Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Thromb Res ; 238: 41-51, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669962

RESUMEN

BACKGROUND AND PURPOSE: Hypolipidemia and platelet activation play key roles in atherosclerotic diseases. Pirinixic acid (WY-14643) was originally developed as a lipid-lowering drug. Here we focused on its antiplatelet and antithrombotic abilities and the underlying mechanism. EXPERIMENTAL APPROACH: The effects of WY-14643 on platelet aggregation was measured using a lumi-aggregometer. Clot retraction and spreading on fibrinogen were also assayed. PPARα-/- platelets were used to identify the target of WY-14643. The interaction between WY-14643 and glycoprotein Ibα (GPIbα) was detected using cellular thermal shift assay (CETSA), surface plasmon resonance (SPR) spectroscopy and molecular docking. GPIbα downstream signaling was examined by Western blot. The antithrombotic effect was investigated using mouse mesenteric arteriole thrombosis model. Mouse tail bleeding model was used to study its effect on bleeding side effects. KEY RESULTS: WY-14643 concentration-dependently inhibits human washed platelet aggregation, clot retraction, and spreading. Significantly, WY-14643 inhibits thrombin-induced activation of human washed platelets with an IC50 of 7.026 µM. The antiplatelet effect of WY-14643 is mainly dependent of GPIbα. CESTA, SPR and molecular docking results indicate that WY-14643 directly interacts with GPIbα and acts as a GPIbα antagonist. WY-14643 also inhibits phosphorylation of PLCγ2, Akt, p38, and Erk1/2 induced by thrombin. Noteworthily, 20 mg/kg oral administration of WY-14643 inhibits FeCl3-induced thrombosis of mesenteric arteries in mice similarly to clopidogrel without increasing bleeding. CONCLUSION AND IMPLICATIONS: WY-14643 is not only a PPARα agonist with lipid-lowering effect, but also an antiplatelet agent as a GPIbα antagonist. It may have more significant therapeutic advantages than current antiplatelet agents for the treatment of atherosclerotic thrombosis, which have lipid-lowering effects without bleeding side effects.


Asunto(s)
Fibrinolíticos , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria , Pirimidinas , Animales , Ratones , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Humanos , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Agregación Plaquetaria/efectos de los fármacos , Trombosis/tratamiento farmacológico , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL
2.
Toxicol Lett ; 390: 15-24, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890683

RESUMEN

Many xenobiotics are non-genotoxic carcinogens (NGC) in rodent liver. Their mode of action (MoA) and health risks for humans are unclear and no in-vitro tests are available to predict NGC. Human HepaRG™ cells in the differentiated (d-HepaRG) and non-differentiated state (nd-HepaRG) were studied as new approach methodology (NAM) for NGC. Cell-biological assays were performed with d-/nd-HepaRG and human hepatoma/hepatocarcinoma cell lines to characterize the benign/malignant phenotype. Reaction of d-/nd-HepaRG to several liver growth factors and NGC (phenobarbital, PB; cyproterone acetate, CPA; WY-14643) was compared to unaltered and premalignant rat hepatocytes in ex-vivo culture. Enzyme induction by NGC was checked by RT-qPCR/oligo-arrays. Growth, anchorage-independency, migration, clonogenicity, and in-vivo tumorigenicity of nd-HepaRG ranged between benign d-HepaRG and malignant hepatoma/hepatocarcinoma cells. All growth factors elevated DNA replication of d-/nd-HepaRG cells, similarly to unaltered/premalignant rat hepatocytes. NGC induced their prototypical enzymes in the rat and human cells, but elicited a growth response only in the unaltered/premalignant rat hepatocytes and not in human d-/nd-HepaRG cells. To conclude, a benign/premalignant phenotype of d-/nd-HepaRG cells and a reactivity towards several hepatic growth factors and NGC, as known from human hepatocytes, are essential components for an in-vitro model for early stage human hepatocarcinogenesis.The potential value as new approach methodology (NAM) for NGC is discussed.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratas , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinógenos/toxicidad , Carcinógenos/metabolismo , Hepatocitos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo
3.
Free Radic Biol Med ; 208: 221-228, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567517

RESUMEN

In peroxisomes, acyl-CoA oxidase (ACOX) oxidizes fatty acids and produces H2O2, and the latter is decomposed by catalase. If ethanol is present, ethanol will be oxidized by catalase coupling with decomposition of H2O2. Peroxisome proliferator-activated receptor α (PPARα) agonist WY-14,643 escalated ethanol clearance, which was not observed in catalase knockout (Cat-/-) mice or partially blocked by an ACOX1 inhibitor. WY-14,643 induced peroxisome proliferation via peroxin 16 (PEX16). PEX16 liver-specific knockout (Pex16Alb-Cre) mice lack intact peroxisomes in liver, but catalase and ACOX1 were upregulated. Due to lacking intact peroxisomes, the upregulated catalase and ACOX1 in the Pex16Alb-Cre mice were mislocated in cytosol and microsomes, and the escalated ethanol clearance was not observed in the Pex16Alb-Cre mice, implicating that the intact functional peroxisomes are essential for ACOX1/catalase to metabolize ethanol. Alcohol-associated liver disease (ALD) is a spectrum of liver disorders ranging from alcoholic steatosis to steatohepatitis. WY-14,643 ameliorated alcoholic steatosis but tended to enhance alcoholic steatohepatitis. In mice lacking nuclear factor erythroid 2-related factor 2 (Nrf2-/-), WY-14,643 still induced PEX16, ACOX1 and catalase to escalate ethanol clearance and blunt alcoholic steatosis, which was not observed in the PPARα-absent Nrf2-/- mice (Pparα-/-/Nrf2-/-) mice, suggesting that WY-14,643 escalates ethanol clearance through PPARα but not through Nrf2.


Asunto(s)
Etanol , Hígado Graso , Peroxisomas , Animales , Ratones , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular , Etanol/metabolismo , Hígado Graso/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Peroxisomas/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
4.
Pharmacol Res ; 192: 106786, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146924

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease phenotypes which start with simple steatosis and lipid accumulation in the hepatocytes - a typical histological lesions characteristic. It may progress to non-alcoholic steatohepatitis (NASH) that is characterized by hepatic inflammation and/or fibrosis and subsequent onset of NAFLD-related cirrhosis and hepatocellular carcinoma (HCC). Due to the central role of the liver in metabolism, NAFLD is regarded as a result of and contribution to the metabolic abnormalities seen in the metabolic syndrome. Peroxisome proliferator-activated receptors (PPARs) has three subtypes, which govern the expression of genes responsible for energy metabolism, cellular development, inflammation, and differentiation. The agonists of PPARα, such as fenofibrate and clofibrate, have been used as lipid-lowering drugs in clinical practice. Thiazolidinediones (TZDs) - ligands of PPARγ, such as rosiglitazone and pioglitazone, are also used in the treatment of type 2 diabetes (T2D) with insulin resistance (IR). Increasing evidence suggests that PPARß/δ agonists have potential therapeutic effects in improving insulin sensitivity and lipid metabolism disorders. In addition, PPARs ligands have been considered as potential therapeutic drugs for hypertension, atherosclerosis (AS) or diabetic nephropathy. Their crucial biological roles dictate the significance of PPARs-targeting in medical research and drug discovery. Here, it reviews the biological activities, ligand selectivity and biological functions of the PPARs family, and discusses the relationship between PPARs and the pathogenesis of NAFLD and metabolic syndrome. This will open new possibilities for PPARs application in medicine, and provide a new idea for the treatment of fatty liver and related diseases.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Síndrome Metabólico/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , PPAR alfa/metabolismo , Inflamación/metabolismo , Lípidos/uso terapéutico
5.
Front Physiol ; 14: 1129089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035678

RESUMEN

Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Atlantic cod (Gadus morhua) is an important fish species in the North Atlantic ecosystem and in human nutrition, with a highly fatty liver. Here we study the involvement of Atlantic cod Ppar a and b subtypes in systemic regulation of lipid metabolism using two model agonists after in vivo exposure. WY-14,643, a specific PPARA ligand in mammals, activated cod Ppara1 and Ppara2 in vitro. In vivo, WY-14,643 caused a shift in lipid transport both at transcriptional and translational level in cod. However, WY-14,643 induced fewer genes in the fatty acid beta-oxidation pathway compared to that observed in rodents. Although GW501516 serves as a specific PPARB/D ligand in mammals, this compound activated cod Ppara1 and Ppara2 as well as Pparb in vitro. In vivo, it further induced transcription of Ppar target genes and caused changes in lipid composition of liver and plasma. The integrative approach provide a foundation for understanding how Ppars are engaged in regulating lipid metabolism in Atlantic cod physiology. We have shown that WY-14,643 and GW501516 activate Atlantic cod Ppara and Pparb, affect genes in lipid metabolism pathways, and induce changes in the lipid composition in plasma and liver microsomal membranes. Particularly, the combined transcriptomic, proteomics and lipidomics analyses revealed that effects of WY-14,643 on lipid metabolism are similar to what is known in mammalian studies, suggesting conservation of Ppara functions in mediating lipid metabolic processes in fish. The alterations in the lipid profiles observed after Ppar agonist exposure suggest that other chemicals with similar Ppar receptor affinities may cause disturbances in the lipid regulation of fish. Model organism: Atlantic cod (Gadus morhua). LSID: urn:lsid:zoobank.org:act:389BE401-2718-4CF2-BBAE-2E13A97A5E7B. COL Identifier: 6K72F.

6.
Pharmacol Res ; 187: 106638, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586645

RESUMEN

BACKGROUND AND PURPOSE: Selective peroxisome proliferator-activated receptors (PPARs) are widely used to treat metabolic complications; however, the limited effect of PPARα agonists on glucose metabolism and the adverse effects associated with selective PPARγ activators have stimulated the development of novel pan-PPAR agonists to treat metabolic disorders. Here, we synthesized a new prenylated benzopyran (BP-2) and evaluated its PPAR-activating properties, anti-inflammatory effects and impact on metabolic derangements. EXPERIMENTAL APPROACH: BP-2 was used in transactivation assays to evaluate its agonism to PPARα, PPARß/δ and PPARγ. A parallel-plate flow chamber was employed to investigate its effect on TNFα-induced leukocyte-endothelium interactions. Flow cytometry and immunofluorescence were used to determine its effects on the expression of endothelial cell adhesion molecules (CAMs) and chemokines and p38-MAPK/NF-κB activation. PPARs/RXRα interactions were determined using a gene silencing approach. Analysis of its impact on metabolic abnormalities and inflammation was performed in ob/ob mice. KEY RESULTS: BP-2 displayed strong PPARα activity, with moderate and weak activity against PPARß/δ and PPARγ, respectively. In vitro, BP-2 reduced TNFα-induced endothelial ICAM-1, VCAM-1 and fractalkine/CX3CL1 expression, suppressed mononuclear cell arrest via PPARß/δ-RXRα interactions and decreased p38-MAPK/NF-κB activation. In vivo, BP-2 improved the circulating levels of glucose and triglycerides in ob/ob mice, suppressed T-lymphocyte/macrophage infiltration and proinflammatory markers in the liver and white adipose tissue, but increased the expression of the M2-like macrophage marker CD206. CONCLUSION AND IMPLICATIONS: BP-2 emerges as a novel pan-PPAR lead candidate to normalize glycemia/triglyceridemia and minimize inflammation in metabolic disorders, likely preventing the development of further cardiovascular complications.


Asunto(s)
Enfermedades Metabólicas , PPAR delta , PPAR-beta , Ratones , Animales , PPAR gamma/metabolismo , PPAR alfa/metabolismo , PPAR-beta/metabolismo , Factor de Necrosis Tumoral alfa , Benzopiranos , FN-kappa B , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico
7.
Lipids Health Dis ; 21(1): 121, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384580

RESUMEN

BACKGROUND: Histologically, cytoplasmic deposits of lipids and glycogen are common in clear cell renal cell carcinoma (ccRCC). Owing to the significance of lipid deposition in ccRCC, numerous trials targeting lipid metabolism have shown certain therapeutic potential. The agonism of peroxisome proliferator-activated receptor-α (PPARα) via ligands, including WY-14,643, has been considered a promising intervention for cancers. METHODS: First, the effects of WY-14,643 on malignant behaviors were investigated in ccRCC in vitro. After RNA sequencing, the changes in lipid metabolism, especially neutral lipids and glycerol, were further evaluated. Finally, the underlying mechanisms were revealed. RESULTS: Phenotypically, the proliferation and migration of ccRCC cells treated with WY-14,643 were significantly inhibited in vitro. A theoretical functional mechanism was proposed in ccRCC: WY-14,643 mediates lipid consumption by recognizing carnitine palmitoyltransferase 1 A (CPT1A). Activation of PPARα using WY-14,643 reduces lipid deposition by increasing the CPT1A level, which also suppresses the NF-κB signaling pathway. Spatially, WY-14,643 binds and activates PPARα by targeting Gly335. CONCLUSION: Overall, WY-14,643 suppresses the biological behaviors of ccRCC in terms of cell proliferation, migration, and cell cycle arrest. Furthermore, its anticancer properties are mediated by the inhibition of lipid accumulation, at least in part, through the PPARα/CPT1A axis by targeting Gly335, as part of the process, NF-κB signaling is also suppressed. Pharmacological activation of PPARα might offer a new treatment option for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , FN-kappa B , Proliferación Celular , Lípidos
8.
Life Sci ; 266: 118888, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310031

RESUMEN

AIMS: Peroxisome proliferator-activated receptor (PPAR) α, a key regulator of lipid metabolism, plays a role in maintaining the homeostasis of myocardial energy metabolism. Both hypoxia and obesity inhibit the expression of PPARα in the myocardium. In this study, we verified the inhibitory effects of hypoxia and obesity on PPARα and examined whether WY14643 (4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid), an agonist of PPARα, ameliorates myocardial mitochondrial dysfunction and protects cardiac function in obese rats under chronic persistent hypoxia. MAIN METHODS: Sprague-Dawley rats were randomly divided into six groups: a control group (normal chow diet, normal oxygen), a high-fat diet (HFD) group (normal oxygen), a chronic persistent hypoxia normal chow diet group, a chronic persistent hypoxia HFD group, a chronic persistent hypoxia HFD group with WY14643 treatment, and a chronic persistent hypoxia HFD group with vehicle treatment. KEY FINDINGS: Hypoxia and obesity increased myocardial lipid accumulation, mitochondrial dysfunction, and left ventricular systolic dysfunction. Myocardial lipid metabolism-related genes, including those encoding PPARα, PPARγ coactivator 1α (PGC1α), and carnitine palmitoyl transferase 1α (CPT1α), were downregulated, while acetyl-CoA carboxylase 2 (ACC2) was upregulated under a combination of hypoxia and obesity. WY14643 upregulated PPARα, PGC1α, and CPT1α, and downregulated ACC2. WY14643 alleviated hypoxia- and obesity-induced myocardial lipid accumulation and improved mitochondrial and left ventricular systolic functions. SIGNIFICANCE: WY14643 improved myocardial mitochondrial and left ventricular systolic functions in obese rats under chronic persistent hypoxia. Thus, WY14643 possibly exerts its effects by regulating the PPARα pathway and shows potential as a therapeutic target for cardiovascular diseases associated with obesity and hypoxia.


Asunto(s)
Hipoxia/fisiopatología , Mitocondrias Cardíacas/efectos de los fármacos , Obesidad/fisiopatología , PPAR alfa/agonistas , Pirimidinas/farmacología , Sístole/efectos de los fármacos , Disfunción Ventricular Izquierda/tratamiento farmacológico , Animales , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Pirimidinas/química , Ratas , Ratas Sprague-Dawley , Volumen Sistólico , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/patología
9.
Autophagy ; 16(1): 52-69, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30898012

RESUMEN

Alzheimer disease (AD) is the most common neurodegenerative disease. An imbalance between the production and clearance of Aß (amyloid beta) is considered to be actively involved in AD pathogenesis. Macroautophagy/autophagy is a major cellular pathway leading to the removal of aggregated proteins, and upregulation of autophagy represents a plausible therapeutic strategy to combat overproduction of neurotoxic Aß. PPARA/PPARα (peroxisome proliferator activated receptor alpha) is a transcription factor that regulates genes involved in fatty acid metabolism and activates hepatic autophagy. We hypothesized that PPARA regulates autophagy in the nervous system and PPARA-mediated autophagy affects AD. We found that pharmacological activation of PPARA by the PPARA agonists gemfibrozil and Wy14643 induces autophagy in human microglia (HM) cells and U251 human glioma cells stably expressing the human APP (amyloid beta precursor protein) mutant (APP-p.M671L) and this effect is PPARA-dependent. Administration of PPARA agonists decreases amyloid pathology and reverses memory deficits and anxiety symptoms in APP-PSEN1ΔE9 mice. There is a reduced level of soluble Aß and insoluble Aß in hippocampus and cortex tissues from APP-PSEN1ΔE9 mice after treatment with either gemfibrozil or Wy14643, which promoted the recruitment of microglia and astrocytes to the vicinity of Aß plaques and enhanced autophagosome biogenesis. These results indicated that PPARA is an important factor regulating autophagy in the clearance of Aß and suggested gemfibrozil be assessed as a possible treatment for AD.Abbreviation: Aß: amyloid beta; ACTB: actin beta; ADAM10: ADAM metallopeptidase domain 10; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; ANOVA: analysis of variance; APOE: apolipoprotein E; APP: amyloid beta precursor protein; APP-PSEN1ΔE9: APPswe/PSEN1dE9; BAFA1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BECN1: beclin 1; CD68: CD68 molecule; CREB1: cAMP responsive element binding protein 1; DAPI: 4',6-diamidino-2-phenylindole; DLG4/PSD-95: discs large MAGUK scaffold protein 4; DMSO: dimethyl sulfoxide; ELISA: enzyme linked immunosorbent assay; FDA: U.S. Food and Drug Administration; FKBP5: FK506 binding protein 5; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; gemfibrozil: 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid; GFAP: glial fibrillary acidic protein; GLI2/THP1: GLI family zinc finger 2; HM: human microglia; IL6: interleukin 6; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; NC: negative control; OQ: opposite quadrant; PPARA/PPARα, peroxisome proliferator activated receptor alpha; PSEN1/PS1: presenilin 1; SEM: standard error of the mean; SQSTM1: sequestosome 1; SYP: synaptophysin; TFEB: transcription factor EB; TNF/TNF-α: tumor necrosis factor; TQ: target quadrant; WT: wild type; Wy14643: 2-[4-chloro-6-(2,3-dimethylanilino)pyrimidin-2-yl]sulfanylacetic acid.


Asunto(s)
Enfermedad de Alzheimer/patología , Autofagia/fisiología , PPAR alfa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Autofagia/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , PPAR alfa/genética , Placa Amiloide/metabolismo
10.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775380

RESUMEN

Human cytochrome P450 1B1 (CYP1B1)-mediated biotransformation of endobiotics and xenobiotics plays an important role in the progression of human breast cancer. In this study, we investigated the effects of WY-14643, a peroxisome proliferator-activated receptor α (PPARα) agonist, on CYP1B1 expression and the related mechanism in MCF7 breast cancer cells. We performed quantitative reverse transcription-polymerase chain reaction, transient transfection, and chromatin immunoprecipitation to evaluate the effects of PPARα on peroxisome proliferator response element (PPRE)-mediated transcription. WY-14643 increased the protein and mRNA levels of CYP1B1, as well as promoter activity, in MCF-7 cells. Moreover, WY-14643 plus GW6471, a PPARα antagonist, significantly inhibited the WY-14643-mediated increase in CYP1B1 expression. PPARα knockdown by a small interfering RNA markedly suppressed the induction of CYP1B1 expression by WY-14643, suggesting that WY-14643 induces CYP1B1 expression via a PPARα-dependent mechanism. Bioinformatics analysis identified putative PPREs (-833/-813) within the promoter region of the CYP1B1 gene. Inactivation of these putative PPREs by deletion mutagenesis suppressed the WY-14643-mediated induction of CYP1B1 promoter activation. Furthermore, WY-14643 induced PPARα to assume a form capable of binding specifically to the PPRE-binding site in the CYP1B1 promoter. Our findings suggest that WY-14643 induces the expression of CYP1B1 through activation of PPARα.


Asunto(s)
Neoplasias de la Mama/metabolismo , Citocromo P-450 CYP1B1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , PPAR alfa/metabolismo , Proliferadores de Peroxisomas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular , Citocromo P-450 CYP1B1/metabolismo , Femenino , Humanos , PPAR alfa/genética , Regiones Promotoras Genéticas , Elementos de Respuesta , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA