Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Fundam Res ; 4(3): 471-483, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933192

RESUMEN

The environmental stability of infectious viruses in the laboratory setting is crucial to the transmission potential of human respiratory viruses. Different experimental techniques or conditions used in studies over the past decades have led to diverse understandings and predictions for the stability of viral infectivity in the atmospheric environment. In this paper, we review the current knowledge on the effect of simulated atmospheric conditions on the infectivity of respiratory viruses, mainly focusing on influenza viruses and coronaviruses, including severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. First, we summarize the impact of the experimental conditions on viral stability; these involve the methods of viral aerosol generation, storage during aging and collection, the virus types and strains, the suspension matrixes, the initial inoculum volumes and concentrations, and the drying process. Second, we summarize and discuss the detection methods of viral infectivity and their disadvantages. Finally, we integrate the results from the reviewed studies to obtain an overall understanding of the effects of atmospheric environmental conditions on the decay of infectious viruses, especially aerosolized viruses. Overall, this review highlights the knowledge gaps in predicting the ability of viruses to maintain infectivity during airborne transmission.

2.
Int Immunopharmacol ; 137: 112393, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38852522

RESUMEN

Recombinant adenovirus serotype 5 (Ad5)-mediated virotherapy is a maturing technique in cancer treatment. However, the utility of adenovirus (Ad) has been limited by low expression of coxsackievirus and adenovirus receptor (CAR) in cancer cells resulting in poor infectivity of Ads. To overcome the problem, we aimed to develop a novel tropism-modified oncolytic adenovirus, ZD55-F-HI-sPD-1-EGFP, which contains the epitope of PD-1 (70-77aa) at the HI-loop of Ad fiber. Trimerization of Fiber-sPD-1 was confirmed by immunoblot analysis. ZD55-F-HI-sPD-1-EGFP shows a remarkable improvement in viral infection rate and gene transduction efficiency in the PD-L1-positive cancer cells. Competition assays with a PD-L1 protein reveals that cell internalization of ZD55-F-HI-sPD-1-EGFP is mediated by both CAR and PD-L1 at a high dose. The progeny virus production capacity showed that sPD-1 incorporated fiber-modified oncolytic Ad replication was not affected. Furthermore, treating with ZD55-F-HI-sPD-1-EGFP significantly increased viral infection rate and enhanced anti-tumor effect in vivo. This study demonstrates that the strategy to expand tropism of oncolytic Ad may significantly improve therapeutic profile for cancer treatment.


Asunto(s)
Adenoviridae , Antígeno B7-H1 , Viroterapia Oncolítica , Virus Oncolíticos , Tropismo Viral , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Animales , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Adenoviridae/genética , Adenoviridae/fisiología , Línea Celular Tumoral , Ratones , Neoplasias/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Femenino , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/genética , Células HEK293
3.
Emerg Microbes Infect ; 13(1): 2359004, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38779718

RESUMEN

As SARS-CoV-2 continues to spread and mutate, tracking the viral evolutionary trajectory and understanding the functional consequences of its mutations remain crucial. Here, we characterized the antibody evasion, ACE2 receptor engagement, and viral infectivity of the highly mutated SARS-CoV-2 Omicron subvariant BA.2.87.1. Compared with other Omicron subvariants, including EG.5.1 and the current predominant JN.1, BA.2.87.1 exhibits less immune evasion, reduced viral receptor engagement, and comparable infectivity in Calu-3 lung cells. Intriguingly, two large deletions (Δ15-26 and Δ136-146) in the N-terminal domain (NTD) of the spike protein facilitate subtly increased antibody evasion but significantly diminish viral infectivity. Collectively, our data support the announcement by the USA CDC that the public health risk posed by BA.2.87.1 appears to be low.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/virología , COVID-19/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Línea Celular , Mutación , Pruebas de Neutralización
4.
J Biochem ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740386

RESUMEN

The viral infectivity factor (Vif) of human immunodeficiency virus 1 forms a complex with host proteins, designated as Vif-CBFß-ELOB-ELOC-CUL5 (VßBCC), initiating the ubiquitination and subsequent proteasomal degradation of the human antiviral protein APOBEC3G (A3G), thereby negating its antiviral function. While recent cryo-electron microscopy (cryo-EM) studies have implicated RNA molecules in the Vif-A3G interaction that leads to A3G ubiquitination, our findings indicated that the VßBCC complex can also directly impede A3G-mediated DNA deamination, bypassing the proteasomal degradation pathway. Employing the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we have identified RNA aptamers with high affinity for the VßBCC complex. These aptamers not only bind to the VßBCC complex but also reinstate A3G's DNA deamination activity by inhibiting the complex's function. Moreover, we delineated the sequences and secondary structures of these aptamers, providing insights into the mechanistic aspects of A3G inhibition by the VßBCC complex. Analysis using selected aptamers will enhance our understanding of the inhibition of A3G by the VßBCC complex, offering potential avenues for therapeutic intervention.

5.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776134

RESUMEN

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Asunto(s)
Polisacáridos , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Glicosilación , Animales , Porcinos , Polisacáridos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Línea Celular , Receptores de Superficie Celular/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Envoltura Viral/metabolismo
6.
Water Res ; 255: 121481, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38520776

RESUMEN

Fecal-orally transmitted gastroenteritis viruses, particularly human noroviruses (HuNoVs), are a public health concern. Viral transmission risk through contaminated water results underexplored as they have remained largely unculturable until recently and the robust measuring of gastroenteritis viruses infectivity in a single cell line is challenging. This study primarily aimed to test the feasibility of the human intestinal enteroids (HIE) model to demonstrate the infectivity of multiple gastroenteritis viruses in wastewater. Initially, key factors affecting viral replication in HIE model were assessed, and results demonstrated that the reagent-assisted disruption of 3D HIE represents an efficient alternative to syringe pass-through, and the filtering of HuNoV stool suspensions could be avoided. Moreover, comparable replication yields of clinical strains of HuNoV genogroup I (GI), HuNoV GII, rotavirus (RV), astrovirus (HAstV), and adenoviruses (HAdV) were obtained in single and multiple co-infections. Then, the optimized HIE model was used to demonstrate the infectivity of multiple naturally occurring gastroenteritis viruses from wastewater. Thus, a total of 28 wastewater samples were subjected to (RT)-qPCR for each virus, with subsequent testing on HIE. Among these, 16 samples (57 %) showed replication of HuNoVs (n = 3), RV (n = 5), HAstV (n = 8), and/or HAdV (n = 5). Three samples showed HuNoV replication, and sequences assigned to HuNoV GI.3[P13] and HuNoV GII.4[P16] genotypes. Concurrent replication of multiple gastroenteritis viruses occurred in 4 wastewater samples. By comparing wastewater concentrate and HIE supernatant sequences, diverse HAstV and HAdV genotypes were identified in 4 samples. In summary, we successfully employed HIE to demonstrate the presence of multiple infectious human gastroenteritis viruses, including HuNoV, in naturally contaminated wastewater samples.

7.
Cell Mol Immunol ; 21(5): 479-494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38443447

RESUMEN

Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one ß-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 ß-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many ß-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.


Asunto(s)
Amiloide , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH , VIH-1 , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Humanos , Amiloide/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Proteínas Amiloidogénicas/metabolismo , Virión/metabolismo , Péptidos/metabolismo , Péptidos/química , Péptidos/farmacología
8.
Microbiol Spectr ; 12(1): e0453422, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38051228

RESUMEN

IMPORTANCE: The survival of the sinking prokaryotes and viruses in the deep-sea environment is crucial for deep-sea ecosystems and biogeochemical cycles. Through an in situ deep-sea long-term incubation device, our results showed that viral particles and infectivity had still not decayed completely after in situ incubation for 1 year. This suggests that, via infection and lysis, surface viruses with long-term infectious activity in situ deep-sea environments may influence deep-sea microbial populations in terms of activity, function, diversity, and community structure and ultimately affect deep-sea biogeochemical cycles, highlighting the need for additional research in this area.


Asunto(s)
Bacteriófagos , Virus , Bacteriófagos/genética , Agua de Mar , Ecosistema
9.
Comput Struct Biotechnol J ; 21: 5092-5098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881508

RESUMEN

The emergence of SARS-CoV-2-Spike mutants not only enhances viral infectivity but also lead to treatment failure. Gaining a comprehensive understanding of the molecular binding mode between the mutant SARS-CoV-2-Spike and human ACE2 receptor is crucial for therapeutic development against this virus. Building upon our previous predictions and verifications regarding heightened viral infectivity of six potential SARS-CoV-2-Spike mutants, this study aims to further investigate the potential disruption of the interaction between these mutants and ACE2 by quercetin, a Chinese herbal compound. Molecular docking and dynamics simulations results reveal that the binding sites of quercetin particularly enriched around a specific "cavity" at the interface of Spike/ACE2 complex, indicating a favorable region for quercetin to interfere with Spike/ACE2 interaction. Virus infection assay confirms that quercetin not only attenuates wild-type virus infectivity but also suppresses the infectivity of all six tested SARS-CoV-2-Spike mutants. Therefore, quercetin represents a promising therapeutic candidate against both wild-type and potential future variants of SARS-CoV-2 exhibiting high viral infectivity.

10.
Indian J Med Res ; 158(3): 257-268, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37815068

RESUMEN

The SARS-CoV-2, a highly infectious positive strand RNA virus first identified in December 2019, has produced multiple genetic variants that have rapidly and sequentially spread worldwide during the coronavirus disease 2019 (COVID-19) pandemic. Genetic changes in SARS-CoV-2 for greater infectivity, replication and transmission were selected during the early stages of the pandemic. More recently, after widespread infection and vaccination, SARS-CoV-2 variants that evade antigen-specific adaptive immunity, have begun to be selected. This article provides an overview of the molecular immunological and virological factors underlying the origin and global spread of important SARS-CoV-2 variant lineages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , Pandemias , Vacunación
11.
3 Biotech ; 13(10): 323, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663753

RESUMEN

The spike (S) glycoprotein of the SARS-CoV-2 virus binds to the host cell receptor and promotes the virus's entry into the target host cell. This interaction is primed by host cell proteases like furin and TMPRSS2, which act at the S1/S2 and S2´ cleavage sites, respectively. Both cleavage sites have serine or proline residues flanking either the single or polybasic region and were found to be conserved in coronaviruses. Unravelling the effects of these conserved residues on the virus entry and infectivity might facilitate the development of novel therapeutics. Here, we have investigated the role of the conserved serine and proline residues in the SARS-CoV-2 spike mediated entry, fusogenicity, and viral infectivity by using the HIV-1/spike-based pseudovirus system. A conserved serine residue mutation to alanine (S2´S-A) at the S2´ cleavage site resulted in the complete loss of spike cleavage. Exogenous treatment with trypsin or overexpression of TMPRSS2 protease could not rescue the loss of spike cleavage and biological activity. The S2´S-A mutant showed no significant responses against E-64d, TMPRSS2 or other relevant inhibitors. Taken together, serine at the S2´ site in the spike protein was indispensable for spike protein cleavage and virus infectivity. Thus, novel interventions targeting the conserved serine at the S2´ cleavage site should be explored to reduce severe disease caused by SARS-CoV-2-and novel emerging variants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03749-y.

12.
SLAS Technol ; 28(5): 324-333, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451651

RESUMEN

Infectivity assays are essential for the development of viral vaccines, antiviral therapies, and the manufacture of biologicals. Traditionally, these assays take 2-7 days and require several manual processing steps after infection. We describe an automated viral infectivity assay (AVIATM), using convolutional neural networks (CNNs) and high-throughput brightfield microscopy on 96-well plates that can quantify infection phenotypes within hours, before they are manually visible, and without sample preparation. CNN models were trained on HIV, influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses, which together span the four major categories of virus (DNA, RNA, enveloped, and non-enveloped). A sigmoidal function, fit between virus dilution curves and CNN predictions, results in sensitivity ranges comparable to or better than conventional plaque or TCID50 assays, and a precision of ∼10%, which is considerably better than conventional infectivity assays. Because this technology is based on sensitizing CNNs to specific phenotypes of infection, it has potential as a rapid, broad-spectrum tool for virus characterization, and potentially identification.

13.
Access Microbiol ; 5(5)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323941

RESUMEN

At the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there was much uncertainty about the role of children in infection and transmission dynamics. Through the course of the pandemic, it became clear that children were susceptible to SARS-CoV-2 infection, although they were experiencing a notable lack of severe disease outcomes as compared to the adult population. This trend held true with the emergence of new SARS-CoV-2 variants, even in paediatric populations that were ineligible to be vaccinated. The difference in disease outcomes has prompted questions about the virological features of SARS-CoV-2 infection in this population. In order to determine if there was any difference in the infectivity of the virus produced by children with coronavirus disease 2019 (COVID-19), we compared viral RNA levels (clinical RT-qPCR C T) and infectious virus titres from 144 SARS-CoV-2-positive clinical samples collected from children aged 0 to 18 years old. We found that age had no impact on the infectiousness of SARS-CoV-2 within our cohort, with children of all ages able to produce high levels of infectious virus.

14.
Adv Contin Discret Model ; 2023(1): 26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216170

RESUMEN

In this paper, a model of branching processes with random control functions and affected by viral infectivity in independent and identically distributed random environments is established, and the Markov property of the model and a sufficient condition for the model to be certainly extinct under some conditions are discussed. Then, the limit properties of the model are studied. Under the normalization factor {Sn:n∈N}, the normalization processes {Wˆn:n∈N} are studied, and the sufficient conditions of {Wˆn:n∈N} a.s., L1 and L2 convergence are given; A sufficient condition and a necessary condition for convergence to a nondegenerate at zero random variable are obtained. Under the normalization factor {In:n∈N}, the normalization processes {W¯n:n∈N} are studied, and the sufficient conditions of {W¯n:n∈N} a.s., and L1 convergence are obtained.

15.
Trends Immunol ; 44(5): 321-323, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031063

RESUMEN

The spike (S) protein of SARS-CoV-2, which is undergoing rapid evolution, plays crucial roles in viral immune escape, infectivity, and transmissibility. To gain clinical insight, Dadonaite et al. developed a novel deep mutational scanning (DMS) platform for mapping the effects of S protein mutations on immune evasion and viral infectivity.


Asunto(s)
COVID-19 , Ensayos Analíticos de Alto Rendimiento , Humanos , COVID-19/genética , SARS-CoV-2/genética , Mutación/genética , Evasión Inmune
16.
Colloids Surf B Biointerfaces ; 222: 113090, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563415

RESUMEN

The presence of linear amino acid motifs with the capacity to recognize the neutral lipid cholesterol, known as Cholesterol Recognition/interaction Amino acid Consensus sequence (CRAC), and its inverse or mirror image, CARC, has recently been reported in the primary sequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike S homotrimeric glycoprotein. These motifs also occur in the two other pathogenic coronaviruses, SARS-CoV, and Middle-East respiratory syndrome CoV (MERS-CoV), most conspicuously in the transmembrane domain, the fusion peptide, the amino-terminal domain, and the receptor binding domain of SARS-CoV-2 S protein. Here we analyze the presence of cholesterol-recognition motifs in these key regions of the spike glycoprotein in the pathogenic CoVs. We disclose the inherent pathophysiological implications of the cholesterol motifs in the virus-host cell interactions and variant infectivity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteínas
17.
Adv Sci (Weinh) ; : e2201853, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36417571

RESUMEN

Glycans are ubiquitously expressed sugars, coating the cell and protein surfaces. They are found on many proteins as either short and branched chains or long chains sticking out from special membrane proteins, known as proteoglycans. This sugar cushion, the glycocalyx, modulates specific interactions and protects the cell. Here it is shown that both the expression of proteoglycans and the glycans expressed on the surface of both the host and virus proteins have a critical role in modulating viral attachment to the cell. A mathematical model using SARS-Cov-2 as an archetypical virus to study the glycan role during infection is proposed. It is shown that this occurs via a tug-of-war of forces. On one side, the multivalent molecular recognition that viral proteins have toward specific host glycans and receptors. On the other side, the glycan steric repulsion that a virus must overcome to approach such specific receptors. By balancing both interactions, viral tropism can be predicted. In other words, the authors can map out the cells susceptible to virus infection in terms of receptors and proteoglycans compositions.

18.
J Virol ; 96(17): e0055522, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35950859

RESUMEN

Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3s) are host restriction factors that inhibit viral replication. Viral infectivity factor (Vif), a human immunodeficiency virus type 1 (HIV-1) accessory protein, mediates the degradation of APOBEC3s by forming the Vif-E3 complex, in which core-binding factor beta (CBFß) is an essential molecular chaperone. Here, we screened nonfunctional Vif mutants with high affinity for CBFß to inhibit HIV-1 in a dominant negative manner. We applied the yeast surface display technology to express Vif random mutant libraries, and mutants showing high CBFß affinity were screened using flow cytometry. Most of the screened Vif mutants containing random mutations of different frequencies were able to rescue APOBEC3G (A3G). In the subsequent screening, three of the mutants restricted HIV-1, recovered G-to-A hypermutation, and rescued APOBEC3s. Among them, Vif-6M showed a cross-protection effect toward APOBEC3C, APOBEC3F, and African green monkey A3G. Stable expression of Vif-6M in T lymphocytes inhibited the viral replication in newly HIV-1-infected cells and the chronically infected cell line H9/HXB2. Furthermore, the expression of Vif-6M provided a survival advantage to T lymphocytes infected with HIV-1. These results suggest that dominant negative Vif mutants acting on the Vif-CBFß target potently restrict HIV-1. IMPORTANCE Antiviral therapy cannot eliminate HIV and exhibits disadvantages such as drug resistance and toxicity. Therefore, novel strategies for inhibiting viral replication in patients with HIV are urgently needed. APOBEC3s in host cells are able to inhibit viral replication but are antagonized by HIV-1 Vif-mediated degradation. Therefore, we screened nonfunctional Vif mutants with high affinity for CBFß to compete with the wild-type Vif (wtVif) as a potential strategy to assist with HIV-1 treatment. Most screened mutants rescued the expression of A3G in the presence of wtVif, especially Vif-6M, which could protect various APOBEC3s and improve the incorporation of A3G into HIV-1 particles. Transduction of Vif-6M into T lymphocytes inhibited the replication of the newly infected virus and the chronically infected virus. These data suggest that Vif mutants targeting the Vif-CBFß interaction may be promising in the development of a new AIDS therapeutic strategy.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal , Infecciones por VIH , VIH-1 , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Subunidad beta del Factor de Unión al Sitio Principal/genética , VIH-1/genética , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Linfocitos T/virología , Replicación Viral , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
19.
Microbiol Spectr ; 10(2): e0047822, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35297654

RESUMEN

TRIM5α polymorphism in rhesus macaques (RM) limits the genetic pool of animals in which we can perform simian immunodeficiency virus (SIV) studies without first screening animals for permissive TRIM5α genotypes. We have previously shown that polymorphisms in the TRIM5α B30.2/SPRY domain impact the level of SIVsmm viremia in RM and that amino acid substitutions (P37S/R98S) in the capsid N-terminal domain (CA-NTD) enables the virus to overcome restriction in RMs with the restrictive homozygous TRIM5αTFP/TFP genotype. Since this genotype also negatively impacted the development of central nervous system (CNS) lesions in animals infected with the parental source of CL757, we sought to generate a TRIM5αTFP/TFP-resistant clone, SIV-804E-CL757-P37S/R98S (CL757-SS), using a similar strategy. Unexpectedly, viral replication of CL757-SS was impaired in RMs with either the permissive TRIM5αTFP/Q or the restrictive TRIM5αTFP/TFP genotype. Analysis of the virus which emerged in the latter animals led to the discovery of a preexisting mutation relative to other SIVs. This P146T substitution in a conserved disordered linker region in the C-terminal domain of capsid (CA-CTD) has been shown to inhibit proper formation of HIV-1 capsid particles. Restoration of this residue to proline in the context of the TRIM5α-SS escape mutations not only restored viral replication, but also enhanced the infectivity of our previously reported neurotropic clone, even in RMs with permissive TRIM5α genotypes. IMPORTANCE SIV infection of rhesus macaques has become a valuable model for the development of AIDS vaccines and antiretroviral therapies. Polymorphisms in the rhesus macaque TRIM5α gene can affect SIV replication, making it necessary to genetically screen macaques for TRIM5α alleles that are permissive for SIV replication. This limits the pool of animals that can be used in a study, thereby making the acquisition of animals needed to fulfill study parameters difficult. We have constructed a viral clone that induces neuroAIDS in rhesus macaques regardless of their TRIM5α genotype, while also highlighting the important role the disordered linker domain plays in viral infectivity.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Cápside/metabolismo , Cinética , Macaca mulatta , Mutación , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/genética
20.
Viruses ; 14(2)2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216031

RESUMEN

Viral aggregation is a complex and pervasive phenomenon affecting many viral families. An increasing number of studies have indicated that it can modulate critical parameters surrounding viral infections, and yet its role in viral infectivity, pathogenesis, and evolution is just beginning to be appreciated. Aggregation likely promotes viral infection by increasing the cellular multiplicity of infection (MOI), which can help overcome stochastic failures of viral infection and genetic defects and subsequently modulate their fitness, virulence, and host responses. Conversely, aggregation can limit the dispersal of viral particles and hinder the early stages of establishing a successful infection. The cost-benefit of viral aggregation seems to vary not only depending on the viral species and aggregating factors but also on the spatiotemporal context of the viral life cycle. Here, we review the knowns of viral aggregation by focusing on studies with direct observations of viral aggregation and mechanistic studies of the aggregation process. Next, we chart the unknowns and discuss the biological implications of viral aggregation in their infection cycle. We conclude with a perspective on harnessing the therapeutic potential of this phenomenon and highlight several challenging questions that warrant further research for this field to advance.


Asunto(s)
Virión , Virosis/virología , Replicación Viral , Animales , Evolución Biológica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA