Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38402577

RESUMEN

Clustering of cells is an essential component of many biological processes from tissue formation to cancer metastasis. We develop a minimal, Vicsek-based model of cellular interactions that robustly and accurately captures the variable propensity of different cells to form groups when confined. We calibrate and validate the model with experimental data on clustering affinities of four lines of tumor cells. We then show that cell clustering or separation tendencies are retained in environments with higher cell number densities and in cell mixtures. Finally, we calibrate our model with experimental measurements on the separation of cells treated with anti-clustering agents and find that treated cells maintain their distances in denser suspensions. We show that the model reconstructs several cell interaction mechanisms, which makes it suitable for exploring the dynamics of cell cluster formation as well as cell separation. Insight: We developed a model of cellular interactions that captures the clustering and separation of cells in an enclosure. Our model is particularly relevant for microfluidic systems with confined cells and we centered our work around one such emerging assay for the detection and research on clustering breast cancer cells. We calibrated our model using the existing experimental data and used it to explore the functionality of the assay under a broader set of conditions than originally considered. Future usages of our model can include purely theoretical and computational considerations, exploring experimental devices, and supporting research on small to medium-sized cell clusters.


Asunto(s)
Algoritmos , Neoplasias , Análisis por Conglomerados
2.
Entropy (Basel) ; 25(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38136524

RESUMEN

Animal motion and flocking are ubiquitous nonequilibrium phenomena that are often studied within active matter. In examples such as insect swarms, macroscopic quantities exhibit power laws with measurable critical exponents and ideas from phase transitions and statistical mechanics have been explored to explain them. The widely used Vicsek model with periodic boundary conditions has an ordering phase transition but the corresponding homogeneous ordered or disordered phases are different from observations of natural swarms. If a harmonic potential (instead of a periodic box) is used to confine particles, then the numerical simulations of the Vicsek model display periodic, quasiperiodic, and chaotic attractors. The latter are scale-free on critical curves that produce power laws and critical exponents. Here, we investigate the scale-free chaos phase transition in two space dimensions. We show that the shape of the chaotic swarm on the critical curve reflects the split between the core and the vapor of insects observed in midge swarms and that the dynamic correlation function collapses only for a finite interval of small scaled times. We explain the algorithms used to calculate the largest Lyapunov exponents, the static and dynamic critical exponents, and compare them to those of the three-dimensional model.

3.
Biomimetics (Basel) ; 8(7)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999190

RESUMEN

Multiple automatic guided vehicles are widely involved in industrial intelligence. Path planning is crucial for their successful application. However, achieving robust and efficient path planning of multiple automatic guided vehicles for real-time implementation is challenging. In this paper, we propose a two-layer strategy for multi-vehicle path planning. The approach aims to provide fast computation and operation efficiency for implementation. The start-destination matrix groups all the vehicles, generating a dynamic virtual leader for each group. In the first layer, the hybrid A* algorithm is employed for the path planning of the virtual leaders. The second layer is named leader-follower; the proposed Weight-Leader-Vicsek model is applied to navigate the vehicles following their virtual leaders. The proposed method can reduce computational load and achieve real-time navigation by quickly updating the grouped vehicles' status. Collision and deadlock avoidance is also conducted in this model. Vehicles in different groups are treated as dynamic obstacles. We validated the method by conducted simulations through MATLAB to verify its path-planning functionality and experimented with a localization sensor.

4.
Entropy (Basel) ; 25(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37238572

RESUMEN

A super-diffusive Vicsek model is introduced in this paper that incorporates Levy flights with exponent α. The inclusion of this feature leads to an increase in the fluctuations of the order parameter, ultimately resulting in the disorder phase becoming more dominant as α increases. The study finds that for α values close to two, the order-disorder transition is of the first order, while for small enough values of α, it shows degrees of similarities with the second-order phase transitions. The article formulates a mean field theory based on the growth of the swarmed clusters that accounts for the decrease in the transition point as α increases. The simulation results show that the order parameter exponent ß, correlation length exponent ν, and susceptibility exponent γ remain constant when α is altered, satisfying a hyperscaling relation. The same happens for the mass fractal dimension, information dimension, and correlation dimension when α is far from two. The study reveals that the fractal dimension of the external perimeter of connected self-similar clusters conforms to the fractal dimension of Fortuin-Kasteleyn clusters of the two-dimensional Q=2 Potts (Ising) model. The critical exponents linked to the distribution function of global observables vary when α changes.

5.
J Phys Condens Matter ; 34(31)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623339

RESUMEN

We study the short-time dynamics (STD) of the Vicsek model (VM) with vector noise. The study of STD has proved to be very useful in the determination of the critical point, critical exponents and spinodal points in equilibrium phase transitions. Here we aim is to test its applicability in active systems. We find that, despite the essential non-equilibrium characteristics of the VM (absence of detailed balance, activity), the STD presents qualitatively the same phenomenology as in equilibrium systems. From the STD one can distinguish whether the transition is continuous or discontinuous (which we have checked also computing the Binder cumulant). When the transition is continuous, one can determine the critical point and the critical exponents.


Asunto(s)
Enfermedades de Transmisión Sexual , Humanos , Transición de Fase
6.
Sensors (Basel) ; 21(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073061

RESUMEN

This study proposes a collective motion and self-organization control of a swarm of 10 UAVs, which are divided into two clusters of five agents each. A cluster is a group of UAVs in a dedicated area and multiple clusters make a swarm. This paper designs the 3D model of the whole environment by applying graph theory. To address the aforesaid issues, this paper designs a hybrid meta-heuristic algorithm by merging the particle swarm optimization (PSO) with the multi-agent system (MAS). First, PSO only provides the best agents of a cluster. Afterward, MAS helps to assign the best agent as the leader of the nth cluster. Moreover, the leader can find the optimal path for each cluster. Initially, each cluster contains agents at random positions. Later, the clusters form a formation by implementing PSO with the MAS model. This helps in coordinating the agents inside the nth cluster. However, when two clusters combine and make a swarm in a dynamic environment, MAS alone is not able to fill the communication gap of n clusters. This study does it by applying the Vicsek-based MAS connectivity and synchronization model along with dynamic leader selection ability. Moreover, this research uses a B-spline curve based on simple waypoint defined graph theory to create the flying formations of each cluster and the swarm. Lastly, this article compares the designed algorithm with the NSGA-II model to show that the proposed model has better convergence and durability, both in the individual clusters and inside the greater swarm.

7.
Biophys Physicobiol ; 18: 131-144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178564

RESUMEN

Synchronized movement of (both unicellular and multicellular) systems can be observed almost everywhere. Understanding of how organisms are regulated to synchronized behavior is one of the challenging issues in the field of collective motion. It is hypothesized that one or a few agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). The identification of the leader (influential) agent(s) is very crucial. This article reviews different mathematical models that represent different types of leadership. We focus on the improvement of the leader-follower classification problem. It was found using a simulation model that the use of interaction domain information significantly improves the leader-follower classification ability using both linear schemes and information-theoretic schemes for quantifying influence. This article also reviews different schemes that can be used to identify the interaction domain using the motion data of agents.

8.
Entropy (Basel) ; 22(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-33286807

RESUMEN

A crisis in financial markets can be considered as a collective behaviour phenomenon. The collective behaviour is a complex behaviour which exists among a group of animals. The Vicsek model has been adapted to represent this complexity. A unique phase space has been introduced to represent all possible results of the model. The return of the transaction volumes versus the return of the closed price of each share has been used within the defined phase space. The findings show that the direction of the resultant velocity vectors of all share in this phase space act in the same direction when the financial crisis happens. By monitoring the market's collective behaviour, it will be possible to gain more knowledge about the condition of the market days in crisis. This research aims to investigate the collective behaviour of stocks using the Vicsek model to study the condition of the market during the days in crisis.

9.
J R Soc Interface ; 17(169): 20200165, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32811297

RESUMEN

We study how the structure of the interaction network affects self-organized collective motion in two minimal models of self-propelled agents: the Vicsek model and the Active-Elastic (AE) model. We perform simulations with topologies that interpolate between a nearest-neighbour network and random networks with different degree distributions to analyse the relationship between the interaction topology and the resilience to noise of the ordered state. For the Vicsek case, we find that a higher fraction of random connections with homogeneous or power-law degree distribution increases the critical noise, and thus the resilience to noise, as expected due to small-world effects. Surprisingly, for the AE model, a higher fraction of random links with power-law degree distribution can decrease this resilience, despite most links being long-range. We explain this effect through a simple mechanical analogy, arguing that the larger presence of agents with few connections contributes localized low-energy modes that are easily excited by noise, thus hindering the collective dynamics. These results demonstrate the strong effects of the interaction topology on self-organization. Our work suggests potential roles of the interaction network structure in biological collective behaviour and could also help improve decentralized swarm robotics control and other distributed consensus systems.


Asunto(s)
Relaciones Interpersonales , Movimiento (Física)
10.
Math Biosci Eng ; 16(6): 7883-7910, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31698645

RESUMEN

We analyse the asymptotic behavior for kinetic models describing the collective behavior of animal populations. We focus on models for self-propelled individuals, whose velocity relaxes toward the mean orientation of the neighbors. The self-propelling and friction forces together with the alignment and the noise are interpreted as a collision/interaction mechanism acting with equal strength. We show that the set of generalized collision invariants, introduced in [1], is equivalent in our setting to the more classical notion of collision invariants, i.e., the kernel of a suitably linearized collision operator. After identifying these collision invariants, we derive the fluid model, by appealing to the balances for the particle concentration and orientation. We investigate the main properties of the macroscopic model for a general potential with radial symmetry.


Asunto(s)
Conducta Animal , Hidrodinámica , Conducta Social , Algoritmos , Animales , Simulación por Computador , Cinética , Modelos Lineales , Movimiento (Física) , Dinámica Poblacional
11.
J R Soc Interface ; 13(123)2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27733694

RESUMEN

New experimental evidence of self-motion of a confined active suspension is presented. Depositing fresh semen sample in an annular shaped microfluidic chip leads to a spontaneous vortex state of the fluid at sufficiently large sperm concentration. The rotation occurs unpredictably clockwise or counterclockwise and is robust and stable. Furthermore, for highly active and concentrated semen, richer dynamics can occur such as self-sustained or damped rotation oscillations. Experimental results obtained with systematic dilution provide a clear evidence of a phase transition towards collective motion associated with local alignment of spermatozoa akin to the Vicsek model. A macroscopic theory based on previously derived self-organized hydrodynamics models is adapted to this context and provides predictions consistent with the observed stationary motion.


Asunto(s)
Hidrodinámica , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Espermatozoides/fisiología , Animales , Masculino , Ovinos , Espermatozoides/citología
12.
Interface Focus ; 2(6): 708-14, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24312724

RESUMEN

Experimental observations of animal collective behaviour have shown stunning evidence for the emergence of large-scale cooperative phenomena resembling phase transitions in physical systems. Indeed, quantitative studies have found scale-free correlations and critical behaviour consistent with the occurrence of continuous, second-order phase transitions. The standard Vicsek model (SVM), a minimal model of self-propelled particles in which their tendency to align with each other competes with perturbations controlled by a noise term, appears to capture the essential ingredients of critical flocking phenomena. In this paper, we review recent finite-size scaling and dynamical studies of the SVM, which present a full characterization of the continuous phase transition through dynamical and critical exponents. We also present a complex network analysis of SVM flocks and discuss the onset of ordering in connection with XY-like spin models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA