Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 87: 102872, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936319

RESUMEN

Structural information on protein-protein interactions (PPIs) is essential for improved understanding of regulatory interactome networks that confer various physiological and pathological responses. Additionally, maladaptive PPIs constitute desirable therapeutic targets due to inherently high disease state specificity. Recent advances in chemical cross-linking strategies coupled with mass spectrometry (XL-MS) have positioned XL-MS as a promising technology to not only elucidate the molecular architecture of individual protein assemblies, but also to characterize proteome-wide PPI networks. Moreover, quantitative in vivo XL-MS provides a new capability for the visualization of cellular interactome dynamics elicited by drug treatments, disease states, or aging effects. The emerging field of XL-MS based complexomics enables unique insights on protein moonlighting and protein complex remodeling. These techniques provide complimentary information necessary for in-depth structural interactome studies to better comprehend how PPIs mediate function in living systems.


Asunto(s)
Reactivos de Enlaces Cruzados , Espectrometría de Masas , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Humanos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Biología de Sistemas/métodos , Mapas de Interacción de Proteínas , Animales , Proteómica/métodos
2.
J Proteome Res ; 23(8): 3269-3279, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334954

RESUMEN

Protein-protein interactions (PPIs) are fundamental to understanding biological systems as protein complexes are the active molecular modules critical for carrying out cellular functions. Dysfunctional PPIs have been associated with various diseases including cancer. Systems-wide PPI analysis not only sheds light on pathological mechanisms, but also represents a paradigm in identifying potential therapeutic targets. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for defining endogenous PPIs of cellular networks. While proteome-wide studies have been performed in cell lysates, intact cells and tissues, applications of XL-MS in clinical samples have not been reported. In this study, we adopted a DSBSO-based in vivo XL-MS platform to map interaction landscapes from two breast cancer patient-derived xenograft (PDX) models. As a result, we have generated a PDX interaction network comprising 2,557 human proteins and identified interactions unique to breast cancer subtypes. Interestingly, most of the observed differences in PPIs correlated well with protein abundance changes determined by TMT-based proteome quantitation. Collectively, this work has demonstrated the feasibility of XL-MS analysis in clinical samples, and established an analytical workflow for tissue cross-linking that can be generalized for mapping PPIs from patient samples in the future to dissect disease-relevant cellular networks.


Asunto(s)
Neoplasias de la Mama , Mapas de Interacción de Proteínas , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Animales , Espectrometría de Masas/métodos , Ratones , Proteoma/metabolismo , Proteoma/análisis , Proteómica/métodos , Mapeo de Interacción de Proteínas/métodos
3.
J Thromb Haemost ; 22(5): 1336-1346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38242207

RESUMEN

BACKGROUND: Factor (F)XI can be activated by proteases, including thrombin and FXIIa. The interactions of these enzymes with FXI are transient in nature and therefore difficult to study. OBJECTIVES: To identify the binding interface between thrombin and FXI and understand the dynamics underlying FXI activation. METHODS: Crosslinking mass spectrometry was used to localize the binding interface of thrombin on FXI. Molecular dynamics simulations were applied to investigate conformational changes enabling thrombin-mediated FXI activation after binding. The proposed trajectory of activation was examined with nanobody 1C10, which was previously shown to inhibit thrombin-mediated activation of FXI. RESULTS: We identified a binding interface of thrombin located on the light chain of FXI involving residue Pro520. After this initial interaction, FXI undergoes conformational changes driven by binding of thrombin to the apple 1 domain in a secondary step to allow migration toward the FXI cleavage site. The 1C10 binding site on the apple 1 domain supports this proposed trajectory of thrombin. We validated the results with known mutation sites on FXI. As Pro520 is conserved in prekallikrein (PK), we hypothesized and showed that thrombin can bind PK, even though it cannot activate PK. CONCLUSION: Our investigations show that the activation of FXI is a multistaged procedure. Thrombin first binds to Pro520 in FXI; thereafter, it migrates toward the activation site by engaging the apple 1 domain. This detailed analysis of the interaction between thrombin and FXI paves a way for future interventions for bleeding or thrombosis.


Asunto(s)
Factor XI , Simulación de Dinámica Molecular , Unión Proteica , Trombina , Trombina/metabolismo , Trombina/química , Humanos , Factor XI/metabolismo , Factor XI/química , Sitios de Unión , Multimerización de Proteína , Mutación , Conformación Proteica , Coagulación Sanguínea , Precalicreína/metabolismo , Precalicreína/química , Subunidades de Proteína/metabolismo , Activación Enzimática , Factor XIa/metabolismo , Factor XIa/química
4.
J Proteome Res ; 22(10): 3368-3382, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37669508

RESUMEN

Cross-linking and mass spectrometry (XL-MS) workflows are increasingly popular techniques for generating low-resolution structural information about interacting biomolecules. xQuest is an established software package for analysis of protein-protein XL-MS data, supporting stable isotope-labeled cross-linking reagents. Resultant paired peaks in mass spectra aid sensitivity and specificity of data analysis. The recently developed cross-linking of isotope-labeled RNA and mass spectrometry (CLIR-MS) approach extends the XL-MS concept to protein-RNA interactions, also employing isotope-labeled cross-link (XL) species to facilitate data analysis. Data from CLIR-MS experiments are broadly compatible with core xQuest functionality, but the required analysis approach for this novel data type presents several technical challenges not optimally served by the original xQuest package. Here we introduce RNxQuest, a Python package extension for xQuest, which automates the analysis approach required for CLIR-MS data, providing bespoke, state-of-the-art processing and visualization functionality for this novel data type. Using functions included with RNxQuest, we evaluate three false discovery rate control approaches for CLIR-MS data. We demonstrate the versatility of the RNxQuest-enabled data analysis pipeline by also reanalyzing published protein-RNA XL-MS data sets that lack isotope-labeled RNA. This study demonstrates that RNxQuest provides a sensitive and specific data analysis pipeline for detection of isotope-labeled XLs in protein-RNA XL-MS experiments.


Asunto(s)
Isótopos , Proteínas , Proteínas/química , Espectrometría de Masas/métodos , Reactivos de Enlaces Cruzados/química
5.
RNA ; 29(12): 1870-1880, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699651

RESUMEN

The conserved TREX complex has multiple functions in gene expression such as transcription elongation, 3' end processing, mRNP assembly and nuclear mRNA export as well as the maintenance of genomic stability. In Saccharomyces cerevisiae, TREX is composed of the pentameric THO complex, the DEAD-box RNA helicase Sub2, the nuclear mRNA export adaptor Yra1, and the SR-like proteins Gbp2 and Hrb1. Here, we present the structural analysis of the endogenous TREX complex of S. cerevisiae purified from its native environment. To this end, we used cross-linking mass spectrometry to gain structural information on regions of the complex that are not accessible to classical structural biology techniques. We also used negative-stain electron microscopy to investigate the organization of the cross-linked complex used for XL-MS by comparing our endogenous TREX complex with recently published structural models of recombinant THO-Sub2 complexes. According to our analysis, the endogenous yeast TREX complex preferentially assembles into a dimer.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , Transporte de ARN , Transcripción Genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Unión a Poli(A)/genética
6.
J Proteome Res ; 22(9): 3009-3021, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566781

RESUMEN

Cross-linking mass spectrometry has become a powerful tool for the identification of protein-protein interactions and for gaining insight into the structures of proteins. We previously published MS Annika, a cross-linking search engine which can accurately identify cross-linked peptides in MS2 spectra from a variety of different MS-cleavable cross-linkers. In this publication, we present MS Annika 2.0, an updated version implementing a new search algorithm that, in addition to MS2 level, only supports the processing of data from MS2-MS3-based approaches for the identification of peptides from MS3 spectra, and introduces a novel scoring function for peptides identified across multiple MS stages. Detected cross-links are validated by estimating the false discovery rate (FDR) using a target-decoy approach. We evaluated the MS3-search-capabilities of MS Annika 2.0 on five different datasets covering a variety of experimental approaches and compared it to XlinkX and MaXLinker, two other cross-linking search engines. We show that MS Annika detects up to 4 times more true unique cross-links while simultaneously yielding less false positive hits and therefore a more accurate FDR estimation than the other two search engines. All mass spectrometry proteomics data along with result files have been deposited to the ProteomeXchange consortium via the PRIDE partner repository with the dataset identifier PXD041955.


Asunto(s)
Péptidos , Motor de Búsqueda , Flujo de Trabajo , Péptidos/análisis , Espectrometría de Masas/métodos , Motor de Búsqueda/métodos , Algoritmos , Reactivos de Enlaces Cruzados/química
7.
J Proteome Res ; 22(9): 2900-2908, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37552582

RESUMEN

Chemical cross-linking with mass spectrometry provides low-resolution structural information on proteins in cells and tissues. Combined with quantitation, it can identify changes in the interactome between samples, for example, control and drug-treated cells or young and old mice. A difference can originate from protein conformational changes that alter the solvent-accessible distance separating the cross-linked residues. Alternatively, a difference can result from conformational changes localized to the cross-linked residues, for example, altering the solvent exposure or reactivity of those residues or post-translational modifications of the cross-linked peptides. In this manner, cross-linking is sensitive to a variety of protein conformational features. Dead-end peptides are cross-links attached only at one end to a protein with the other terminus being hydrolyzed. As a result, changes in their abundance reflect only conformational changes localized to the attached residue. For this reason, analyzing both quantified cross-links and their corresponding dead-end peptides can help elucidate the likely conformational changes giving rise to observed differences in cross-link abundance. We describe analysis of dead-end peptides in the XLinkDB public cross-link database and, with quantified mitochondrial data isolated from failing heart versus healthy mice, show how a comparison of abundance ratios between cross-links and their corresponding dead-end peptides can be leveraged to reveal possible conformational explanations.


Asunto(s)
Péptidos , Proteínas , Animales , Ratones , Péptidos/análisis , Proteínas/análisis , Espectrometría de Masas/métodos , Conformación Proteica , Solventes , Reactivos de Enlaces Cruzados/química
8.
J Proteome Res ; 22(8): 2593-2607, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37494005

RESUMEN

When it comes to mass spectrometry data analysis for identification of peptide pairs linked by N-hydroxysuccinimide (NHS) ester cross-linkers, search engines bifurcate in their setting of cross-linkable sites. Some restrict NHS ester cross-linkable sites to lysine (K) and protein N-terminus, referred to as K only for short, whereas others additionally include serine (S), threonine (T), and tyrosine (Y) by default. Here, by setting amino acids with chemically inert side chains such as glycine (G), valine (V), and leucine (L) as cross-linkable sites, which serves as a negative control, we show that software-identified STY-cross-links are only as reliable as GVL-cross-links. This is true across different NHS ester cross-linkers including DSS, DSSO, and DSBU, and across different search engines including MeroX, xiSearch, and pLink. Using a published data set originated from synthetic peptides, we demonstrate that STY-cross-links indeed have a high false discovery rate. Further analysis revealed that depending on the data and the search engine used to analyze the data, up to 65% of the STY-cross-links identified are actually K-K cross-links of the same peptide pairs, up to 61% are actually K-mono-links, and the rest tend to contain short peptides at high risk of false identification.


Asunto(s)
Ésteres , Proteínas , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Péptidos/química , Proteínas/metabolismo
9.
Genes Dev ; 37(11-12): 505-517, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399331

RESUMEN

Messenger RNAs (mRNAs) are at the center of the central dogma of molecular biology. In eukaryotic cells, these long ribonucleic acid polymers do not exist as naked transcripts; rather, they associate with mRNA-binding proteins to form messenger ribonucleoprotein (mRNP) complexes. Recently, global proteomic and transcriptomic studies have provided comprehensive inventories of mRNP components. However, knowledge of the molecular features of distinct mRNP populations has remained elusive. We purified endogenous nuclear mRNPs from Saccharomyces cerevisiae by harnessing the mRNP biogenesis factors THO and Sub2 in biochemical procedures optimized to preserve the integrity of these transient ribonucleoprotein assemblies. We found that these mRNPs are compact particles that contain multiple copies of Yra1, an essential protein with RNA-annealing properties. To investigate their molecular and architectural organization, we used a combination of proteomics, RNA sequencing, cryo-electron microscopy, cross-linking mass spectrometry, structural models, and biochemical assays. Our findings indicate that yeast nuclear mRNPs are packaged around an intricate network of interconnected proteins capable of promoting RNA-RNA interactions via their positively charged intrinsically disordered regions. The evolutionary conservation of the major mRNA-packaging factor (yeast Yra1 and Aly/REF in metazoans) points toward a general paradigm governing nuclear mRNP packaging.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Microscopía por Crioelectrón , Proteómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleoproteínas/genética , ARN Mensajero/metabolismo
10.
Mol Cell Proteomics ; 22(8): 100600, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343697

RESUMEN

High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Lipoproteínas HDL/metabolismo , Unión Proteica , Espectrometría de Masas
11.
Structure ; 31(7): 764-779.e8, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311459

RESUMEN

Cdc48 (VCP/p97) is a major AAA-ATPase involved in protein quality control, along with its canonical cofactors Ufd1 and Npl4 (UN). Here, we present novel structural insights into the interactions within the Cdc48-Npl4-Ufd1 ternary complex. Using integrative modeling, we combine subunit structures with crosslinking mass spectrometry (XL-MS) to map the interaction between Npl4 and Ufd1, alone and in complex with Cdc48. We describe the stabilization of the UN assembly upon binding with the N-terminal-domain (NTD) of Cdc48 and identify a highly conserved cysteine, C115, at the Cdc48-Npl4-binding interface which is central to the stability of the Cdc48-Npl4-Ufd1 complex. Mutation of Cys115 to serine disrupts the interaction between Cdc48-NTD and Npl4-Ufd1 and leads to a moderate decrease in cellular growth and protein quality control in yeast. Our results provide structural insight into the architecture of the Cdc48-Npl4-Ufd1 complex as well as its in vivo implications.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/química , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(15): e2201910120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37027427

RESUMEN

α-synuclein (αS) is an intrinsically disordered protein whose functional ambivalence and protein structural plasticity are iconic. Coordinated protein recruitment ensures proper vesicle dynamics at the synaptic cleft, while deregulated oligomerization on cellular membranes contributes to cell damage and Parkinson's disease (PD). Despite the protein's pathophysiological relevance, structural knowledge is limited. Here, we employ NMR spectroscopy and chemical cross-link mass spectrometry on 14N/15N-labeled αS mixtures to provide for the first time high-resolution structural information of the membrane-bound oligomeric state of αS and demonstrate that in this state, αS samples a surprisingly small conformational space. Interestingly, the study locates familial Parkinson's disease mutants at the interface between individual αS monomers and reveals different oligomerization processes depending on whether oligomerization occurs on the same membrane surface (cis) or between αS initially attached to different membrane particles (trans). The explanatory power of the obtained high-resolution structural model is used to help determine the mode-of-actionof UCB0599. Here, it is shown that the ligand changes the ensemble of membrane-bound structures, which helps to explain the success this compound, currently being tested in Parkinson's disease patients in a phase 2 trial, has had in animal models of PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Membranas/metabolismo , Membrana Celular/metabolismo , Espectroscopía de Resonancia Magnética , Antiparkinsonianos/metabolismo
13.
J Proteome Res ; 22(2): 647-655, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36629399

RESUMEN

Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Proteínas/química , Programas Informáticos , Reactivos de Enlaces Cruzados/química
14.
Cell ; 185(25): 4770-4787.e20, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36493755

RESUMEN

The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of ß-tubulin using human prefoldin and TRiC. We find unstructured ß-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded ß-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.


Asunto(s)
Chaperonina con TCP-1 , Tubulina (Proteína) , Humanos , Chaperonina con TCP-1/química , Tubulina (Proteína)/metabolismo , Pliegue de Proteína , Proteostasis , Adenosina Trifosfato/metabolismo
15.
Biochim Biophys Acta Biomembr ; 1864(10): 184004, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841926

RESUMEN

Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.


Asunto(s)
Diazometano , Lípidos de la Membrana , Azidas , Reactivos de Enlaces Cruzados/química , Diazometano/química , Espectrometría de Masas/métodos , Péptidos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
16.
Structure ; 30(9): 1269-1284.e6, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716664

RESUMEN

RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.


Asunto(s)
Proteínas Cullin , Ubiquitina , Dominio Catalítico , Proteínas Cullin/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
17.
Methods Mol Biol ; 2456: 185-210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35612743

RESUMEN

Protein cross-linking mass spectrometry (XL-MS) has been developed into a powerful and robust tool that is now well implemented and routinely used by an increasing number of laboratories. While bulk cross-linking of complexes provides useful information on whole complexes, it is limiting for the probing of specific protein "neighbourhoods," or vicinity interactomes. For example, it is not unusual to find cross-linked peptide pairs that are disproportionately overrepresented compared to the surface areas of complexes, while very few or no cross-links are identified in other regions. When studying dynamic complexes along their pathways, some vicinity cross-links may be of too low abundance in the pool of heterogenous complexes of interest to be efficiently identified by standard XL-MS. In this chapter, we describe a targeted XL-MS approach from single-step affinity purified (ssAP) complexes that enables the investigation of specific protein "neighbourhoods" within molecular complexes in yeast, using a small cross-linker anchoring tag, the CH-tag. One advantage of this method over a general cross-linking strategy is the possibility to significantly enrich for localized anchored-cross-links within complexes, thus yielding a higher sensitivity to detect highly dynamic or low abundance protein interactions within a specific protein "neighbourhood" occurring along the pathway of a selected bait protein. Moreover, many variations of the method can be employed; the ssAP-tag and the CH-tag can either be fused to the same or different proteins in the complex, or the CH-tag can be fused to multiple protein components in the same cell line to explore dynamic vicinity interactions along a pathway.


Asunto(s)
Proteínas , Saccharomyces cerevisiae , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Péptidos/química , Proteínas/química , Saccharomyces cerevisiae/metabolismo
18.
Cell Rep ; 38(6): 110353, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139378

RESUMEN

Eukaryotic ribosome biogenesis is facilitated and regulated by numerous ribosome biogenesis factors (RBFs). High-resolution cryoelectron microscopy (cryo-EM) maps have defined the molecular interactions of RBFs during maturation, but many transient and dynamic interactions, particularly during early assembly, remain uncharacterized. Using quantitative proteomics and crosslinking coupled to mass spectrometry (XL-MS) data from an extensive set of pre-ribosomal particles, we derive a comprehensive and time-resolved interaction map of RBF engagement during 60S maturation. We localize 22 previously unmapped RBFs to specific biogenesis intermediates and validate our results by mapping the catalytic activity of the methyltransferases Bmt2 and Rcm1 to their predicted nucleolar 60S intermediates. Our analysis reveals the interaction sites for the RBFs Noc2 and Ecm1 and elucidates the interaction map and timing of 60S engagement by the DEAD-box ATPases Dbp9 and Dbp10. Our data provide a powerful resource for future studies of 60S ribosome biogenesis.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/metabolismo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Structure ; 30(1): 37-54, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34895473

RESUMEN

Crosslinking mass spectrometry (crosslinking-MS) is a versatile tool providing structural insights into protein conformation and protein-protein interactions. Its medium-resolution residue-residue distance restraints have been used to validate protein structures proposed by other methods and have helped derive models of protein complexes by integrative structural biology approaches. The use of crosslinking-MS in integrative approaches is underpinned by progress in estimating error rates in crosslinking-MS data and in combining these data with other information. The flexible and high-throughput nature of crosslinking-MS has allowed it to complement the ongoing resolution revolution in electron microscopy by providing system-wide residue-residue distance restraints, especially for flexible regions or systems. Here, we review how crosslinking-MS information has been leveraged in structural model validation and integrative modeling. Crosslinking-MS has also been a key technology for cell biology studies and structural systems biology where, in conjunction with cryoelectron tomography, it can provide structural and mechanistic insights directly in situ.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Proteínas/química , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Proteínas/metabolismo
20.
Front Vet Sci ; 9: 1040802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699337

RESUMEN

Vaccination with intact (146S) foot-and-mouth disease virus (FMDV) particles is used to control FMD. However, 146S particles easily dissociate into stable pentameric 12S particles which are less immunogenic. We earlier isolated several single-domain antibody fragments (VHHs) that specifically bind either 146S or 12S particles. These particle-specific VHHs are excellent tools for vaccine quality control. In this study we mapped the antigenic sites recognized by these VHHs by competition ELISAs, virus neutralization, and trypsin sensitivity of epitopes. We included two previously described monoclonal antibodies (mAbs) that are either 12S specific (mAb 13A6) or 146S specific (mAb 9). Although both are 12S specific, the VHH M3F and mAb 13A6 were found to bind independent antigenic sites. M3F recognized a non-neutralizing and trypsin insensitive site whereas mAb 13A6 recognized the trypsin sensitive VP2 N-terminus. The Asia1 146S-specific site was trypsin sensitive, neutralizing and also recognized by the VHH M8F, suggesting it involves the VP1 GH-loop. The type A 146S-specific VHHs recognized two independent antigenic sites that are both also neutralizing but trypsin insensitive. The major site was further mapped by cross-linking mass spectrometry (XL-MS) of two broadly strain reactive 146S-specific VHHs complexed to FMDV. The epitopes were located close to the 2-fold and 3-fold symmetry axes of the icosahedral virus 3D structure, mainly on VP2 and VP3, overlapping the earlier identified mAb 9 site. Since the epitopes were located on a single 12S pentamer, the 146S specificity cannot be explained by the epitope being split due to 12S pentamer dissociation. In an earlier study the cryo-EM structure of the 146S-specific VHH M170 complexed to type O FMDV was resolved. The 146S specificity was reported to be caused by an altered conformation of this epitope in 12S and 146S particles. This mechanism probably also explains the 146S-specific binding by the two type A VHHs mapped by XL-MS since their epitopes overlapped with the epitope recognized by M170. Surprisingly, residues internal in the 146S quaternary structure were also cross-linked to VHH. This probably reflects particle flexibility in solution. Molecular studies of virus-antibody interactions help to further optimize vaccines and improve their quality control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA