Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Oral Biol ; 147: 105625, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657277

RESUMEN

OBJECTIVE: Long noncoding RNA WDFY3-AS2 has been shown to play dual roles in the modulation of cancer progression. This study aimed at clarifying the biological role of WDFY3-AS2 as well as the association between WDFY3-AS2 expression, ß-catenin expression, and OSCC immunity in oral squamous cell carcinoma (OSCC). DESIGN: Bioinformatics analyses, CCK8, EdU, wound healing, transwell, RT-qPCR, western blot, immunofluorescence, in situ hybridization, and immunohistochemistry assays were adopted for exploring the role of WDFY3-AS2 in OSCC. RESULTS: Bioinformatics analyses showed that WDFY3-AS2 conferred a poor prognosis for OSCC patients. Further analyses identified WDFY3-AS2 as an independent prognostic indicator for OSCC. Moreover, silencing WDFY3-AS2 inhibits OSCC cell proliferation, migration and invasion. Gene set enrichment analysis indicated that WDFY3-AS2 participated in the regulation of Wnt signaling. In addition, WDFY3-AS2 expression was positively associated with ß-catenin mRNA levels, the key component of Wnt signaling. Interestingly, WDFY3-AS2 knockdown inhibited ß-catenin expression and nuclear translocation, thus suppressing OSCC progression through Wnt signaling. Furthermore, WDFY3-AS2 expression correlated with an immunosuppressive phenotype in the tumor immune microenvironment. In situ hybridization and immunohistochemistry verified that WDFY3-AS2 was positively associated with total and nuclear ß-catenin protein levels and negatively associated with CD4 expression. CONCLUSIONS: This study demonstrates that the immunity-associated WDFY3-AS2 augments OSCC proliferation and metastasis through Wnt/ß-catenin signaling and may serve as a novel treatment target and a new prognostic factor for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , beta Catenina/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de la Boca/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral , Vía de Señalización Wnt/fisiología
2.
Curr Med Chem ; 30(25): 2814-2821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36093824

RESUMEN

BACKGROUND: Abundant studies have shown that non-coding RNA is connected with tumor cell growth, migration and invasion. As a newly discovered non-coding RNA, WDFY3-AS2 has gradually emerged in the molecular mechanism of various tumors and has a potential prospect as a biological indicator of tumor prognosis. This review describes the pathophysiological mechanism and prognostic value of WDFY3-AS2 in different cancers. OBJECTIVE: This review reveals the changes and roles of WDFY3-AS2 in many tumors and cancers. The change of WDFY3-AS2 can be used as a cancer biomarker and plays an important role in improving tumor growth, migration and invasion. WDFY3-AS2 is unique because it can be considered a prognostic marker for many tumors and is of great significance for clinical diagnosis and treatment. WDFY3-AS2 shows the potential prognostic value and the prospect of therapeutic targets in various tumors. METHODS: PubMed reviewed the related literature to analyze and summarize the regulatory molecular mechanism of WDFY3-AS2 in various tumors and its value as a prognostic indicator. RESULTS: The abnormal expression of LncRNA WDFY3-AS2 in many cancers was connected with the poor prognosis of cancer patients, including diffuse glioma, hepatocellular carcinoma, ovarian cancer, esophageal cancer, triple-negative breast cancer, Clear Cell Renal Carcinoma, Esophageal squamous cell carcinoma, Lung adenocarcinoma, which participated in the recovery of orthodontic teeth. WDFY3-AS2 has revealed the cellular process of cancer cell growth, migration, and invasion. CONCLUSION: The molecular mechanism of LncRNA WDFY3-AS2 regulating tumor specifically proves that WDFY3-AS2 has a good prospect in the biological index of prognosis or clinical treatment target of cancer patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Femenino , Humanos , Pronóstico , Neoplasias Esofágicas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Pulmonares/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , MicroARNs/genética , Movimiento Celular , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Adaptadoras Transductoras de Señales
3.
Mol Carcinog ; 61(5): 508-523, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35129856

RESUMEN

Kidney renal clear cell carcinoma (KIRC) is one of the most common malignancies, and there is still a lack of effective biomarkers for early detection and prognostic prediction. In here, we compared the characteristics of RNA sequencing data sets of KIRC samples based on the tumor suppressor gene phosphatase and tensin homolog (PTEN). The 1016 long noncoding RNAs, 48 microRNAs (miRNAs), and 2104 messenger RNAs associated with PTEN were identified and these genes were differentially expressed between tumor and paracancerous tissues. The most relevant pathway was found to be WDFY3-AS2 - miR-21-5p/miR-221-3p/miR-222-3p - TIMP3 according to the rules of competing endogenous RNA (ceRNA) regulation. WDFY3-AS2 and TIMP3 expression were positively correlated and reduced in KIRC samples, while miR-21-5p, miR-221-3p, and miR-222-3p were relatively highly expressed. The relatively low expression of WDFY3-AS2 and TIMP3 in KIRC were associated with poor prognosis in KIRC patients, while higher expression of miR-21-5p, miR-221-3p, and miR-222-3p predicted reduced survival (p < 0.05). Univariate and multivariate Cox regression analysis showed that lower expression of WDFY3-AS2 and TIMP3 was significantly related to tumor grade, tumor size, lymph node metastasis, distant metastasis, and TNM stage. The expression of TIMP3 in KIRC tissues was also verified by immunohistochemistry, and the results were consistent with our analytical data. In summary, this study constructed a new model with clinical predictive value and identified the WDFY3-AS2/TIMP3 pathway that was closely associated with the prognosis of KIRC, which could serve as a promising biomarker for the diagnosis and treatment of KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , ARN Largo no Codificante , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia/genética , Biomarcadores , Carcinogénesis/genética , Carcinoma de Células Renales/patología , Transformación Celular Neoplásica/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Riñón/metabolismo , Neoplasias Renales/patología , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo
4.
Cancer Cell Int ; 21(1): 284, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051810

RESUMEN

BACKGROUND: Ovarian cancer (OC) is a high-mortality gynecological cancer that is typically treated with cisplatin, although such treatment often results in chemoresistance. Ovarian cancer resistance is usually related to cell stemness. Herein, we explored the function of lncRNA WDFY3-AS2 in OC cell resistance to cisplatin (DDP). METHODS: Cisplatin resistant OC A2780 cell lines (A2780-DDP) were established by long-term exposure to cisplatin. CCK-8 assay were performed to evaluate the viability of A2780, and A2780-DDP cells. Quantitative RT-PCR was used to examine the expression of lncRNA WDFY3-AS2, miR-139-5p, and SDC4 in A2780-DDP cell lines. After treatment with cisplatin, cell apoptosis and CD44+CD166+-positive cells were measured by flow cytometry. The transwell assays were employed to measure the effect of WDFY3-AS2 on cell migration, and invasion. In addition, tumorsphere formation assay was used to enrich OC cancer stem cells (CSCs) from A2780-DDP cells. The expression of CSC markers (SOX2, OCT4, and Nanog) was detected by western blotting. The regulatory mechanism was confirmed by RNA pull down, and luciferase reporter assays. Furthermore, xenograft tumor in nude mice was used to assess the impact of WDFY3-AS2 on cisplatin resistance in OC in vivo. RESULTS: WDFY3-AS2 was highly expressed in OC A2780-DDP cells, and silencing WDFY3-AS2 significantly inhibited proliferation, migration and invasion but increased apoptosis in OC A2780-DDP cells. Additionally, WDFY3-AS2 significantly promoted the A2780-DDP cells tumorspheres. WDFY3-AS2 was predicted to impact OC by sponging miR-139-5p and regulating SDC4. The xenografts inoculated with A2780-DDP cells additionally confirmed that tumor growth in vivo was reduced by si-WDFY3-AS2 transfection. MiR-139-5p inhibitor or SDC4 overexpression could restore the suppressive influence of silenced WDFY3-AS2 on tumor growth. CONCLUSIONS: Together, WDFY3-AS2 may lead to change of cisplatin resistance by the expression of miR-139-5p/SDC4 in the OC A2870-DDP cells both in vitro and in vivo. Our finding may provide a drug target for the drug resistance of OC.

5.
Rep Pract Oncol Radiother ; 25(5): 808-819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884453

RESUMEN

miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.

6.
J Cell Mol Med ; 24(14): 8206-8220, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32536038

RESUMEN

Long non-coding RNAs (lncRNAs) widely participate in ESCC development and progression; however, the prognostic factors and therapeutic strategies implicated in ESCC development and progression remain to be under investigation. The purpose of the current study was to explore whether WDFY3-AS2 may be a potential prognostic factor and investigate its biological functions in ESCC. Here, WDFY3-AS2 was frequently down-regulated in ESCC tissues and cells, and its expression was correlated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Moreover, WDFY3-AS2 down-regulation significantly promoted cell proliferation and invasion, whereas WDFY3-AS2 up-regulation markedly suppressed cell proliferation and invasion in ESCC EC9706 and TE1 cells, coupled with EMT phenotype alterations. WDFY3-AS2 functioned as a competing endogenous RNA (ceRNA) for sponging miR-2355-5p, further resulted in the up-regulation of its target gene SOCS2, followed by suppression of JAK2/Stat5 signalling pathway, to suppress ESCC cell proliferation and invasion in EC9706 and TE1 cells. These findings suggest that WDFY3-AS2 may participate in ESCC development and progression, and may be a novel prognostic factor for ESCC patients, and thus targeting WDFY3-AS2/miR-2355-5p/SOCS2 signalling axis may be a novel therapeutic strategy for ESCC patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Interferencia de ARN , ARN Largo no Codificante/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Movimiento Celular/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/patología , Técnica del Anticuerpo Fluorescente , Humanos , Janus Quinasa 2 , Modelos Biológicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Análisis de Supervivencia
7.
Mol Carcinog ; 59(8): 875-885, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32275336

RESUMEN

Lung adenocarcinoma (LUAD) is one of the most common diagnosed pathological categories of lung cancer. Long noncoding RNAs (lncRNAs) have been manifested to be key regulators in modulating multiple cancers. Nevertheless, the pathologic role of lncRNA WDFY3-AS2 in LUAD remains elusive. The relative messenger RNA and protein levels were assessed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses, respectively. Colony formation, carboxyfluorescein succinimidyl ester, terminal deoxynucleotidyl transferase dUTP nick-end labeling, wound-healing, and transwell invasion assays were performed to study the underlying role of WDFY3-AS2 in LUAD. Luciferase reporter assay, chromatin immunoprecipitation, RNA pull down, and RNA immunoprecipitation assays were conducted to probe into the interactions between relevant genes. WDFY3-AS2 expression was elevated in LUAD and WDFY3-AS2 transcription was activated by transcription factor USF1. Silencing WDFY3-AS2 could suppress cell proliferation, migration, and invasion, whereas accelerate cell apoptosis in LUAD. Molecular mechanism assays revealed that WDFY3-AS2 could bind to miR-491-5p and miR-491-5p inhibition could reverse the inhibitory effect of WDFY3-AS2 silence on LUAD progression. Besides, zinc finger protein 703 (ZNF703) was identified as a downstream target of miR-491-5p and its expression could be upregulated by WDFY3-AS2. Further, rescue assays uncovered that ZNF703 overexpression could restore the suppressive influence of silenced WDFY3-AS2 on LUAD development. USF1-acitvated WDFY3-AS2 promotes LUAD progression via targeting miR-491-5p/ZNF703 axis, suggesting the potential value of WDFY3-AS2 as a novel target for LUAD treatment.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias Pulmonares/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Factores Estimuladores hacia 5'/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proteínas Portadoras/genética , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Células Tumorales Cultivadas , Factores Estimuladores hacia 5'/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Cell Physiol ; 235(2): 1141-1154, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31347170

RESUMEN

Ovarian cancer (OC) is a fatal cancer in women, mainly due to its aggressive nature and poor survival rate. The lncRNA-miRNA-mRNA (long noncoding RNA-microRNA-messenger RNA) interaction is promising biomarkers for the improving prognosis of OC. Therefore, we explored the regulatory mechanism of WDFY3-AS2/miR-18a/RORA axis involved in the biological activities of OC cells. Microarray analysis predicted differentially expressed lncRNA, miRNA, and mRNA related to OC, followed by investigating the relationship among them. The expression patterns of the identified lncRNA WDFY3-AS2, miR-18a, and RORA were measured in OC tissue and cells. Gain- and loss-of-function experiments were performed to characterize the effect of lncRNA WDFY3-AS2 on OC cells, as well as the involvement of miR-18a and RAR related orphan receptor A (RORA). The in vitro assays were validated by in vivo experiments. According to bioinformatics analysis, WDFY3-AS2 was speculated to affect OC by sponging miR-18a and modulating RORA. WDFY3-AS2 and RORA were underexpressed in OC, while miR-18a was highly expressed. Notably, WDFY3-AS2 acts as a competing endogenous RNA to sponge miR-18a and upregulate RORA. Upon overexpressing WDFY3-AS2 or inhibiting miR-18a, RORA expression was increased, thereby the OC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were suppressed, accompanied by enhanced apoptosis. In vivo experiments confirmed that the tumor growth was reduced in response to overexpressed WDFY3-AS2 or inhibited miR-18a. Taken together, the lncRNA WDFY3-AS2/miR-18a axis regulates the tumor progression of OC by targeting RORA, providing new insights for prevention and control of OC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , MicroARNs/metabolismo , Neoplasias Ováricas/metabolismo , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , MicroARNs/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Ováricas/genética , ARN Largo no Codificante/genética , Transcriptoma , Regulación hacia Arriba
9.
Biochem Biophys Res Commun ; 503(3): 1530-1536, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30037433

RESUMEN

Accumulating evidence suggest that dysregulated expression of long non-coding RNA (lncRNA) plays a critical role in human tumorigenesis. However, little is known about the lncRNA implicated in the epithelial-to-mesenchymal transition (EMT) process. In this study, we performed data mining in The Cancer Genome Atlas (TCGA) hepatocellular carcinoma (HCC) data set and identified the a spectrum of differentially expressed lncRNAs implicated the EMT process of HCC, and functionally validated their roles in LM3 cells. Especially, lncRNA WDFY3-AS2-, LINC00472-, MIAT-, and MEG3-associated genes were significantly enriched in EMT-linked pathways. Loss-of-function study showed that genetic silencing of WDFY3-AS3, MIAT, and MEG3, but not LINC00472, resulted in reduced N-cadherin expression, cell migration, and cell invasion. Collectively, our results identify several lncRNAs that regulate the EMT process of HCC, which provides critical information for HCC tumorigenesis and potential therapeutic targets.


Asunto(s)
Carcinoma Hepatocelular/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/genética , ARN Largo no Codificante/genética , Carcinoma Hepatocelular/patología , Movimiento Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA