Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
1.
Plant J ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976445

RESUMEN

Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti-herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one-step anthranilate methyltransferase (AAMT), grapes have been thought to use a two-step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs in Vitis vinifera (wine grape), as well as one ortholog in "Concord" grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant-to-plant communication molecule. Because the Citrus sinensis (sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of the Vitis AAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageria sp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one-step enzymes by which grapes synthesize MeAA.

2.
Plant Physiol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976578

RESUMEN

The cuticular wax that covers the surfaces of plants is the first barrier against environmental stresses and increasingly accumulates with light exposure. However, the molecular basis of light-responsive wax biosynthesis remains elusive. In grape (Vitis vinifera), light exposure resulted in higher wax terpenoid content and lower decay and abscission rates than controls kept in darkness. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA-seq data were integrated to draw the chromatin accessibility and cis-elements regulatory map to identify the potential action sites. Terpenoid synthase 12 (VvTPS12) and 3-Hydroxy-3-methylglutaryl-CoA reductase 2 (VvHMGR2) were identified as grape wax biosynthesis targets, while VvHYH and VvGATA24 were identified as terpenoid biosynthesis activators, as more abundant wax crystals and higher wax terpenoid content were observed in transiently overexpressed grape berries and Nicotiana benthamiana leaves. The interaction between VvHYH and the open chromatin of VvTPS12 was confirmed qualitatively using a dual luciferase assay and quantitatively using surface plasma resonance, with an equilibrium dissociation constant of 2.81 nM identified via the latter approach. Molecular docking simulation implied the structural nature of this interaction, indicating that 24 amino acid residues of VvHYH, including Arg106A, could bind to the VvTPS12 G-box cis-element. VvGATA24 directly bound to the open chromatin of VvHMGR2, with an equilibrium dissociation constant of 8.59 nM. 12 amino acid residues of VvGATA24, including Pro218B, interacted with the VvHMGR2 GATA-box cis-element. Our work characterizes the mechanism underlying light-mediated wax terpenoid biosynthesis and provides gene targets for future molecular breeding.

3.
Front Plant Sci ; 15: 1391679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055361

RESUMEN

Serbia preserves a high number of local grape varieties, which have been cultivated across the country for centuries. Now, these ancient varieties are in the spotlight, and there is a global trend towards their recovery and characterization because they can revitalize regional, national and international grape and wine sectors. In addition, their genetic study can be useful to find new pedigree relationships to reveal how local varietal assortment evolved over time. Here, the genetic characterization of 138 grapevines from old Serbian vineyards revealed 59 different genetic profiles, 49 of which were identified as grapevine varieties whose origin in the country could be linked to some major Serbian historical periods. Most of the genetic profiles found in this work arranged in a complex pedigree network that integrates numerous grapevine varieties from diverse Balkan countries, agreeing with an intense exchange of plant material among Balkan regions for centuries. This analysis identified some varieties as important founders of Balkan genetic resources, like 'Alba Imputotato', 'Braghina Rosie', 'Coarna Alba', and 'Vulpea'. After deepening into their genealogy, these major direct founders might have ultimately derived from 'Visparola', an ancient variety of likely Balkan origin with a major founding role in some European regions. Our results also indicated the genetic singularity of the grapevine resources from the Balkans when compared to those from other relevant winemaking regions, supporting the interest of their detailed study to evaluate their oenological potential and for the eventual identification of useful traits to counteract current viticulture challenges.

4.
Food Chem ; 460(Pt 1): 140512, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39047497

RESUMEN

Botrytis cinerea causes gray mold, decreasing the quality of table grapes. The berry response to B. cinerea infection was explored in present study, focusing on the relationship between presence of autophagy and programmed cell death (PCD). Results demonstrated B. cinerea infection decreased cell viability, triggering cell death, possibly resulting in PCD occurrence. It was further verified by increased terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive nuclei, heightened caspase 3-like and caspase 9-like protease activity, and elevated expression of metacaspase genes. Additionally, autophagy was indicated by the increased VvATG expression and autophagosome formation. Notably, the autophagy activator rapamycin reduced TUNEL-positive nuclei, whereas the autophagy inhibitor 3-methyladenine increased caspase 9-like protease activity. The PCD activator C2-ceramide inhibited autophagy, whereas the PCD inhibitor Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) enhanced autophagy gene expression. Autophagy and B. cinerea-induced PCD in berry cells are reciprocally negatively regulated; and the rapamycin and Ac-DEVD-CHO could potentially maintain table grape edible quality.

5.
J Fungi (Basel) ; 10(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39057356

RESUMEN

Black rot (Guignardia bidwellii) and downy mildew (Plasmopara viticola) are two major grapevine diseases against which the development of efficient biocontrol solutions is required in a context of sustainable viticulture. This study aimed at evaluating and comparing the efficacy and modes of action of bacterial culture supernatants from Bacillus velezensis Buz14 and B. ginsengihumi S38. Both biocontrol agents (BCA) were previously demonstrated as highly effective against Botrytis cinerea in grapevines. In semi-controlled conditions, both supernatants provided significant protection against black rot and downy mildew. They exhibited antibiosis against the pathogens by significantly decreasing G. bidwellii mycelial growth, but also the release and motility of P. viticola zoospores. They also significantly induced grapevine defences, as stilbene production. The LB medium, used for the bacterial cultures, also showed partial effects against both pathogens and induced plant defences. This is discussed in terms of choice of experimental controls when studying the biological activity of BCA supernatants. Thus, we identified two bacterial culture supernatants as new potential biocontrol products exhibiting multi-spectrum antagonist activity against different grapevine key pathogens and having a dual mode of action.

6.
Protoplasma ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980351

RESUMEN

Cryopreservation is a reliable technique for the long-term storage and preservation of embryogenic cells, maintaining their viability without loss of their embryogenic capacity. However, the large-scale conservation of grapevine embryogenic lines in cryobanks remains limited. A significant challenge is understanding somatic cell rejuvenation. Here, we investigate the encapsulation/dehydration and encapsulation/vitrification for cryopreserving embryogenic material. Cell rejuvenation and enhanced embryogenic competence were observed after cryopreservation, as evidenced through structural cellular changes observed by histology and electron scanning microscopy. Results showed that cryopreserved samples of 110-Richter, Riesling, and Tempranillo using encapsulation/dehydration had better survival rates, averaging 81%, 62%, and 48%, respectively, while encapsulation/vitrification yielded lower survival rates, averaging 58%, 42%, and 32%, respectively. Cryopreservation also improved post-thaw recovery and regeneration efficiency assessed through regrowth of proembryogenic masses and somatic embryo conversion reaching 54-72% against 11-17% in control samples. Cryopreservation triggered changes in gene expression patterns and exhibited considerable increase at genotype-specific basis of 1.5- to 4.5-fold in SERK1, BBM, and WOX associated to embryogenic competence as well as in ChitIV and LEA involved in stress response. Membrane stability index, hydrogen peroxide, and proline contents were used as indicators of oxidative stress uncovering a key role of an osmotic trans-priming effect leading to cryotolerance. Our finding highlighted that cryopreservation enhances embryogenic capacity in senescent callus and probably acts as a screening process allowing safe maintenance of proembryogenic cells and promoting their recovery. This study provides a high throughput innovation to set up cryolines for cell rejuvenation of grapevine and other important plant species.

7.
Cryobiology ; : 104947, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084504

RESUMEN

Grapevine (Vitis vinifera L.) crops are continuously exposed to biotic and abiotic stresses, which can cause genetic and epigenetic alterations. To determine the possible effects of grapevine cryopreservation on the regulation of DNA demethylase genes, this work studied the expression of DNA demethylase genes in cryopreserved and post-cryopreserved grapevine tissues. V. vinifera DNA demethylases were characterized by in silico analysis, and gene expression quantification was conducted by RT‒qPCR. Three DNA demethylase sequences were found: VIT_13s0074g00450 (VvDMT), VIT_08s0007g03920 (VvROS1), and VIT_06s0061g01270 (VvDML3). Phylogenetic analysis revealed that the sequences from V. vinifera and A. thaliana had a common ancestry. In the promoters of responsive elements to transcription factors such as AP-2, Myb, bZIP, TBP, and GATA, the conserved domains RRM DME and Perm CXXC were detected. These responsive elements play roles in the response to abiotic stress and the regulation of cell growth. These data helped us characterize the V. vinifera DNA demethylase genes. Gene expression analysis indicated that plant vitrification solution 2 (PVS2) treatment does not alter the expression of DNA demethylase genes. The expression levels of VvDMT and VvROS1 increased in response to cryopreservation by vitrification. Furthermore, in post-cryopreservation, VvROS1 was highly induced, and VvDML3 was repressed in all the treatment groups. Gene expression differences between different treatments and tissues may play roles in controlling methylation patterns during gene regulation in tissues stressed by cryopreservation procedures and in the post-cryopreservation period during plant growth and development.

8.
Front Plant Sci ; 15: 1399840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957604

RESUMEN

The genetic basis of plant response to light and heat stresses had been unveiled, and different molecular mechanisms of leaf cell homeostasis to keep high physiological performances were recognized in grapevine varieties. However, the ability to develop heat stress tolerance strategies must be further elucidated since the morpho-anatomical and physiological traits involved may vary with genotype × environment combination, stress intensity, and duration. A 3-year experiment was conducted on potted plants of Sardinian red grapevine cultivars Cannonau (syn. Grenache) and Carignano (syn. Carignan), exposed to prolonged heat stress inside a UV-blocking greenhouse, either submitted to low daily UV-B doses of 4.63 kJ m-2 d-1 (+UV) or to 0 kJ m-2 d-1 (-UV), and compared to a control (C) exposed to solar radiation (4.05 kJ m-2 d-1 average UV-B dose). Irrigation was supplied to avoid water stress, and canopy light and thermal microclimate were monitored continuously. Heat stress exceeded one-third of the duration inside the greenhouse and 6% in C. In vivo spectroscopy, including leaf reflectance and fluorescence, allowed for characterizing different patterns of leaf traits and metabolites involved in oxidative stress protection. Cannonau showed lower stomatal conductance under C (200 mmol m-2 s-1) but more than twice the values inside the greenhouse (400 to 900 mmol m-2 s-1), where water use efficiency was reduced similarly in both varieties. Under severe heat stress and -UV, Cannonau showed a sharper decrease in primary photochemical activity and higher leaf pigment reflectance indexes and leaf mass area. UV-B increased the leaf pigments, especially in Carignano, and different leaf cell regulatory traits to prevent oxidative damage were observed in leaf cross-sections. Heat stress induced chloroplast swelling, plastoglobule diffusion, and the accumulation of secretion deposits in both varieties, aggravated in Cannonau -UV by cell vacuolation, membrane dilation, and diffused leaf blade spot swelling. Conversely, in Carignano UV-B, cell wall barriers and calcium oxalate crystals proliferated in mesophyll cells. These responses suggest an adaptive divergence among cultivars to prolonged heat stress and UV-B light. Further research on grapevine biodiversity, heat, and UV-B light interactions may give new insights on the extent of stress tolerance to improve viticulture adaptive strategies in climate change hotspots.

9.
Foods ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998560

RESUMEN

In this study, we monitored the fermentative process of Vitis vinifera L. leaves (grapevine), spontaneously or promoted by Saccharomyces cerevisiae, in both solid and liquid media. We also aimed to evaluate the effect on the bioactivity and shelf life of yogurt incorporating fermented and non-fermented grapevine leaves compared to yogurt produced with the preservative potassium sorbate. The results revealed that fermented grapevine leaf extracts increased their bioactive compounds and antioxidant activity, particularly in fermentations in a solid medium. In yogurt samples with incorporation extract from solid spontaneous fermentation and extract from solid yeast fermentation, even in small quantities, they exhibited higher levels of total phenols (1.94 and 2.16 mg GAE/g of yogurt, respectively) and antioxidant activity (5.30 and 5.77 mg TroloxE/g of yogurt; and 1.33 and 1.34 mg Fe(II)E/g of yogurt, respectively) compared to control yogurt (1.44 mg GAE/g of yogurt, 4.00 mg TroloxE/g of yogurt, and 1.01 mg Fe(II)E/g of yogurt). Additionally, yogurts supplemented with fermented grapevine leaves demonstrated the potential to inhibit microbial growth without impairing the multiplication of lactic acid bacteria.

10.
Front Plant Sci ; 15: 1415379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022603

RESUMEN

Sour rot (SR) is one of the major diseases affecting grapevine berries, causing severe yield losses and deterioration of wine quality. SR is caused by an etiologic complex of microorganisms, including yeasts, bacteria, and filamentous fungi. This systematic review focuses on the etiology, epidemiology, and control of SR. A total of 74 papers published between 1986 and 2023 were assessed in this review. Description of disease symptoms was quite consistent across the papers, including oxidation of the grape skin, disaggregation of the internal tissues, and detachment of the rotten berries from the pedicel. The affected bunches are characterized by the smell of acetic acid and ethyl acetate that attracts fruit flies (Drosophila spp.). However, several knowledge gaps and/or inconsistencies were identified with respect to SR etiology, epidemiology, and control. Overall, 146 microorganisms were isolated from the affected berries (44.5% yeasts, 34.3% bacteria, and 21.2% filamentous fungi); however, the selected papers could not definitively clarify which species are primarily involved in the etiology of the disease. A general inconsistency was also observed in the methods used to assess the incidence and severity of SR in vineyards, making inter-study comparisons extremely challenging. Inconsistencies were also found in the methods used for pathogenicity assessment in artificial inoculation studies. Furthermore, gaps were detected in terms of SR epidemiology, with a focus on environmental conditions affecting the disease development. The SR management options are limited, and efficacy trials often result in poor, variable, and inconsistent levels of control, which might be attributed to the lack of knowledge on disease epidemiology. These knowledge gaps and inconsistencies were analyzed in this review to inform future research activities.

11.
Ann Vasc Surg ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009117

RESUMEN

BACKGROUND: Venoactive drugs (VADs) based on Vitis vinifera extract are widely used in Korea. However, studies on the clinical effects and head-to-head comparisons with other groups of VADs are limited. This trial aimed to evaluate whether Vitis vinifera seed extract was non-inferior to the micronized purified flavonoid fraction (MPFF) in relieving venous symptoms and improving quality of life in patients with chronic venous disease (CVD). METHODS: In this double-blind prospective randomized trial, patients from 13 hospitals, who were diagnosed with venous incompetence by duplex ultrasound and classified as clinical class 1, 2, or 3 in the Clinical, Etiological, Anatomical, and Pathophysiological classifications were enrolled. The primary outcome was the change in the Chronic Venous Disease Quality of Life Questionnaire (CIVIQ-20) score at 8 weeks from baseline. Secondary outcomes included changes in the Aberdeen Varicose Vein Questionnaire (AVVQ), visual analog scale (VAS), and Venous Clinical Severity Score (VCSS) at 4- and 8 weeks from baseline. Moreover, the change in leg circumferences was measured at 8 weeks and compared to baseline. RESULTS: In total, 303 patients were enrolled and randomly assigned to receive either Vitis vinifera seed extract (n = 154) or MPFF (n = 149). The CIVIQ-20 scores at 8 weeks were significantly reduced compared to those at baseline in both groups. No significant inter-group difference in the change of CIVIQ-20 at 8 weeks from baseline was observed (-8.31 ± 14.63 vs. -10.35 ± 14.38, P = 0.29, 95% confidence interval [CI] -1.65 to 5.72). The lower limit of the 95% CI was within the predefined noninferiority margin of 6.9. Furthermore, the AVVQ, VAS, and VCSS scores significantly decreased at 4- and 8 weeks after randomization compared with baseline in both groups. No significant differences were observed in the reduction of each score between groups. The calf circumference measured at 8 weeks was significantly reduced compared to that at baseline in patients receiving Vitis vinifera seed extract. CONCLUSIONS: Vitis vinifera seed extract was non-inferior to MPFF in relieving venous symptoms and improving the quality of life in patients with CVD.

12.
Plants (Basel) ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891309

RESUMEN

Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants were monitored during 2019-2020. Two canopy shoot-positioning treatments were applied: vertical shoot positioning (VSP) and modulated shoot positioning (MSP). In MSP, the west-side upper foliage was released to promote partial shoot leaning, shading the clusters. Clusters were sampled at pea size (PS), veraison (VER), and full maturation (FM). Measurements included rachis anatomy and hydraulic conductance (Kh) and aquaporins (AQP) and stress-related genes expression in cluster tissues. The results show significant seasonal and interannual differences in Kh and vascular anatomy. At VER, the Kh of the rachis and rachis+pedicel and the xylem diameter decreased but were unaffected by treatments. The phloem-xylem ratio was either increased (2019) or reduced (2020) in MSP compared to VSP. Most AQPs were down-regulated at FM in pedicels and up-regulated at VER in pulp. A potential maturation shift in MSP was observed and confirmed by the up-regulation of several stress-related genes in all tissues. The study pinpoints the role of canopy architecture in berry-water relations and stress response during ripening.

13.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892428

RESUMEN

WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.


Asunto(s)
Evolución Molecular , Genoma de Planta , Filogenia , Proteínas de Plantas , Factores de Transcripción , Vitis , Vitis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Secuencia de Aminoácidos
14.
J Pharm Bioallied Sci ; 16(Suppl 2): S1186-S1190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882745

RESUMEN

Background: The Vitis vinifera, also known as grapevine, is one of the most widely grown fruit crops in the world and is renowned for producing wine and grapes. Other than their importance in gastronomy and ecology, certain sections of the V. vinifera plant have shown promising bioactive qualities. The numerous phytochemicals in this plant, including flavonoids, stilbenes, and phenolic acids, are what gives its antibacterial and antifungal properties though the antimicrobial properties of seed extract have to be studied, however in this present study we focus on screening and its biological compatibility of seed extracts of V. vinifera. Methods: The commercial power of seed (V. vinifera) obtained from local market near Poonamallee, Chennai, India. and the extraction of crude metabolites was done by direction extraction method, the antimicrobial activity was done by well diffusion method, and Minimum Inhibitory concentration was done by CLSI guideline. To check the biocompatibility of crude metabolites was done by hemolytic assay. Results: Studies have demonstrated that grapevine extracts and their separated components have potent antibacterial and antifungal effects against a variety of pathogenic microorganisms, including bacterial strains that are resistant to antibiotics. The Minimum Inhibitory Concentration of the plant's extracts have demonstrated potential 128 µg/mL for S. aureus, and 256 µg/mL E. faecalis and C. albicans as the best inhibitory concentration. The biological compatibility of crude metabolites shows 3 % of lysis at 512 µg/mL. Conclusion: V. vinifera is a prospective source for the creation of novel antimicrobial drugs because of its antibacterial capabilities. To completely understand the chemicals' mode of action and to create efficient treatments for microbial illnesses, more research is necessary.

15.
Insects ; 15(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921094

RESUMEN

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an invasive polyphagous pest often observed in vineyards. In Europe, a gap needs to be filled in the knowledge on H. halys seasonal dynamics and damage on grapes. With this study, we described the seasonal dynamics of H. halys and its distribution in multi-cultivar vineyards, and we evaluated the damage on grape clusters induced by different pest densities. In vineyards, the seasonal occurrence of H. halys varied across time and grape cultivars, and the pest was more abundant on Cabernet Franc, Merlot and, to a lesser extent, Pinot gris. Moreover, higher densities of H. halys were found on red berry cultivars than on white ones, and on cultivars ripening late in the season. An edge effect was also detected in pest distribution within vineyards, with more stink bugs observed in the borders. In the study on pest infestation density, H. halys caused damage on berries, showing differences in susceptibility among different cultivars and with regard to the time of infestation (i.e., plant phenological stages). Halyomorpha halys infestation induced an increase in Botrytis cinerea and sour rot incidence, which probably represents the main issue related to the impact of brown marmorated stink bug on grapevine.

16.
Foods ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928737

RESUMEN

Hydroalcoholic extracts from Malbec and Torrontés wine pomaces (Vitis vinifera L.) originating from the high-altitude vineyards of Argentina's Calchaquí Valleys were characterized. Total phenolics, hydroxycinnamic acids, orthodiphenols, anthocyanins, non-flavonoid phenolics, total flavonoids, flavones/flavonols, flavanones/dihydroflavonols, and tannins were quantified through spectrophotometric methods, with the Malbec extract exhibiting higher concentrations in most of phytochemical groups when compared to Torrontés. HPLC-DAD identified more than 30 phenolic compounds in both extracts. Malbec displayed superior antiradical activity (ABTS cation, nitric oxide, and superoxide anion radicals), reduction power (iron, copper, and phosphomolybdenum), hypochlorite scavenging, and iron chelating ability compared to Torrontés. The cytotoxicity assessments revealed that Torrontés affected the viability of HT29-MTX and Caco-2 colon cancer cells by 70% and 50%, respectively, at the highest tested concentration (1 mg/mL). At the same time, both extracts did not demonstrate acute toxicity in Artemia salina or in red blood cell assays at 500 µg/mL. Both extracts inhibited the lipoxygenase enzyme (IC50: 154.7 and 784.7 µg/mL for Malbec and Torrontés), with Malbec also reducing the tyrosinase activity (IC50: 89.9 µg/mL), and neither inhibited the xanthine oxidase. The substantial phenolic content and diverse biological activities in the Calchaquí Valleys' pomaces underline their potentialities to be valorized for pharmaceutical, cosmetic, and food industries.

17.
Plants (Basel) ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931108

RESUMEN

Long-distance transfer of genetic material and metabolites between rootstock and scions is well documented in homo-grafted hybrids but has rarely been reported in genetically-distant grafts where the rootstock and scion belong to different families. In this study, we grafted Vitis vinifera scions onto Schisandra chinensis stocks and obtained 20 vegetative hybrids, Vitis vinifera/Schisandra chinensis (Vs). After 25 years of growth, we found that the phenotypes of the leaves, internodes, and fruits of the Vs hybrids above the graft union resembled an intermediate phenotype between V. vinifera and S. chinensis, and the new traits were stable when propagated vegetatively. We further analyzed genetic differences between Vv plants and Vs hybrids using high-throughput sequencing, while metabolomes were analyzed by liquid chromatography-mass spectrometry (LC-MS). We found a total of 2113 differentially expressed genes (DEGs). GO annotation and KEGG pathway enrichment analysis showed that these DEGs enriched mainly in oxidation-reduction and metabolic processes. Seventy-nine differentially expressed miRNAs (DEMs) containing 27 known miRNAs and 52 novel miRNAs were identified. A degradation analysis detected 840 target genes corresponding to 252 miRNAs, of which 12 DEMs and their corresponding target gene expression levels were mostly negatively correlated. Furthermore, 1188 differential metabolic compounds were identified. In particular, in Vs hybrids, the abundance of the metabolites schizandrin and gomisin as the main medicinal ingredients in S. chinensis were down-regulated and up-regulated, respectively. Our data demonstrated the effects of interfamily grafts on the phenotype, transcript profile and metabolites of the scion, and also provided new insight into the genetic, phenotypic, and metabolic plasticity associated with genetically distant grafted hybrids.

18.
BMC Plant Biol ; 24(1): 609, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926877

RESUMEN

BACKGROUND: Grapevine (Vitis) is one of the world's most valuable fruit crops, but insect herbivory can decrease yields. Understanding insect herbivory resistance is critical to mitigating these losses. Vitis labrusca, a wild North American grapevine species, has been leveraged in breeding programs to generate hybrid grapevines with enhanced abiotic and biotic stress resistance, rendering it a valuable genetic resource for sustainable viticulture. This study assessed the resistance of V. labrusca acc. 'GREM4' and Vitis vinifera cv. 'PN40024' grapevines to Popillia japonica (Japanese beetle) herbivory and identified morphological and genetic adaptations underlying this putative resistance. RESULTS: 'GREM4' displayed greater resistance to beetle herbivory compared to 'PN40024' in both choice and no-choice herbivory assays spanning periods of 30 min to 19 h. 'GREM4' had significantly higher average leaf trichome densities than 'PN40024' and beetles preferred to feed on the side of leaves with fewer trichomes. When leaves from each species that specifically did not differ in trichome densities were fed on by beetles, significantly less leaf area was damaged in 'GREM4' (3.29mm2) compared to 'PN40024' (9.80mm2), suggesting additional factors beyond trichomes contributed to insect herbivory resistance in 'GREM4'. Comparative transcriptomic analyses revealed 'GREM4' exhibited greater constitutive (0 h) expression of defense response and secondary metabolite biosynthesis genes compared to 'PN40024', indicative of heightened constitutive defenses. Upon herbivory, 'GREM4' displayed a greater number of differentially expressed genes (690) compared to 'PN40024' (502), suggesting a broader response. Genes up-regulated in 'GREM4' were enriched in terpene biosynthesis, flavonoid biosynthesis, phytohormone signaling, and disease defense-related functions, likely contributing to heighted insect herbivory defense, while genes differentially expressed in 'PN40024' under herbivory were enriched in xyloglucan, cell wall formation, and calcium ion binding. The majority of genes implicated in insect herbivory defense were orthologs with specific expression patterns in 'GREM4' and 'PN40024', but some paralogous and genome-specific genes also likely contributed to conferring resistance. CONCLUSIONS: Our findings suggest that 'GREM4' insect herbivory resistance was attributed to a combination of factors, including trichomes and unique constitutive and inducible expression of genes implicated in terpene, flavonoid, and phenylpropanoid biosynthesis, as well as pathogen defense.


Asunto(s)
Escarabajos , Herbivoria , Tricomas , Vitis , Animales , Vitis/genética , Vitis/fisiología , Vitis/parasitología , Tricomas/fisiología , Tricomas/genética , Escarabajos/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas , Defensa de la Planta contra la Herbivoria
19.
J Agric Food Chem ; 72(26): 14547-14556, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38907715

RESUMEN

Global warming, heat waves, and seasonal drought pose serious threats to crops, such as grapevine, that are valued for their secondary metabolites, which are of primary importance for the wine industry. Discriminating the effects of distinct environmental factors in the open field is challenging. In the present study, in vitro cultured berries of Sauvignon Blanc were exposed to individual and combined stress factors to investigate the effects on the biosynthesis of the thiol precursors. Our results confirm the complexity and extreme reactivity of the accumulation process in grapes. However, they also indicate that heat stress has a positive effect on the production of the Cys-3SH precursor. Moreover, we identified several candidate genes, such as VvGSTs and VvGGT that are potentially involved in biosynthesis and consistently modulated. Nonetheless, we were unable to conclusively determine the effects of stresses on the biosynthesis of other precursors nor could we formulate hypotheses regarding their regulation.


Asunto(s)
Ácido Abscísico , Frutas , Calor , Compuestos de Sulfhidrilo , Vitis , Vitis/metabolismo , Vitis/química , Vitis/genética , Frutas/metabolismo , Frutas/química , Frutas/genética , Compuestos de Sulfhidrilo/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
20.
Plant Physiol Biochem ; 213: 108799, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857564

RESUMEN

The widespread use of pesticides in agriculture remains a matter of major concern, prompting a critical need for alternative and sustainable practices. To address this, the use of lipid-derived molecules as elicitors to induce defence responses in grapevine plants was accessed. A Plasmopara viticola fatty acid (FA), eicosapentaenoic acid (EPA) naturally present in oomycetes, but absent in plants, was applied by foliar spraying to the leaves of the susceptible grapevine cultivar (Vitis vinifera cv. Trincadeira), while a host lipid derived phytohormone, jasmonic acid (JA) was used as a molecule known to trigger host defence. Their potential as defence triggers was assessed by analysing the expression of a set of genes related to grapevine defence and evaluating the FA modulation upon elicitation. JA prompted grapevine immunity, altering lipid metabolism and up-regulating the expression of several defence genes. EPA also induced a myriad of responses to the levels typically observed in tolerant plants. Its application activated the transcription of defence gene's regulators, pathogen-related genes and genes involved in phytoalexins biosynthesis. Moreover, EPA application resulted in the alteration of the leaf FA profile, likely by impacting biosynthetic, unsaturation and turnover processes. Although both molecules were able to trigger grapevine defence mechanisms, EPA induced a more robust and prolonged response. This finding establishes EPA as a promising elicitor for an effectively managing grapevine downy mildew diseases.


Asunto(s)
Ciclopentanos , Ácido Eicosapentaenoico , Oomicetos , Oxilipinas , Vitis , Vitis/microbiología , Vitis/metabolismo , Vitis/genética , Vitis/inmunología , Vitis/efectos de los fármacos , Ácido Eicosapentaenoico/metabolismo , Oomicetos/fisiología , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA