Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
mBio ; : e0232424, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230281

RESUMEN

Avian migration is a global phenomenon that transcends geographical boundaries. These migratory birds serve as unwitting carriers of diverse Gammacoronaviruses (γ-CoVs) and Deltacoronaviruses (δ-CoVs). While recombination events have been documented among γ-CoVs in avian species and ß-CoVs in mammals, evidence for recombination between CoVs of distinct genera remains limited. This minireview examines the prevalence of CoVs in both domestic waterfowl (ducks and geese) and wild bird populations inhabiting various regions. We investigate the dissemination patterns of γ-CoVs and δ-CoVs among these populations, highlighting their shared characteristics. Furthermore, the review explores the intricate web of cross-species transmission of δ-CoVs from wild birds to mammals, with a particular focus on pigs. Understanding the distinct features of CoVs harbored by waterfowl and wild birds and their potential for cross-species transmission is crucial for preparedness and response to future CoV epidemics.

2.
Curr Biol ; 34(17): 3955-3965.e4, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39142288

RESUMEN

Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.


Asunto(s)
Aves , Campylobacter jejuni , Microbioma Gastrointestinal , Animales , Campylobacter jejuni/genética , Campylobacter jejuni/fisiología , Campylobacter jejuni/aislamiento & purificación , Aves/microbiología , Humanos , Animales Salvajes/microbiología , Farmacorresistencia Bacteriana/genética , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Antibacterianos/farmacología , Urbanización , Zoonosis/microbiología , Ecosistema , Enfermedades de las Aves/microbiología , Microbiota
3.
J Fungi (Basel) ; 10(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39194858

RESUMEN

The culturable yeast communities in temperate forest soils under the ornithogenic influence were studied in a seasonal dynamic. To investigate the intense ornithogenic influence, conventional and "live" feeders were used, which were attached to trees in the forest and constantly replenished throughout the year. It was found that the yeast abundance in the soil under strong ornithogenic influence reached the highest values in winter compared to the other seasons and amounted to 4.8 lg (cfu/g). This was almost an order of magnitude higher than the minimum value of yeast abundance in ornithogenic soils determined for summer. A total of 44 yeast species, 21 ascomycetes and 23 basidiomycetes, were detected in ornithogenic soil samples during the year. These included soil-related species (Barnettozyma californica, Cyberlindnera misumaiensis, Cutaneotrichosporon moniliiforme, Goffeauzyma gastrica, Holtermanniella festucosa, Leucosporidium creatinivorum, L. yakuticum, Naganishia adeliensis, N. albidosimilis, N. globosa, Tausonia pullulans, and Vanrija albida), eurybionts (yeast-like fungus Aureobasidium pullulans, Debaryomyces hansenii, and Rhodotorula mucilaginosa), inhabitants of plant substrates and litter (Cystofilobasidium capitatum, Cys. infirmominiatum, Cys. macerans, Filobasidium magnum, Hanseniaspora uvarum, Metschnikowia pulcherrima, and Rh. babjevae) as well as a group of pathogenic and opportunistic yeast species (Arxiozyma bovina, Candida albicans, C. parapsilosis, C. tropicalis, Clavispora lusitaniae, and Nakaseomyces glabratus). Under an ornithogenic influence, the diversity of soil yeasts was higher compared to the control, confirming the uneven distribution of yeasts in temperate forest soils and their dependence on natural hosts and vectors. Interestingly, the absolute dominant species in ornithogenic soils in winter (when the topsoil temperature was below zero) was the basidiomycetous psychrotolerant yeast T. pullulans. It is regularly observed in various soils in different geographical regions. Screening of the hydrolytic activity of 50 strains of this species at different temperatures (2, 4, 10, 15 and 20 °C) showed that the activity of esterases, lipases and proteases was significantly higher at the cultivation temperature. Ornithogenic soils could be a source for the relatively easy isolation of a large number of strains of the psychrotolerant yeast T. pullulans to test, study and optimize their potential for the production of cold-adapted enzymes for industry.

4.
mBio ; 15(8): e0320323, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012149

RESUMEN

Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE: We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.


Asunto(s)
Animales Salvajes , Aves , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Gripe Aviar/virología , Canadá/epidemiología , Aves/virología , Animales Salvajes/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Filogenia , Europa (Continente)/epidemiología , Monitoreo Epidemiológico , Asia/epidemiología
5.
Biodivers Data J ; 12: e123681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983945

RESUMEN

Wildlife rescue centres are specialised units with ecological, conservational and veterinary medical activities, which include treatment, rehabilitation, breeding and releasing rare and endangered wild animals into their natural habitat, as well as environmental education. These centres provide an opportunity to monitor ongoing ecological changes in wildlife, environmental pollution and emerging diseases. With the present study, we aimed to analyse the causes and conservation status of the largest wildlife rehabilitation centre in Bulgaria. A total of 18,720 patients, from 26 orders with various conservation statuses and different etiology, have been admitted to the rehabilitation centre for over 25 years. The summarised results showed that 40% of the patients were admitted with an unknown etiology and the proportion of anthropogenic causes was 18%. Natural factors related to incidents with wild animals were 32%, while a share of 10% of the wildlife which resided at the WRBC referred to a part of re-introduction programmes. This type of analysis of wildlife rehabilitation centres could provide useful information about the status of populations and ecosystems, as well as support conservation practices.

6.
Pathogens ; 13(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39057798

RESUMEN

A quantitative microbial risk assessment model was developed to estimate the probability that the aerosolization of fecal droppings from wild birds in the vicinity of poultry farms would result in the infection of indoor-housed poultry with highly pathogenic avian influenza virus (HPAIv) in the Netherlands. Model input parameters were sourced from the scientific literature and experimental data. The availability of data was diverse across input parameters, and especially parameters on the aerosolization of fecal droppings, survival of HPAIv and dispersal of aerosols were uncertain. Model results indicated that the daily probability of infection of a single poultry farm is very low, with a median value of 7.5 × 10-9. Accounting for the total number of poultry farms and the length of the bird-flu season, the median overall probability of at least one HPAIv-infected poultry farm during the bird-flu season is 2.2 × 10-3 (approximately once every 455 years). This is an overall estimate, averaged over different farm types, virus strains and wild bird species, and results indicate that uncertainty is relatively high. Based on these model results, we conclude that it is unlikely that this introduction route plays an important role in the occurrence of HPAIv outbreaks in indoor-housed poultry.

7.
Front Vet Sci ; 11: 1415559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055861

RESUMEN

Introduction: The increasing geographical spread of highly pathogenic avian influenza viruses (HPAIVs) is of global concern due to the underlying zoonotic and pandemic potential of the virus and its economic impact. An integrated One Health model was developed to estimate the likelihood of Avian Influenza (AI) introduction and transmission in Cuba, which will help inform and strengthen risk-based surveillance activities. Materials and methods: The spatial resolution used for the model was the smallest administrative district ("Consejo Popular"). The model was parameterised for transmission from wild birds to poultry and pigs (commercial and backyard) and then to humans. The model includes parameters such as risk factors for the introduction and transmission of AI into Cuba, animal and human population densities; contact intensity and a transmission parameter (ß). Results: Areas with a higher risk of AI transmission were identified for each species and type of production system. Some variability was observed in the distribution of areas estimated to have a higher probability of AI introduction and transmission. In particular, the south-western and eastern regions of Cuba were highlighted as areas with the highest risk of transmission. Discussion: These results are potentially useful for refining existing criteria for the selection of farms for active surveillance, which could improve the ability to detect positive cases. The model results could contribute to the design of an integrated One Health risk-based surveillance system for AI in Cuba. In addition, the model identified geographical regions of particular importance where resources could be targeted to strengthen biosecurity and early warning surveillance.

8.
EFSA J ; 22(7): e8930, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036773

RESUMEN

Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.

9.
Ecol Appl ; 34(6): e3010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38978282

RESUMEN

Since 2014, highly pathogenic avian influenza (HPAI) H5 viruses of clade 2.3.4.4 have been dominating the outbreaks across Europe, causing massive deaths among poultry and wild birds. However, the factors shaping these broad-scale outbreak patterns, especially those related to waterbird community composition, remain unclear. In particular, we do not know whether these risk factors differ from those of other H5 clades. Addressing this knowledge gap is important for predicting and preventing future HPAI outbreaks. Using extensive waterbird survey datasets from about 6883 sites, we here explored the effect of waterbird community composition on HPAI H5Nx (clade 2.3.4.4) spatial patterns in the 2016/2017 and 2020/2021 epidemics in Europe, and compared it with the 2005/2006 HPAI H5N1 (clade 2.2) epidemic. We showed that HPAI H5 occurrences in wild birds in the three epidemics were strongly associated with very similar waterbird community attributes, which suggested that, in nature, similar interspecific transmission processes operate between the HPAI H5 subtypes or clades. Importantly, community phylogenetic diversity consistently showed a negative association with H5 occurrence in all three epidemics, suggesting a dilution effect of phylogenetic diversity. In contrast, waterbird community variables showed much weaker associations with HPAI H5Nx occurrence in poultry. Our results demonstrate that models based on previous epidemics can predict future HPAI H5 patterns in wild birds, implying that it is important to include waterbird community factors in future HPAI studies to predict outbreaks and improve surveillance activities.


Asunto(s)
Aves , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Gripe Aviar/virología , Europa (Continente)/epidemiología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Brotes de Enfermedades/veterinaria , Virus de la Influenza A/fisiología
10.
Infect Dis (Lond) ; 56(9): 743-758, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38836293

RESUMEN

BACKGROUND: West Nile Virus (WNV) is a zoonotic arbovirus worldwide spread. Seasonal WNV outbreaks occur in the Mediterranean basin since the late 1990's with ever-increasing incidence. In Southern Spain WNV is endemic, as disease foci - caused by WNV lineage 1 (WNV-L1) strains - occur every year. On the contrary, WNV-L2 is the dominant lineage in Europe, so most European WNV sequences available belong to this lineage, WNV-L1 sequences being still scarce. METHODS: To fill this gap, this study reports the genetic characterisation of 27 newly described WNV-L1 strains, involved in outbreaks affecting wild birds and horses during the last decade in South-Western Spain. RESULTS: All strains except one belong to the Western Mediterranean-1 sub-cluster (WMed-1), related phylogenetically to Italian, French, Portuguese, Moroccan and, remarkably, Senegalese strains. This sub-cluster persisted, spread and evolved into three distinguishable WMed-1 phylogenetic groups that co-circulated, notably, in the same province (Cádiz). They displayed different behaviours: from long-term persistence and rapid spread to neighbouring regions within Spain, to long-distance spread to different countries, including transcontinental spread to Africa. Among the different introductions of WNV in Spain revealed in this study, some of them succeeded to get established, some extinguished from the territory shortly afterwards. Furthermore, Spain's southernmost province, Cádiz, constitutes a hotspot for virus incursion. CONCLUSION: Southern Spain seems a likely scenario for emergence of exotic pathogens of African origin. Therefore, circulation of diverse WNV-L1 variants in Spain prompts for an extensive surveillance under a One Health approach.


Asunto(s)
Aves , Filogenia , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/aislamiento & purificación , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología , Fiebre del Nilo Occidental/transmisión , Animales , España/epidemiología , Aves/virología , Enfermedades de las Aves/virología , Enfermedades de las Aves/epidemiología , Caballos/virología , Europa (Continente)/epidemiología , Brotes de Enfermedades , África/epidemiología , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/epidemiología , Humanos , Animales Salvajes/virología
11.
Environ Res ; 259: 119475, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945513

RESUMEN

Avian droppings (combination of fecal matter and urates) provide a non-lethal and non-invasive matrix for measuring pesticide exposures. In the field, droppings may be collected days or weeks after excretion and the persistence of pesticide residues in weathered droppings is not known. Thus, we studied the effects of weathering on pesticide residues in droppings. Domestic chicken (Gallus gallus domesticus) hens were used as a representative species for Order Galliformes. We collected droppings from hens before they were exposed to the pesticides (reference or pre-dose droppings ). Thereafter, the hens were orally administered encapsulated wheat seeds coated with Raxil® PRO Shield (containing the active ingredients imidacloprid, prothioconazole, metalaxyl, and tebuconazole) for consecutive 7 days. During this time, their droppings were collected on days 3, 5, and 8 from the start of the exposure period (post-dose droppings ). The pre-dose and post-dose droppings were weathered for up to 30 days in autumn and spring in shrubsteppe habitat. Droppings were analyzed using HPLC coupled to triple quad LC/MS for parent compound and metabolite residues. No pesticide or its metabolite residues were detected in the weathered reference droppings. No parent pesticide compounds were detected in weathered post-dose droppings but imidacloprid metabolites, imidacloprid-5-hydroxy and imidacloprid-olefin, and the prothioconazole metabolite, desthio-prothioconazole, were detected in all post-dose weathered samples from both seasons. The active ingredients metalaxyl and tebuconazole and their metabolites were not detected in any of the samples. Our results suggest that, depending on the pesticide, its concentration, and the environmental conditions, residues of some pesticides can be detected in droppings weathered for at least 30 days. Knowledge of pesticide persistence in weathered droppings can help refine the quality and quantity of fecal samples that are collected for monitoring pesticide exposures to birds.


Asunto(s)
Pollos , Heces , Residuos de Plaguicidas , Triazoles , Animales , Residuos de Plaguicidas/análisis , Heces/química , Triazoles/análisis , Triazoles/química , Neonicotinoides/análisis , Nitrocompuestos/análisis , Monitoreo del Ambiente/métodos , Alanina/análogos & derivados
12.
Parasitol Int ; 102: 102910, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38825165

RESUMEN

Sarcocystis spp. are cyst-forming coccidia characterized by a two-host predator-prey life cycle. Sarcocysts are formed in muscles or nervous system of the intermediate host, while sporocysts develop in the small intestine of the definitive host. The intermediate hosts of Sarcocystis falcatula are wild birds. Colombia is one of the countries with the greatest biodiversity of birds, however, there are few studies related to this parasite in wild birds. This study presents the morphological and molecular detection of Sarcocystis falcatula collected from the emerald toucanet (Aulacorhynchus albivitta), a wild bird species endemic to South America. Pectoral muscle samples were obtained, and microscopic and molecular detection was performed by light microscopy, transmission electron microscopy, and amplifying of the first internal transcribed spacer (ITS-1) and surface antigen-encoding genes (SAGs). Sarcocystis measured an average of 161  × 42 µm, with a cyst wall ∼0.4 µm thick. Ultrastructurally, the sarcocyst wall type 11b-like consisted of numerous villar protrusions of 850 nm wide on average. The ITS-1 sequence showed 97.0-99.7% identity to S. falcatula previously described from birds in the United States and Brazil, respectively. Concatenated phylogenetic analysis based on SAG2, SAG3 and SAG4 confirmed that the new isolate is grouped with other sequences of Sarcocystis from South America, but divergent from those isolates obtained in North America. The results of this study demonstrate for the first time the presence of S. falcatula in a wild bird from Colombia.


Asunto(s)
Enfermedades de las Aves , Sarcocystis , Sarcocistosis , Animales , Sarcocystis/genética , Sarcocystis/clasificación , Sarcocystis/aislamiento & purificación , Sarcocystis/ultraestructura , Sarcocistosis/veterinaria , Sarcocistosis/parasitología , Sarcocistosis/epidemiología , Colombia , Enfermedades de las Aves/parasitología , Filogenia , Microscopía Electrónica de Transmisión/veterinaria , ADN Protozoario/análisis , Falconiformes/parasitología
13.
Microbiol Resour Announc ; 13(7): e0015824, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38860813

RESUMEN

The whole genome sequence of a low pathogenicity avian influenza virus (H6N2) was sequenced from a Brazilian teal (Amazonetta brasiliensis) in Brazil, 2023. Phylogenetic analysis of the whole genome revealed a distinct genome pertaining to South American LPAIV from 2014 to 2016, indicating extensive circulation among South American wild birds.

14.
One Health ; 18: 100760, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38832079

RESUMEN

Wildlife disease surveillance, particularly for pathogens with zoonotic potential such as Highly Pathogenic Avian Influenza Virus (HPAIV), is critical to facilitate situational awareness, inform risk, and guide communication and response efforts within a One Health framework. This study evaluates the intensity of avian influenza virus (AIV) surveillance in Ontario's wild bird population following the 2021 H5N1 incursion into Canada. Analyzing 2562 samples collected between November 1, 2021, and October 31, 2022, in Ontario, Canada, we identify spatial variations in surveillance intensity relative to human population density, poultry facility density, and wild mallard abundance. Using the spatial scan statistic, we pinpoint areas where public engagement, collaborations with Indigenous and non-Indigenous hunter/harvesters, and working with poultry producers, could augment Ontario's AIV wild bird surveillance program. Enhanced surveillance at these human-domestic animal-wildlife interfaces is a crucial element of a One Health approach to AIV surveillance. Ongoing assessment of our wild bird surveillance programs is essential for strategic planning and will allow us to refine approaches and generate results that continue to support the program's overarching objective of safeguarding the health of people, animals, and ecosystems.

15.
Animals (Basel) ; 14(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38929405

RESUMEN

Avian metapneumovirus (aMPV) has been identified as an important cause of respiratory and reproductive disease, leading to significant productive losses worldwide. Different subtypes have been found to circulate in different regions, with aMPV-A and B posing a significant burden especially in the Old World, and aMPV-C in North America, albeit with limited exceptions of marginal economic relevance. Recently, both aMPV-A and aMPV-B have been reported in the U.S.; however, the route of introduction has not been investigated. In the present study, the potential importation pathways have been studied through phylogenetic and phylodynamic analyses based on a broad collection of partial attachment (G) protein sequences collected worldwide. aMPV-B circulating in the U.S. seems the descendant of Eastern Asian strains, which, in turn, are related to European ones. A likely introduction pathway mediated by wild bird migration through the Beringian crucible, where the East Asian and Pacific American flight paths intersect, appears likely and was previously reported for avian influenza. aMPV-A, on the other hand, showed a Mexican origin, involving strains related to Asian ones. Given the low likelihood of trade or illegal importation, the role of wild birds appears probable also in this case, since the region is covered by different flight paths directed in a North-South direction through America. Since the information on the role of wild birds in aMPV epidemiology is still scarce and scattered, considering the significant practical implications for the poultry industry demonstrated by recent U.S. outbreaks, further surveys on wild birds are encouraged.

16.
Hum Vaccin Immunother ; 20(1): 2347019, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38807261

RESUMEN

Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.


Asunto(s)
Aves , Vacunas contra la Influenza , Gripe Aviar , Gripe Humana , Pandemias , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Humanos , Gripe Humana/prevención & control , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/epidemiología , Pandemias/prevención & control , Desarrollo de Vacunas , Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Vacunación , Preparación para una Pandemia
18.
Animals (Basel) ; 14(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731377

RESUMEN

Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.

19.
Vet Sci ; 11(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38787182

RESUMEN

The increasing urbanization of ecosystems has had a significant impact on wildlife over the last few years. Species that find an unlimited supply of food and shelter in urban areas have thrived under human presence. Wild birds have been identified as amplifying hosts and reservoirs of Campylobacter worldwide, but the information about its transmission and epidemiology is still limited. This study assessed the prevalence of Campylobacter in 137 urban birds admitted at a wildlife rescue center, with 18.8% of individuals showing positive. C. jejuni was the most frequent species (82.6%), followed by C. coli and C. lari (4.3% each). The order Passeriformes (33.3%) showed significant higher presence of Campylobacter when compared to orders Columbiformes (0%) and Ciconiiformes (17.6%), as well as in samples collected during the summer season (31.9%), from omnivorous species (36.8%) and young individuals (26.8%). Globally, Campylobacter displayed a remarkable resistance to ciprofloxacin (70.6%), tetracycline (64.7%), and nalidixic acid (52.9%). In contrast, resistance to streptomycin was low (5.8%), and all the isolates showed susceptibility to erythromycin and gentamycin. The results underline the importance of urban birds as reservoirs of thermophilic antimicrobial-resistant Campylobacter and contribute to enhancing the knowledge of its distribution in urban and peri-urban ecosystems.

20.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695722

RESUMEN

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Filogenia , Islandia/epidemiología , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Genotipo , Animales Salvajes/virología , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Genoma Viral , Aves/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA