Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Contam Hydrol ; 248: 103989, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306324

RESUMEN

Diffusion is the main transport process of water and solutes in clay-rich porous media owing to their very low permeability, so they are widely used as barriers against contaminant spreading. However, the prediction of contaminant mobility can be very complicated when these media are partially water-saturated. We conducted diffusion experiments for water (HTO and HDO) and ions (22Na+ and 125I-) through partially water saturated compacted kaolinite, a weakly charged clay material, to quantify the distinct diffusive behavior of these species. The osmosis method was used to set kaolinite samples at 67, 86 and 100% saturation. The results showed that desaturation led to a sharp decrease in diffusive rates by factors of 6.5, 18 and 35 for HTO, 125I- and 22Na+, respectively, from 100 to 67% of the degree of saturation. Thus, to interpret water diffusivities, we proposed a model taking into account the diffusion of water in both gas and liquid phases, using diffusion data obtained for ions, considered as inert species. This model was capable of properly predicting water diffusive flux, especially at a low degree of saturation (67% saturation), for which the assumption made for the occurrence of air phase continuity throughout the sample appears to be more relevant than at 86% saturation.


Asunto(s)
Caolín , Agua , Arcilla , Difusión , Gases
2.
New Phytol ; 114(3): 341-368, 1990 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33873972

RESUMEN

Changes of view on the course of the transpiration stream beyond the veins in leaves are followed from the imbibition theory of Sachs, through the (symplastic) endosmotic theory of Pfeffer (which prevailed almost unquestioned until the late 1930s), to Strugger's experiments with fluorescent dye tracers and the epifluorescence microscope. This latter work persuaded many to return to the apoplastic-(wall)-path viewpoint, which, despite early and late criticisms that were never rebutted, is still widely held. Tracer experiments of the same kind are still frequently published without consideration of the evidence that they do not reveal the paths of water movement. Experiments on rehydration kinetics of leaves have not produced unequivocal evidence for either path. The detailed destinies of the solutes that reach the leaf in the transpiration stream have received little attention. Consideration of physical principles governing flow and evaporation in a transpiring leaf emphasizes that: (1) Diffusion over interveinal distances at the rates in water will account for substantial solute movement in a few minutes, even in the absence of flow. (2) Diffusion can occur also against opposing now. (3) Volume fluxes in veins are determined by the diameter of the largest leaves examined contain high conductance supply veins which are tapped into by low-conductance distributing veins. (4) Edges and teeth of leaves will be places of especially rapid evaporation, and they often have high-conductance veins leading to them. (5) Solutes in the stream will tend to accumulate at leaf margins. On the basis of recent work, the view is maintained that the water of the stream enters the symplast through cell membranes very close to tracheary elements. Also, that this occurs locally over a small area of membrane. Many solutes in the stream are left outside in the apoplast. This produces regions of high solute concentration in the apoplast and an enrichment of solutes in the stream as it perfuses the leaf. Solutes that enter the symplast are not so easily tracked. Suggestions about where some of them may go can be gained from a fluorescent probe that identifies particular cells (scavenging cells) as having H+ -ATPase porter systems to scrub selected solutes from the stream. Unpublished case-histories are presented which illustrate many aspects of these processes and principles. These are: (1) Maize leaf veins, where the symplastic water path starts at the parenchyma sheath; (2) Lupin veins, where the symplastic path starts at the bundle sheath and where solutes are concentrated in blind terminations; (3) The edges of maize leaves where flow is enhanced by a large vein (open to the apoplast), and solutes are deposited in the apoplast by evaporation; (4) Poplar leaf teeth, which receive strong flows, and where the epithem cells are scavenging cells; (5) Mimosa leaf marginal hairs, which have scavenging cells at their base; (6) Active hydathodes, whose epithem cells are scavenging cells; (7) Pine needle transfusion tissue, which is a site of both solute enrichment (in the tracheids), and scavenging (in the parenchyma); (8) Estimates are made of diffusion coefficients of a solute both along and at right angles to the major diffusive pathway in wheat leaves. The first is 1000 times the second, but is 1/100 of free diffusion in water. Five general themes of the behaviour and organization of the transpiration stream are induced from the facts reviewed. These are: (1) The stream is channelled into courses of graded intensities by the interplay of the physical forces with the anatomical features, each course with a distinct contribution to the processing of the stream. (2) Water enters the symplast at precise locations as close as possible to the tracheary elements. (3) As the stream moves through the leaf its solute concentration is enriched many-fold at predictable sites. (4) Solutes excluded from the symplast diffuse from these sources of high concentration in specially formed wall paths, in precise patterns, at rates which can be measured, and which are low compared with diffusion in water. (5) Other solutes permeate the symplast, often over the surfaces of groups of cells which are organized into recognized structural features. CONTENTS Summary 341 I. What becomes of the transpiration stream ? 342 II. Review 343 III. Preview 355 IV. Overview 361 Acknowledgements 365 References 365.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA