horizon distribution of Se in the A-horizon. Soil Se showed A-B-horizons-enrichment in the vertical profile, especially in soil profiles overlying granite and basalt. It is hypothesised that the Se enriched in soils developed from the Tuolie Formation due to the release of Se from the weathering process of Se-rich rocks. Meanwhile, Se in soils developed from granite and basalt is more closely associated with exogenous input. Another crucial factor for the high level of Se in Chengmai County is the tropical climate, which has led the rocks to generally undergo intense chemical weathering. This results in soils rich in clay minerals and Fe/Al oxyhydroxides, which easily absorb and retain Se. Furthermore, the Se content of the B-horizon was generally higher than that of the A-horizon due to leaching. These results provide further knowledge and understanding of the geochemical behaviour of soil Se and guide the evaluation of Se-rich land resources under tropical climatic conditions.


Asunto(s)
Selenio , Suelo , Humanos , Suelo/química , Selenio/análisis , Clima Tropical , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA