Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 121(2): 275-290, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167837

RESUMEN

Candida albicans, an opportunistic fungal pathogen, is able to switch between two distinct cell types: white and opaque. While white-to-opaque switching is typically repressed by the a1/α2 heterodimer in MTLa/α cells, it was recently reported that switching can also occur in some natural MTLa/α strains under certain environmental conditions. However, the regulatory program governing white-opaque switching in MTLa/α cells is not fully understood. Here, we collected 90 clinical isolates of C. albicans, 16 of which possess the ability to form opaque colonies. Among the known regulators implicated in white-opaque switching, only OFI1 exhibited significantly higher expression in these 16 strains compared to the reference strain SC5314. Importantly, ectopic expression of OFI1 in both clinical isolates and laboratory strains promoted switching frequency even in the absence of N-acetylglucosamine and high CO2 , the optimal condition for white-to-opaque switching in MTLa/α strains. Deleting OFI1 resulted in a reduction in opaque-formation frequency and the stability of the opaque cell in MTLa/α cells. Ofi1 binds to the promoters of WOR1 and WOR3 to induce their expression, which facilitates white-to-opaque switching. Ofi1 is conserved across the CTG species. Altogether, our study reported the identification of a transcription factor Ofi1 as the critical regulator that promotes white-to-opaque switching in natural MTLa/α isolates of C. albicans.


Asunto(s)
Candida albicans , Factores de Transcripción , Candida albicans/genética , Candida albicans/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas/genética , Fenotipo
2.
Microb Pathog ; 181: 106186, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269878

RESUMEN

BACKGROUND AND OBJECTIVE: Candida tropicalis is among the most prevalent human pathogenic yeast species. Switch states of C. tropicalis differ in virulence traits. Here, we evaluate the effect of phenotypic switching on phagocytosis and yeast-hyphae transition in C. tropicalis. METHODS: C. tropicalis morphotypes included a clinical strain and two switch strains (rough variant and rough revertant). In vitro, phagocytosis assay was performed using peritoneal macrophages and hemocytes. The proportion of hyphal cells was ascertained by scoring morphology using optical microscopy. Expression of the WOR1 (White-opaque regulator 1) and EFG1 (Enhanced filamentous growth protein 1) was determined by quantitative PCR. RESULTS: The rough variant was more resistant to in vitro phagocytosis by peritoneal macrophages than that observed for the clinical strain, while hemocytes phagocytosed clinical and rough variant to the same extent. The rough revertant was more phagocytosed than the clinical strain by both phagocytes. During co-incubation with phagocytic cells, the clinical strain of C. tropicalis exists mainly as blastoconidia. The co-culture of the rough variant with macrophages resulted in a higher percentage of hyphae than blastoconidia cells, while in co-culture with hemocytes, no differences were observed between the percentage of hyphae and blastoconidia. The expression levels of WOR1 in the rough variant co-cultured with phagocytes were significantly higher than they were in the clinical strain. CONCLUSIONS: Differences on phagocytosis and hyphal growth between switch states cells of C. tropicalis co-cultured with phagocytic cells were observed. The pronounced hyphal growth may affect the complex host-pathogen relationship and favor the pathogen to escape phagocytosis. The pleiotropic effects of phenotypic switching suggest that this event may contribute to the success of infection associated with C. tropicalis.


Asunto(s)
Candida tropicalis , Fagocitosis , Humanos , Técnicas de Cocultivo , Macrófagos Peritoneales , Morfogénesis , Candida albicans
3.
Front Microbiol ; 14: 1148771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138602

RESUMEN

Among the genes involved in the biosynthesis of trichothecene (Tri genes), Tri6 and Tri10 encode a transcription factor with unique Cys2His2 zinc finger domains and a regulatory protein with no consensus DNA-binding sequences, respectively. Although various chemical factors, such as nitrogen nutrients, medium pH, and certain oligosaccharides, are known to influence trichothecene biosynthesis in Fusarium graminearum, the transcriptional regulatory mechanism of Tri6 and Tri10 genes is poorly understood. Particularly, culture medium pH is a major regulator in trichothecene biosynthesis in F. graminearum, but it is susceptible to metabolic changes posed by nutritional and genetic factors. Hence, appropriate precautions should be considered to minimize the indirect influence of pH on the secondary metabolism while studying the roles of nutritional and genetic factors on trichothecene biosynthesis regulation. Additionally, it is noteworthy that the structural changes of the trichothecene gene cluster core region exert considerable influence over the normal regulation of Tri gene expression. In this perspective paper, we consider a revision of our current understanding of the regulatory mechanism of trichothecene biosynthesis in F. graminearum and share our idea toward establishing a regulatory model of Tri6 and Tri10 transcription.

4.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 508-517, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36896644

RESUMEN

Candida albicans ( C. albicans) is an opportunistic pathogen in humans and possesses a white-opaque heritable switching system. Wor1 is a master regulator of white-opaque switching and is essential for opaque cell formation in C. albicans. However, the regulatory network of Wor1 in white-opaque switching is still vague. In this study, we obtain a series of Wor1-interacting proteins using LexA-Wor1 as bait. Among these proteins, function unknown now 30 (Fun30) interacts with Wor1 in vitro and in vivo. Fun30 expression is upregulated in opaque cells at the transcriptional and protein levels. Loss of FUN30 attenuates white-to-opaque switching, while ectopic expression of FUN30 significantly increases white-to-opaque switching in an ATPase activity-dependent manner. Furthermore, FUN30 upregulation is dependent on CO 2; loss of FLO8, a key CO 2-sensing transcriptional regulator, abolishes FUN30 upregulation. Interestingly, deletion of FUN30 affects the WOR1 expression regulation feedback loop. Thus, our results indicate that the chromatin remodeller Fun30 interacts with Wor1 and is required for WOR1 expression and opaque cell formation.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nucleosomas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fenotipo
5.
Virulence ; 14(1): 2174294, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36760104

RESUMEN

The transcriptional master regulator of the white opaque transition of Candida albicans WOR1 is important for the adaptation to the commensal lifestyle in the mammalian gut, a major source of invasive candidiasis. We have generated cells that overproduce Wor1 in mutants defective in the Hog1 MAP kinase, defective in several stress responses and unable to colonize the mice gut. WOR1 overexpression allows hog1 to be established as a commensal in the murine gut in a commensalism model and even compete with wild-type C. albicans cells for establishment. This increased fitness correlates with an enhanced ability to adhere to biotic surfaces as well as increased proteinase and phospholipase production and a decrease in filamentation in vitro. We also show that hog1 WOR1OE are avirulent in a systemic candidiasis model in mice.


Asunto(s)
Candida albicans , Candidiasis Invasiva , Animales , Ratones , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Adaptación Fisiológica , Regulación Fúngica de la Expresión Génica , Mamíferos
6.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36294593

RESUMEN

Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans; increased colonization of this yeast in this niche has implicated the master regulator of the white-opaque transition, Wor1, by mechanisms not completely understood. We have addressed the role that this transcription factor has on commensalism by the characterization of strains overexpressing this gene. We show that WOR1 overexpression causes an alteration of the total lipid content of the fungal cell and significantly alters the composition of structural and reserve molecular species lipids as determined by lipidomic analysis. These cells are hypersensitive to membrane-disturbing agents such as SDS, have increased tolerance to azoles, an augmented number of peroxisomes, and increased phospholipase activity. WOR1 overexpression also decreases mitochondrial activity and results in altered susceptibility to certain oxidants. All together, these changes reflect drastic alterations in the cellular physiology that facilitate adaptation to the gastrointestinal tract environment.

7.
mBio ; 12(5): e0232021, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34488444

RESUMEN

During induced differentiation, the process often involves a commitment event, after which induced cells, when returned to noninducing conditions, continue to differentiate. The commitment event is rarely identified. Candida albicans differentiates from the white to opaque phenotype, a prerequisite for mating and a process accompanying colonization of the lower gastrointestinal tract and skin. In analyses of white cell populations induced to synchronously differentiate from the white to opaque phenotype, opaque commitment occurs at approximately the same time as evagination and chitin ring formation in the process of daughter cell formation, several hours after the master switch gene WOR1 is upregulated. Mutational analyses of transcription factor binding regions P1, P2, P3, P4, and P6 of the WOR1 promoter reveal that individual deletion of any of the five transcription factor binding regions does not eliminate morphological differentiation to the opaque cell phenotype under opaque-inducing conditions, but individual deletion of P2, P3, or P4, blocks opaque commitment and maintenance of the opaque phenotype after transition to noninducing conditions. These results suggest that commitment occurs at the level of the WOR1 promoter and that morphological differentiation can be dissociated from phenotypic commitment. IMPORTANCE Candida albicans, the most pervasive fungal pathogen colonizing humans, undergoes a phenotypic transition between a white and opaque phenotype. The unique opaque phenotype is necessary for mating and colonization of the lower gastrointestinal tract. Wor1, a transcription factor (TF), plays a central role in activating this transition. Under physiological conditions that induce mass conversion from white to opaque in vitro, cells commit to the opaque phenotype at the time of evagination to form a daughter cell, but several hours after upregulation of WOR1 expression. By analyzing deletion derivatives of the WOR1 promoter, we demonstrate that three of five regulatory regions of WOR1 that bind TFs involved with the regulation of the phenotypic switch are individually required for commitment to the opaque phenotype, but are not necessary for expressing the opaque phenotype. These results demonstrate that morphological differentiation can be dissociated from phenotypic commitment and that commitment occurs at the level of the WOR1 promoter.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Color , Proteínas Fúngicas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Fenotipo
8.
Microbiol Spectr ; 9(1): e0020321, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34319134

RESUMEN

Morphological transition is an important adaptive mechanism in the host invasion process. Wor1 is a conserved fungal regulatory protein that controls the phenotypic switching and pathogenicity of Candida albicans. By modulating growth conditions, we simulated three models of Beauveria bassiana morphological transitions, including CTH (conidia to hyphae), HTC (hyphae to conidia), and BTB (blastospore to blastospore). Disruption of BbWor1 (an ortholog of Wor1) resulted in a distinct reduction in the time required for conidial germination (CTH), a significant increase in hyphal growth, and a decrease in the yield of conidia (HTC), indicating that BbWor1 positively controls conidium production and negatively regulates hyphal growth in conidium-hypha switching. Moreover, ΔBbWor1 prominently decreased blastospore yield, shortened the G0/G1 phase, and prolonged the G2/M phase under the BTB model. Importantly, BbWor1 contributed to conidium-hypha switching and blastospore propagation via different genetic pathways, and yeast one-hybrid testing demonstrated the necessity of BbWor1 to control the transcription of an allergen-like protein gene (BBA_02580) and a conidial wall protein gene (BBA_09998). Moreover, the dramatically weakened virulence of ΔBbWor1 was examined by immersion and injection methods. Our findings indicate that BbWor1 is a vital participant in morphological transition and pathogenicity in entomopathogenic fungi. IMPORTANCE As a well-known entomopathogenic fungus, Beauveria bassiana has a complex life cycle and involves transformations among single-cell conidia, blastospores, and filamentous hyphae. This study provides new insight into the regulation of the fungal cell morphological transitions by simulating three models. Our research identified BbWor1 as a core transcription factor of morphological differentiation that positively regulates the production of conidia and blastospores but negatively regulates hyphal growth. More importantly, BbWor1 affects fungal pathogenicity and the global transcription profiles within three models of growth stage transformation. The present study lays a foundation for the exploration of the transition mechanism of entomopathogenic fungi and provides material for the morphological study of fungi.


Asunto(s)
Beauveria/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Esporas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Beauveria/genética , Beauveria/metabolismo , Beauveria/patogenicidad , Proteínas Fúngicas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hifa/genética , Hifa/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/genética , Virulencia
9.
FEBS Open Bio ; 11(3): 598-621, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33350590

RESUMEN

Candida albicans is a harmless commensal resident in the human gut and a prevalent opportunistic pathogen. A key part of its commensalism and pathogenesis is its ability to switch between different morphological forms, including white-to-opaque switching. The Wor1 protein was previously identified as a master regulator of white-to-opaque switching in mating type locus (MTL) homozygous cells. The mechanisms by which the dark color of the opaque colonies is controlled and the pimpled surface of opaque cells is formed remain unknown. Candida albicans produces melanin pigment in vitro and during infection. However, the molecular mechanism underlying the regulation of melanin production is unclear. In this study, we demonstrated that ferroxidases (Fets) function as pigment multicopper oxidases and regulate the production of dark-pigmented melanin in opaque cells. The FET genes presented distinct regulation patterns in response to different extracellular stimuli. In YPD (1% yeast extract, 2% peptone and 2% dextrose)-rich medium, four of the five FET genes were up-regulated by Wor1, especially at the human body temperature of 37 °C. In minimal medium with low ammonium concentrations, all five FET genes were up-regulated by Wor1. However, at high ammonium concentrations, some FET genes were down-regulated by Wor1. Wor1-up-regulated Fets contributed to dark pigment formation in opaque colonies, but not to the elongated shape of these opaque cells. Increased melanin externalization was associated with the pimpled surface of the opaque cells. Melanized C. albicans cells were more resistant to fungal clearance. Deletion of the five FET genes completely blocked melanin production in opaque cells and resulted in the generation of white elongated 'opaque' cells. In addition, the up-regulated Fets are important for defense against oxidant attacks. The functional diversity of Fets may reflect the multiple strategies of C. albicans to rapidly adapt to diverse host niches.


Asunto(s)
Candida albicans/fisiología , Proteínas Fúngicas/metabolismo , Melaninas/metabolismo , Animales , Candida albicans/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Ratones
10.
mSphere ; 5(5)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968010

RESUMEN

Candida albicans, a pervasive opportunistic pathogen, undergoes a unique phenotypic transition from a "white" phenotype to an "opaque" phenotype. The switch to opaque impacts gene expression, cell morphology, wall structure, metabolism, biofilm formation, mating, virulence, and colonization of the skin and gastrointestinal (GI) tract. Although the regulation of switching is complex, a paradigm has evolved from a number of studies, in which, in its simplest form, the transcription factors Efg1 and Wor1 play central roles. When EFG1 is upregulated under physiological conditions, it represses WOR1, an activator of white-to-opaque switching, and the cell expresses the white phenotype; when EFG1 is downregulated, WOR1 is derepressed and activates expression of the opaque phenotype. Deletion of either EFG1 or WOR1 supports this yin-yang model of regulation. Here, we demonstrate that this simple model is insufficient, since strains in which WOR1 and EFG1 are simultaneously deleted can still be induced to switch en masse from white to opaque. Opaque cells of double mutants (efg1-/- wor1-/- ) are enlarged and elongate, form an enlarged vacuole, upregulate mCherry under the control of an opaque-specific promoter, form opaque cell wall pimples, express the opaque phenotype in lower GI colonization, and, if MTL homozygous, form conjugation tubes in response to pheromone and mate. These results can be explained if the basic and simplified model is expanded to include a WOR1-independent alternative opaque pathway repressed by EFG1IMPORTANCE The switch from white to opaque in Candida albicans was discovered 33 years ago, but it is still unclear how it is regulated. A regulatory paradigm has emerged in which two transacting factors, Efg1 and Wor1, play central roles, Efg1 as a repressor of WOR1, which encodes an activator of the transition to the opaque phenotype. However, we show here that if both EFG1 and WOR1 are deleted simultaneously, bona fide opaque cells can still be induced en masse These results are not compatible with the simple paradigm, suggesting that an alternative opaque pathway (AOP) exists, which can activate expression of opaque and, like WOR1, is repressed by EFG1.


Asunto(s)
Candida albicans/genética , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Mutación , Factores de Transcripción/genética , Animales , Femenino , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Ratones Endogámicos C57BL , Fenotipo
11.
Artículo en Inglés | MEDLINE | ID: mdl-28955659

RESUMEN

The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Candida albicans/metabolismo , Adhesión Celular , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Factores de Transcripción/metabolismo , Animales , Antifúngicos/farmacología , Antimicina A/farmacología , Candida albicans/genética , Candidiasis/metabolismo , Modelos Animales de Enfermedad , Femenino , Aptitud Genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Respiración/efectos de los fármacos , Azida Sódica/farmacología , Factores de Transcripción/genética
12.
Fungal Genet Biol ; 93: 10-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246518

RESUMEN

Phenotypic plasticity, the ability to switch between different morphological types, plays critical roles in environmental adaptation, leading to infections, and allowing for sexual reproduction in pathogenic Candida species. Candida tropicalis, which is both an emerging human fungal pathogen and an environmental fungus, can switch between two heritable cell types termed white and opaque. In this study, we report the discovery of a novel phenotype in C. tropicalis, named the gray phenotype. Similar to Candida albicans and Candida dubliniensis, white, gray, and opaque cell types of C. tropicalis also form a tristable switching system, where gray cells are relatively small and elongated. In C. tropicalis, gray cells exhibit intermediate levels of mating competency and virulence in a mouse systemic infection model compared to the white and opaque cell types, express a set of cell type-enriched genes, and exhibit both common and species-specific biological features. The key regulators of white-opaque transitions, Wor1 and Efg1, are not required for the gray phenotype. A comparative study of the gray phenotypes in C. tropicalis, C. albicans, and C. dubliniensis provides clues to explain the virulence properties and niche preferences of C. tropicalis.


Asunto(s)
Candida tropicalis/genética , Candidiasis/genética , Genes del Tipo Sexual de los Hongos/genética , Candida tropicalis/patogenicidad , Candidiasis/microbiología , Regulación Fúngica de la Expresión Génica , Humanos , Fenotipo , Especificidad de la Especie , Factores de Transcripción/genética , Virulencia/genética
13.
Fungal Genet Biol ; 92: 26-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27153757

RESUMEN

The amino sugar N-acetylglucosamine (GlcNAc) is a host-related environmental cue and a potent inducer of morphological transitions in the human fungal pathogen Candida albicans. It has been well established that GlcNAc promotes white-to-opaque switching and yeast-to-hyphal growth transition primarily through the Ras-cAMP signaling pathway. As a commensal yeast of humans, C. albicans can efficiently use GlcNAc as the carbon source. In this study, we sought to investigate whether the catabolic pathway of GlcNAc is involved in the regulation of white-gray-opaque tristable transitions in C. albicans. Phenotypic switching assays demonstrated that deletion of the GlcNAc kinase gene, HXK1, induced the gray and opaque phenotypes in a SC5314 background strain, which is heterozygous at the mating type locus (a/α) and is unable to switch to the gray or opaque phenotype under standard culture conditions. Cell type-enriched genes were exclusively expressed in the white, gray, and opaque cells of the hxk1/hxk1 mutant. Mating assays demonstrated that, similar to the counterparts of BJ1097 (a natural white-gray-opaque switchable strain), opaque cells of the hxk1/hxk1 mutant (Δ/α) mated more efficiently than white and gray cells. The transcription factors, Wor1 and Efg1, are required for the development of the opaque and white cell types in the hxk1/hxk1 mutant, respectively. However, deletion of the GlcNAc-specific transporter gene (NGT1), GlcNAc-6-phosphate deacetylase gene (DAC1), and glucosamine-6-phosphate deaminase gene (NAG1) in the same background strain had no obvious effect on white-gray-opaque transitions. Our findings suggest that the GlcNAc kinase, Hxk1, may function as a morphological regulator independent on its catabolic role in C. albicans.


Asunto(s)
Candida albicans/genética , Genes del Tipo Sexual de los Hongos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Pigmentación/genética , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Humanos , Fenotipo , Mutación Puntual , Transducción de Señal
14.
Virulence ; 7(3): 230-42, 2016 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-26714067

RESUMEN

Candida dubliniensis is closely related to Candida albicans, a major causative agent of candidiasis, and is primarily associated with oral colonization and infection in human immunodeficiency virus (HIV)-positive patients. Despite the high similarity of genomic and phenotypic features between the 2 species, C. dubliniensis is much less virulent and less prevalent than C. albicans. The ability to change morphological phenotypes is a striking feature of Candida species and is linked to virulence. In this study, we report a novel phenotype, the gray phenotype, in C. dubliniensis. Together with the previously reported white and opaque cell types, the gray phenotype forms a tristable phenotypic switching system in C. dubliniensis that is similar to the white-gray-opaque tristable switching system in C. albicans. Gray cells of C. dubliniensis are similar to their counterparts in C. albicans in terms of several biological aspects including cellular morphology, mating competence, and genetic regulatory mechanisms. However, the gray phenotypes of the 2 species have some distinguishing features. For example, the secreted aspartyl protease (Sap) activity is induced by bovine serum albumin (BSA) in gray cells of C. albicans, but not in gray cells of C. dubliniensis. Taken together, our results demonstrate that the biological features and regulatory mechanisms of white-gray-opaque tristable transitions are largely conserved in the 2 pathogenic Candida species.


Asunto(s)
Candida albicans/genética , Candida/genética , Regulación Fúngica de la Expresión Génica , Proteasas de Ácido Aspártico/metabolismo , Candida/efectos de los fármacos , Candida/enzimología , Candida/patogenicidad , Candida albicans/patogenicidad , Candidiasis/microbiología , Humanos , Fenotipo , Filogenia , Albúmina Sérica Bovina/farmacología , Virulencia
15.
Biochem Biophys Res Commun ; 445(1): 138-44, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24491547

RESUMEN

Morphological transition (yeast-hyphal and white-opaque) is an important biological process in the life cycle of pathogenic yeast, Candida albicans and is a major determinant of virulence. Earlier reports show that the amino sugar, N-acetylglucosamine (GlcNAc) induces white to opaque switching in this pathogen. We report here a new contributor to this switching phenomenon, namely N-acetylglucosamine kinase or HXK1, the first enzyme of the GlcNAc catabolic cascade. Microarray profile analysis of wild type vs. hxk1 mutant cells grown under switching inducing condition showed upregulation of opaque specific and cell wall specific genes along genes involved in the oxidative metabolism. Further, our qRT-PCR and immunoblot analysis revealed that the expression levels of Wor1, a master regulator of the white-opaque switching phenomenon remained unaltered during this HXK1 mediated transition. Thus the derepression of opaque specific gene expression observed in hxk1 mutant could be uncoupled to the expression of WOR1. Moreover, this regulation via HXK1 is independent of Ras1, a major regulator of morphogenetic transition and probably independent of MTL locus too. These results extend our understanding of multifarious roles of metabolic enzymes like Hxk1 and suggest an adaptive mechanism during host-pathogen interactions.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transcriptoma , Candida albicans/enzimología , Candida albicans/fisiología , Pared Celular/genética , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Immunoblotting , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
16.
Commun Integr Biol ; 2(6): 509-11, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20195457

RESUMEN

Candida albicans is the most commonly isolated human fungal pathogen and uses a diverse repertoire of morphological transitions to aid colonization and infection. In a recent paper we discuss how one of these transitions, the white-to-opaque switch, is affected both by cell stress and by several other conditions that change the rate of cell growth. Based on our findings, we propose that the master regulator of the white-to-opaque switch, WOR1, acts as a sensitive monitor of both intrinsic and environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA