Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Front Chem ; 12: 1373535, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100918

RESUMEN

Characterization of botanical extracts by mass spectrometry-based metabolomics analysis helps in determining the phytochemical composition that underlies their bioactivity and potential health benefits, while also supporting reproducibility of effects in clinical trials. The quantification of seven withanolides in Withania somnifera using three mass-spectrometry methods was evaluated using Deming regression. Two high-resolution time-of-flight mass spectrometry methods were used, one operating in data-dependent acquisition mode and the other in parallel-reaction-monitoring mode with an inclusion list. The two high-resolution time-of-flight mass spectrometry methods were compared to a multiple-reaction-monitoring method. We evaluated in-source fragmentation of steroidal glycosides and optimized the methods accordingly. A novel software approach to integrating parallel-reaction-monitoring data acquired with an inclusion list was developed. Combining and comparing quantitative results allowed for quantitative specificity, good precision, and adjustment of instrument source conditions for optimal quantification by multiple-reaction-monitoring mass spectrometry, an analytical method that is widely accessible in analytical and phytochemical laboratories.

2.
Curr Issues Mol Biol ; 46(7): 7668-7685, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39057095

RESUMEN

The aim of this review is to provide experimental evidence for the programmed-death activity of Ashwagandha (Withania somnifera) in the anti-cancer therapy of breast cancer. The literature search was conducted using online electronic databases (Google Scholar, PubMed, Scopus). Collection schedule data for the review article covered the years 2004-2024. Ashwagandha active substances, especially Withaferin A (WA), are the most promising anti-cancer compounds. WS exerts its effect on breast cancer cells by inducing programmed cell death, especially apoptosis, at the molecular level. Ashwagandha has been found to possess a potential for treating breast cancer, especially estrogen receptor/progesterone receptor (ER/PR)-positive and triple-negative breast cancer.

3.
Nutrients ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064738

RESUMEN

Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.


Asunto(s)
Tejido Adiposo , Andrographis , Antioxidantes , Músculo Esquelético , Extractos Vegetales , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Andrographis/química , Masculino , Adulto , Femenino , Antiinflamatorios/farmacología , Inflamación/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Adulto Joven , Suplementos Dietéticos
4.
Curr Opin Plant Biol ; 81: 102576, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38878523

RESUMEN

Ashwagandha (Withania somnifera L. Dunal) is a versatile medicinal plant of Solanaceae family, renowned for its potent therapeutic properties, due to which it is extensively used in Indian traditional systems of medicine such as Ayurveda. The medicinal properties are attributed to specialized metabolites known as withanolides, which are chemically triterpenoid steroidal lactones. Despite their significance, the biosynthetic pathway of withanolides remains poorly understood. It is hypothesized that withanolides are synthesized through the universal sterol pathway, wherein sterol precursors undergo various biochemical modifications such as hydroxylation, oxidation, cyclization, and glycosylation, yielding a diverse array of downstream withanolides and withanosides. Consequently, comprehending the biosynthetic pathway of withanolides is crucial to facilitate advancements in withanolides productivity through metabolic engineering or synthetic biology approaches. This article aims to provide an update on the efforts made toward understanding withanolides formation and regulation and highlights gaps and approaches to elucidate the withanolides biosynthesis in W. somnifera.

5.
Food Nutr Res ; 682024.
Artículo en Inglés | MEDLINE | ID: mdl-38863743

RESUMEN

Background: The use of botanical medicine has been demonstrated as a potential strategy to manage or treat a variety of health issues. Terminalia chebula (Retz) fruit and Withania somnifera (L.) Dunal roots are important medicinal herbs described in Ayurveda and traditional therapy for diverse health benefits. Objective: This pilot study aimed to evaluate the immune function-enhancing potential of a unique blend of T. chebula fruit and W. somnifera root extracts, LN20189, in healthy men and women. Methods: Forty healthy volunteers (age: 35-60 years) were randomized into two groups receiving either LN20189 (500 mg per day) or a matched placebo over 28 consecutive days. The total T-cell population was the primary efficacy measure in this study. The secondary efficacy measures included counts of CD4, CD8, natural killer (NK) cells, serum levels of interleukin-2 (IL-2), interferon-gamma (IFN-γ), total immunoglobulin-G (IgG), and Immune Function Questionnaire (IFQ) scores. Safety parameter assessments were also conducted. Results: Post-trial, in LN20189-supplemented subjects, T cells, CD4, NK cells count, and the CD4:CD8 ratio were increased by 9.32, 10.10, 19.91, and 17.43%, respectively, as compared to baseline. LN20189 supplementation increased serum IFN-γ and IgG levels by 14.57 and 27.09% from baseline and by 13.98 and 21.99%, compared to placebo, respectively. Also, the IFQ scores in the LN20189 group were 84.68% (vs. baseline) and 69.44% (vs. placebo) lower at the end of the trial. LN20189 improved the study volunteers' cellular and humoral immune functions. Conclusion: In summary, LN20189 supplementation was found tolerable and improved the key cellular and humoral factors of the immune system and helped improve immune function of the trial volunteers.

6.
World J Microbiol Biotechnol ; 40(7): 215, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802663

RESUMEN

Withanolides are steroidal lactones with diverse bioactive potential and their production from plant sources varies with genotype, age, culture conditions, and geographical region. Endophytic fungi serve as an alternative source to produce withanolides, like their host plant, Withania somnifera (L.) Dunal. The present study aimed to isolate endophytic fungi capable of producing withanolides, characterization and investigation of biological activities of these molecules. The methanolic fungal crude extract of one of the fungal isolates WSE16 showed maximum withanolide production (219 mg/L). The fungal isolate WSE16 was identified as Penicillium oxalicum based on its morphological and internal transcribed spacer (ITS) sequence analysis and submitted in NCBI (accession number OR888725). The methanolic crude extract of P. oxalicum was further purified by column chromatography, and collected fractions were assessed for the presence of withanolides. Fractions F3 and F4 showed a higher content of withanolides (51.8 and 59.1 mg/L, respectively) than other fractions. Fractions F3 and F4 exhibited antibacterial activity against Staphylococcus aureus with an IC50 of 23.52 and 17.39 µg/ml, respectively. These fractions also showed antioxidant activity (DPPH assay with IC50 of 39.42 and 38.71 µg/ml, superoxide anion scavenging assay with IC50 of 41.10 and 38.84 µg/ml, and reducing power assay with IC50 of 42.61 and 41.40 µg/ml, respectively) and acetylcholinesterase inhibitory activity (IC50 of 30.34 and 22.05 µg/ml, respectively). The withanolides present in fraction 3 and fraction 4 were identified as (20S, 22R)-1a-Acetoxy-27-hydroxywitha-5, 24-dienolide-3b-(O-b-D-glucopyranoside) and withanamide A, respectively, using UV, FTIR, HRMS, and NMR analysis. These results suggest that P. oxalicum, an endophytic fungus isolated from W. somnifera, is a potential source for producing bioactive withanolides.


Asunto(s)
Endófitos , Penicillium , Withania , Witanólidos , Withania/microbiología , Withania/química , Witanólidos/metabolismo , Witanólidos/aislamiento & purificación , Witanólidos/farmacología , Penicillium/metabolismo , Penicillium/genética , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/genética , Endófitos/clasificación , Antioxidantes/farmacología , Antioxidantes/metabolismo , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Antibacterianos/aislamiento & purificación , Filogenia , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/aislamiento & purificación , Pruebas de Sensibilidad Microbiana
7.
Int Immunopharmacol ; 136: 112232, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815352

RESUMEN

Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.


Asunto(s)
Neoplasias de la Mama , Extractos Vegetales , Withania , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Withania/química , Femenino , Animales , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Fitoterapia
8.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732539

RESUMEN

BACKGROUND: Stress is a known causative factor in modulating cognitive health, which overall well-being and quality of life are dependent on. Long-term stress has been shown to disrupt the balance of the hypothalamic-pituitary-adrenal (HPA) axis. Adaptogens, such as Withania somnifera (ashwagandha), are commonly used in Ayurvedic medicine for stress relief and ameliorating HPA-axis dysfunction. The aim of this study was to support the role of a root and leaf water-extracted ashwagandha extract (WS) in stress reduction by confirming the lowest clinically validated dose for stress management (125 mg/day) in a dose-dependent clinical study in adults with self-reported high stress. METHODS: An 8-week, randomized, double-blinded, placebo-controlled study to compare the effects of three different WS extract doses (125, 250 and 500 mg) was performed. A total of 131 adults were enrolled, and 98 were included in the final analysis. Attenuation of chronic stress was measured using the 14-item Perceived Stress Scale (PSS) and biochemical-related stress parameters. RESULTS: We have shown that aqueous WS extract (roots and leaves) safely reduces mild to moderate chronic stress at doses of 125 mg, 250 mg, and 500 mg/day for 8 weeks. CONCLUSIONS: Our findings demonstrate the stress-reduction capabilities of this well-characterized aqueous extract of WS (root and leaf) at the low dose of 125 mg/day, in a dose-dependent manner, via the modulation of the HPA axis. TRIAL REGISTRATION: This study was registered with the Clinical Trials Registry-India (CTRI) with the registration number: CTRI/2019/11/022100.


Asunto(s)
Extractos Vegetales , Hojas de la Planta , Raíces de Plantas , Estrés Psicológico , Withania , Humanos , Withania/química , Extractos Vegetales/farmacología , Masculino , Femenino , Adulto , Método Doble Ciego , Estrés Psicológico/tratamiento farmacológico , Hojas de la Planta/química , Persona de Mediana Edad , Raíces de Plantas/química , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Enfermedad Crónica , Medicina Ayurvédica , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Adulto Joven , Fitoterapia
9.
Steroids ; 207: 109439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740121

RESUMEN

The bushy plant Withania frutescens (L.) Pauquy is well distributed in the West-Mediterranean area, notably in the south of Spain, Algeria and Morocco where is it is used traditionally for the treatment of various human diseases, including diabetes. Unlike the two major species W. somnifera and W. coagulans extensively studied, the genomically close species W. frutescens has been much less investigated. Nevertheless, this shrub species displays a comparable phytochemical profile and marked antioxidant and anti-inflammatory properties, at the origin of reported pharmacological effects and its traditional uses. Here we have analyzed the diversity of biological effects reported with leaves and root extracts of W. frutescens. Hydroalcoholic extracts prepared from the aerial parts of the plant have revealed antihyperglycemic and cell-protective activities along with antimicrobial and anticorrosive effects. The extracts contained diverse polyphenolic compounds and a few alkaloids (calystegines) but most of the observed effects have been attributed to the presence of withanolides which are modified C28 ergostane-type steroids. Our analysis focused in part on specific withanolides found in W. frutescens, in particular an unusual 3-O-sulfated withanolide considered as a potential pro-drug of the major active compound withaferin A (WA) and a lead compound for the development of a potential drug candidate. The mechanism of action of this sulfated WA analogue is discussed. Altogether, our unprecedented extensive analysis of W. frutescens highlighted the pharmacological potential of this atypical medicinal plant. By analogy with the major cultivated Withania species, the market potential of little-known plant is underlined.


Asunto(s)
Extractos Vegetales , Withania , Witanólidos , Withania/química , Witanólidos/farmacología , Witanólidos/química , Witanólidos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Animales , Hojas de la Planta/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Raíces de Plantas/química
10.
Front Nutr ; 11: 1370951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765810

RESUMEN

The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.

11.
Pharmaceuticals (Basel) ; 17(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794167

RESUMEN

Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.

12.
Plants (Basel) ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38592845

RESUMEN

Withania somnifera (L.) Dunal is a medicinal plant belonging to the traditional Indian medical system, showing various therapeutic effects such as anti-cancer, anti-inflammatory, anti-microbial, anti-diabetic, and hepatoprotective activity. Of great interest is W. somnifera's potential beneficial effect against neurodegenerative diseases, since the authorized medicinal treatments can only delay disease progression and provide symptomatic relief and are not without side effects. A systematic search of PubMed and Scopus databases was performed to identify preclinical and clinical studies focusing on the applications of W. somnifera in preventing neurodegenerative diseases. Only English articles and those containing the keywords (Withania somnifera AND "neurodegenerative diseases", "neuroprotective effects", "Huntington", "Parkinson", "Alzheimer", "Amyotrophic Lateral Sclerosis", "neurological disorders") in the title or abstract were considered. Reviews, editorials, letters, meta-analyses, conference papers, short surveys, and book chapters were not considered. Selected articles were grouped by pathologies and summarized, considering the mechanism of action. The quality assessment and the risk of bias were performed using the Cochrane Handbook for Systematic Reviews of Interventions checklist. This review uses a systematic approach to summarize the results from 60 investigations to highlight the potential role of W. somnifera and its specialized metabolites in treating or preventing neurodegenerative diseases.

13.
Inflammopharmacology ; 32(3): 1903-1928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630361

RESUMEN

Penconazole (PEN) is a systemic triazole fungicide used to control various fungal diseases on grapes, stone fruits, cucurbits, and strawberries. Still, it leaves residues on treated crops after collection with many hazardous effects on population including neurotoxicity. Withania somnifera leaves extract (WSLE) is known for its memory and brain function enhancing ability. To evoke such action efficiently, WSLE bioactive metabolites are needed to cross the blood-brain barrier, that could limit the availability of such compounds to be localized within the brain. Therefore, in the present study, the association between PEN exposure and neurotoxicity was evaluated, and formulated WSLE nanoemulsion was investigated for improving the permeability of the plant extract across the blood-brain barrier. The rats were divided into five groups (n = 6). The control group was administered distilled water, group II was treated with W. somnifera leaves extract nanoemulsion (WSLE NE), group III received PEN, group IV received PEN and WSLE, and group V received PEN and WSLE NE. All rats were gavaged daily for 6 weeks. Characterization of compounds in WSLE using LC-MS/MS analysis was estimated. Neurobehavioral disorders were evaluated in all groups. Oxidative stress biomarkers, antioxidant enzyme activities, and inflammatory cytokines were measured in brain tissue. Furthermore, the gene expression patterns of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax were measured. Histopathological changes and immunohistochemical expression in the peripheral sciatic nerve and cerebral cortex were evaluated. A total of 91 compounds of different chemo-types were detected and identified in WSLE in both ionization modes. Our data showed behavioral impairment in the PEN-treated group, with significant elevation of oxidative stress biomarkers, proinflammatory cytokines, neuronal damage, and apoptosis. In contrast, the PEN-treated group with WSLE NE showed marked improvement in behavioral performance and histopathological alteration with a significant increase in antioxidant enzyme activity and anti-inflammatory cytokines compared to the group administered WSLE alone. The PEN-treated group with WSLE NE in turn significantly downregulated the expression levels of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax in brain tissue. In conclusion, WSLE NE markedly enhanced the permeability of plant extract constituents through the blood brain barrier to boost its neuroprotective effect against PEN-induced neurotoxicity.


Asunto(s)
Fármacos Neuroprotectores , Estrés Oxidativo , Extractos Vegetales , Hojas de la Planta , Transducción de Señal , Proteína Smad2 , Factor de Crecimiento Transformador beta1 , Withania , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Withania/química , Ratas , Hojas de la Planta/química , Fármacos Neuroprotectores/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína Smad2/metabolismo , Emulsiones , Síndromes de Neurotoxicidad/tratamiento farmacológico , Ratas Wistar , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Antioxidantes/farmacología
14.
Nutrients ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674831

RESUMEN

An approach that shows promise for quickening the evolution of innovative anticancer drugs is the assessment of natural biomass sources. Our study sought to assess the effect of W. somnifera L. (WS) methanolic root and stem extracts on the expression of five targeted genes (cyclooxygenase-2, caspase-9, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2) in colon cancer cell lines (Caco-2 cell lines). Plant extracts were prepared for bioassay by dissolving them in dimethyl sulfoxide. Caco-2 cell lines were exposed to various concentrations of plant extracts, followed by RNA extraction for analysis. By explicitly relating phytoconstituents of WS to the dose-dependent overexpression of caspase-9 genes and the inhibition of cyclooxygenase-2, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2 genes, our novel findings characterize WS as a promising natural inhibitor of colorectal cancer (CRC) growth. Nonetheless, we recommend additional in vitro research to verify the current findings. With significant clinical benefits hypothesized, we offer WS methanolic root and stem extracts as potential organic antagonists for colorectal carcinogenesis and suggest further in vivo and clinical investigations, following successful in vitro trials. We recommend more investigation into the specific phytoconstituents in WS that contribute to the regulatory mechanisms that inhibit the growth of colon cancer cells.


Asunto(s)
Neoplasias Colorrectales , Extractos Vegetales , Withania , Humanos , Extractos Vegetales/farmacología , Células CACO-2 , Withania/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Metanol/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Caspasa 9/metabolismo , Caspasa 9/genética , Antineoplásicos Fitogénicos/farmacología , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Raíces de Plantas/química , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Tallos de la Planta/química
15.
J Ethnopharmacol ; 331: 118261, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685363

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Despite various treatment modalities, the progression and metastasis of breast cancer (BC) are grave concerns due to the alarming disease-free survival rate (DFS) and overall survival rate (OS) of affected patients. Over the years, many antibiotics, synthetic compounds, medicinal plant isolates and polyherbal combinations have been used as adjuvants in therapy for the management of primary and secondary tumors. Paclitaxel (PTX)-based chemotherapy for breast cancer causes multiple adverse side effects in patients. Withania somnifera (L.) Dunal (WS) and Asparagus racemosus Willd. (AR) as Ayurveda-inspired plant-based adjuvants were investigated for their anticancer effects on MDA-MB-231 and 4T1 cells in mouse model systems. AIM OF THE STUDY: This study focused on evaluating the adjuvant properties of WS and AR plant extracts with PTX and their effectiveness over PTX alone in terms of tumor inhibition. MATERIALS AND METHODS: The effects of WS and AR on DNA double-strand breaks (DSBs), senescence induction and mitochondrial functions were evaluated in BC cells in vitro. The potential for cancer stem cell (CSC) inhibition was evaluated via mammosphere formation assays and CD44/CD24 immunostaining. In vivo tumor growth studies were conducted in athymic BALB/c mice for MDA-MB-231 cells and in BALB/c mice for 4T1 cells. RESULTS: Induction of senescence was evident due to DSBs induced by the WS and AR extracts. Mammosphere formation and CD44/CD24 CSC markers were reduced after treatment with WS, AR or the combination of both in MCF-7 cells. WS or AR inhibited epithelial-to-mesenchymal transition (EMT). In vivo studies demonstrated that tumor growth inhibition was more pronounced in the treated group than in the PTX alone group and the untreated control group. CONCLUSION: Our study showed that the use of WS or AR plant hydroalcoholic extracts in combination with paclitaxel (PTX) has better effects on sensitivity and efficacy than PTX alone, as demonstrated in in vitro BC cells and mouse models with BC cell grafts. Hence, scheduling adjuvant therapy with WS or AR alone or combined with PTX can be advantageous for the management of triple-negative BC (TNBC). Further studies are warranted in human clinical conditions to ascertain the efficacy of these treatments.


Asunto(s)
Asparagus , Neoplasias de la Mama , Ratones Endogámicos BALB C , Paclitaxel , Extractos Vegetales , Withania , Animales , Asparagus/química , Humanos , Withania/química , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ratones , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/aislamiento & purificación , Antígeno CD24/metabolismo , Receptores de Hialuranos/metabolismo , Adyuvantes Farmacéuticos/farmacología , Senescencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos
16.
J Biotechnol ; 388: 59-71, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636845

RESUMEN

Withania somnifera (L.) Dunal is an important indigenous medicinal plant with extensive pharmaceutical potential. The root is the main source of major bioactive compounds of this plant species including withanolides, withanine, phenolic acids, etc. Hairy root culture (HRC) is a crucial method for low-cost production of active compounds on a large scale. Four different Agrobacterium rhizogenes strains have been used for the hairy root induction. Maximum transformation efficiency (87.34 ± 2.13%) was achieved with A4 bacterial strain-mediated transformed culture. The genetic transformation was confirmed by using specific primers of seven different genes. Seven HR (Hairy root) lines were selected after screening 29 HR lines based on their fast growth rate and high accumulation of withanolides and phenolic acids content. Two biotic and three abiotic elicitors were applied to the elite root line to trigger more accumulation of withanolides and phenolic acids. While all the elicitors effectively increased withanolides and phenolic acids production, among the five different elicitors, salicylic acid (4.14 mg l-1) induced 11.49 -fold increase in withanolides (89.07 ± 2.75 mg g-1 DW) and 5.34- fold increase in phenolic acids (83.69 ± 3.11 mg g- 1 DW) after 5 days of elicitation compared to the non-elicited culture (7.75 ± 0.63 mg g-1 DW of withanolides and 15.66 ± 0.92 mg g-1 DW of phenolic acids). These results suggest that elicitors can tremendously increase the biosynthesis of active compounds in this system; thus, the HRC of W. somnifera is cost-effective and can be efficiently used for the industrial production of withanolides and phenolic acids.


Asunto(s)
Agrobacterium , Hidroxibenzoatos , Raíces de Plantas , Withania , Witanólidos , Withania/metabolismo , Withania/genética , Withania/crecimiento & desarrollo , Hidroxibenzoatos/metabolismo , Witanólidos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Transformación Genética
17.
Cureus ; 16(3): e55352, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38559552

RESUMEN

The Withania somnifera, also called Ashwagandha, is available everywhere in the world. We present a rare case of thyrotoxicosis following Ashwagandha administration, specifically painless thyroiditis (PT) in this report. The patient was a 47-year-old previously healthy Japanese man, who started taking Ashwagandha two months before his first visit to our hospital. He visited our hospital for typical thyrotoxicosis symptoms like a sense of fatigue, fever at night, and weight loss followed by diarrhea and headache. Blood tests disclosed thyrotoxicosis. Thyroid ultrasonography showed internal echo heterogeneity and no increase in blood flow. Thyroid scintigraphy revealed a deficiency in thyroid uptake. Based on these findings, he was diagnosed as PT. After stopping the administration of Ashwagandha, both his symptoms and serum thyroid markers were improved. This report may spark important debate about whether ashwagandha is safe among healthy people, especially in thyroid toxicity.

18.
Adv Clin Exp Med ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38628109

RESUMEN

This narrative review provides an overview of scientific studies on dietary supplements that may affect circulating testosterone (T) levels to explore which substances are scientifically proven to increase T concentration. We also review the scientific literature for their potential mechanisms and laboratory test changes triggered by their use. Based on the analysis of existing data on substances used to increase endogenous T levels, especially double-blind placebo-controlled randomized clinical trials, we selected 2 herbal extracts with the best documented positive effects on T levels, Withania somnifera root and root extracts/leaves and seed extracts of Trigonella foenum-graecum. Although these substances have different postulated mechanisms of action, both significantly increase T levels in men. Withania somnifera may inhibit the effects of cortisol and prolactin on the hypothalamic-pituitary-gonadal axis and directly affect the hypothalamus. Trigonella foenum-graecum seeds contain the active substance diosgenin, which is a precursor for sex hormone synthesis in gonads.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38494932

RESUMEN

Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb Withania somnifera, has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these in silico and in vitro studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving in vivo experiments and toxicity evaluation of withanone.

20.
J Asian Nat Prod Res ; 26(9): 1009-1023, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38311941

RESUMEN

Based on the major components in the leaves, the ashwagandha has been found to exist in several chemotypic forms in India. From the leaves of various accessions of Withania somnifera, which were maintained in our institute, three new steroids namely, 4-acetoxy-20ß-hydroxy-1-oxo-witha-2,5,24-trienolide (7), 24,25-dihydro-14α-hydroxy withanolide D (9), 5α,6ß,17α,27-tetrahydroxy-1-oxo-witha-2,24-dienolide (12) together with thirteen known withanolides were identified by spectroscopic methods. From the roots and stem of one accession and leaves of another, a new alkyl ester glucoside (4) has also been isolated. The new withanolides 7, 9 and 12 have been tentatively named as withanolide 135 A, withanolide 135B and withanolide 108, respectively.


Asunto(s)
Glucósidos , Hojas de la Planta , Raíces de Plantas , Tallos de la Planta , Withania , Witanólidos , Witanólidos/química , Withania/química , Hojas de la Planta/química , Estructura Molecular , Raíces de Plantas/química , Tallos de la Planta/química , Glucósidos/química , India , Panax/química , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA