Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Ethnopharmacol ; 334: 118542, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992404

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dried roots of Peucedanum decursivum, a traditional Chinese medicine (TCM), has historically respiratory diseases such as cough, thick phlegm, headache, fever, and gynecological diseases, rheumatoid arthritis, and nasopharyngeal carcinoma. AIM OF THE STUDY: Made an endeavor to evaluate the research trajectory of P. decursivum, comprehensively discern its developmental status, and offer a guideline for future investigations. MATERIALS AND METHODS: A meticulous search of literatures and books from 1955 to 2024 via databases like PubMed, Web of Science and CNKI was conducted, including topics and keywords of " P. decursivum" "Angelica decursivum" and "Zihua Qianhu". RESULTS: P. decursivum and its prescriptions have traditionally been used for treating phlegm-heat cough, wind-heat cough, gastrointestinal diseases, pain relief and so on. It contains 234 identified compounds, encompassing coumarins, terpenes, volatile oils, phenolic acids, fatty acids and derivatives. It exhibits diverse pharmacological activities, including anti-asthmatic, anti-inflammatory, antioxidant effects, anti-hypertensive, anti-diabetic, anti-Alzheimer, and anti-cancer properties, primarily attributed to coumarins. Microscopic identification, HPLC fingerprinting, and bioinformatics identification are the primary methods currently used for the quality control. CONCLUSION: P. decursivum demonstrates anti-asthmatic, anti-inflammatory, and antioxidant effects, aligning with its traditional use. However, experimental validation of its efficacy against phlegm and viruses is needed. Additionally, analgesic effects mentioned in historical texts lack modern pharmacological studies. Numerous isolated compounds exhibit highly valuable medicinal properties. Future research can delve into exploring these substances further. Rigorous of heavy metal contamination, particularly Cd and Pb, is necessary. Simultaneously, investigating its pharmacokinetics and toxicity in humans is crucial for the safety.


Asunto(s)
Apiaceae , Etnobotánica , Etnofarmacología , Fitoquímicos , Control de Calidad , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Apiaceae/química , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos
2.
Heliyon ; 10(3): e25232, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38352786

RESUMEN

Introduction: Citrus sinensis L. is a candidate plant with promising antimicrobial potential. In the current study, the phytochemical investigation of C. sinensis leaf extract led to the isolation of three coumarins, namely bergapten, xanthotoxin, and citropten. Methods: The chemical structures of the isolated coumarins were elucidated using NMR and ESI-MS techniques. The total aqueous ethanol leaf extract and the isolated coumarins were evaluated for their antimicrobial effects against Helicobacter pylori using the MTT-micro-well dilution method and its anti-biofilm activity using MBEC assay, as compared to clarithromycin. Results: The results showed that citropten scored the lowest MIC value at 3.9 µg/mL and completely inhibited the planktonic growth of H. pylori. In addition, it completely suppressed H. pylori biofilm at 31.25 µg/mL. These findings have been supported by molecular docking studies on the active sites of the H. pylori inosine 5'-monophosphate dehydrogenase (HpIMPDH) model and the urease enzyme, showing a strong binding affinity of citropten to HpIMPDH with seven hydrogen bonds and a binding energy of -6.9 kcal/mol. Xanthotoxin and bergapten showed good docking scores, both at -6.5 kcal/mol for HpIMPDH, with each having four hydrogen bondings. Furthermore, xanthotoxin showed many hydrophobic interactions, while bergapten formed one Pi-anion interaction. Concerning docking in the urease enzyme, the compounds showed mild to moderate binding affinities as compared to the ligand. Thus, based on docking results and good binding scores observed with the HpIMPDH active site, an in-vitro HpIMPDH inhibition assay was done for the compounds. Citropten showed the most promising inhibitory activity with an IC50 value of 2.4 µM. Conclusion: The present study demonstrates that C. sinensis L. leaves are a good source for supplying coumarins that can act as naturally effective anti-H. pylori agents.

3.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38255833

RESUMEN

Furanocoumarins are naturally occurring compounds in the plant world, characterized by low molecular weight, simple chemical structure, and high solubility in most organic solvents. Additionally, they have a broad spectrum of activity, and their properties depend on the location and type of attached substituents. Therefore, the aim of our study was to investigate the anticancer activity of furanocoumarins (imperatorin, isoimperatorin, bergapten, and xanthotoxin) in relation to human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cell lines. The tested compounds were used for the first time in combination with LY294002 (PI3K inhibitor) and sorafenib (Raf inhibitor). Apoptosis, autophagy, and necrosis were identified microscopically after straining with Hoechst 33342, acridine orange, and propidium iodide, respectively. The levels of caspase 3 and Beclin 1 were estimated by immunoblotting and for the blocking of Raf and PI3K kinases, the transfection with specific siRNA was used. The scratch test was used to assess the migration potential of glioma cells. Our studies showed that the anticancer activity of furanocoumarins strictly depended on the presence, type, and location of substituents. The obtained results suggest that achieving higher pro-apoptotic activity is determined by the presence of an isoprenyl moiety at the C8 position of the coumarin skeleton. In both anaplastic astrocytoma and glioblastoma, imperatorin was the most effective in induction apoptosis. Furthermore, the usage of imperatorin, alone and in combination with sorafenib or LY294002, decreased the migratory potential of MOGGCCM and T98G cells.


Asunto(s)
Astrocitoma , Cromonas , Furocumarinas , Glioblastoma , Glioma , Morfolinas , Humanos , Sorafenib/farmacología , Fosfatidilinositol 3-Quinasas , Glioma/tratamiento farmacológico , Furocumarinas/farmacología
4.
Pestic Biochem Physiol ; 196: 105592, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945225

RESUMEN

Spodoptera litura, a polyphagous lepidopteran pest, demonstrates a remarkable capacity to adapt to varying host plants by efficiently detoxifying phytochemicals. However, the underlying mechanism for this adaptation is not well understood. Herein, twenty eplison glutathione S-transferase genes (GSTes) were characterized and their roles in phytochemical tolerance were analyzed in S. litura. Most of the GSTe genes were mainly expressed in the larval midgut and fat body. Exposure to the phytochemicals, especially xanthotoxin, induced the expression of most GSTe genes. Molecular docking analysis revealed that xanthotoxin could form stable bonds with six xanthotoxin-responsive GSTes, with binding free energies ranging from -36.44 to -68.83 kcal mol-1. Knockdown of these six GSTe genes increased the larval susceptibility to xanthotoxin. Furthermore, xanthotoxin exposure significantly upregulated the expression of two transcription factor genes CncC and MafK. Silencing of either CncC or MafK reduced the expression of GSTe16, which exhibited the largest change in response to xanthotoxin. Additionally, analysis of the promoter sequence of GSTe16 revealed the presence of seven CncC/Maf binding sites. Luciferase reporter assays showed that CncC and MafK enhanced the expression of GSTe16, leading to the increased xanthotoxin tolerance in S. litura. These findings provide insight into the functions and transcriptional regulatory mechanisms of GSTes, thereby enhancing our understanding of the role of GSTs in the adaptation of lepidopteran pests to phytochemicals.


Asunto(s)
Insecticidas , Metoxaleno , Animales , Spodoptera/metabolismo , Metoxaleno/farmacología , Simulación del Acoplamiento Molecular , Glutatión/metabolismo , Transferasas/metabolismo , Larva/metabolismo , Insecticidas/farmacología
5.
Metabolites ; 13(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37887369

RESUMEN

Ammi majus, a well-established member of the Umbelliferae (Apiaceae) family, is endogenous to Egypt. The main parts of this plant that are used are the fruits, which contain coumarins and flavonoids as major active constituents. The roots are usually considered by-products that are discarded and not fed to cattle because of coumarins' potential toxicity. The goal of this study was to ensure the sustainability of the plant, investigate the active metabolites present in the roots using UPLC/MS-MS, isolate and elucidate the major coumarin Xanthotoxin, and predict its oral bioavailability and its potential biological impact on tongue papillae. The results revealed coumarins as the dominant chemical class in a positive acquisition mode, with bergaptol-O-hexoside 5%, Xanthotoxin 5.5%, and isoarnoittinin 6% being the major compounds. However, phenolics ruled in the negative mode, with p-coumaroyl tartaric acid 7%, 3,7-dimethyl quercetin 6%, and hesperidin 5% being the most prominent metabolites. Fractionation and purification of the chloroform fraction yielded Xanthotoxin as one of the main compounds, which appeared as white needle crystals (20 mg). ADME studies for oral bioavailability were performed to predict the potential properties of the compound if used orally. It was noted that it followed Lipinski's rule of five, had just one parameter outside of the pink area in the radar plot, and was detected inside the threshold area using the boiled egg approach. In vivo, histopathological studies performed on rats showed a notable decrease in the tongue's keratin thickness from an average of 51.1 µm to 9.1 µm and an average of 51.8 µm to 9.8 µm in fungiform and filiform cells, respectively. The results indicated that although Xanthotoxin is a well-known medical agent with several potential therapeutic activities in oral therapy, it may cause a destructive effect on the structure of the specialized mucosa of the tongue.

6.
Eur J Neurosci ; 58(7): 3605-3617, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37671643

RESUMEN

Xanthotoxin (XAT) is a natural furanocoumarin clinically used in the treatment of skin diseases such as vitiligo and psoriasis. Recent studies have also investigated its effects on anti-inflammatory, anti-cognitive dysfunction, and anti-amnesia as a guideline for clinic application. However, little is known about its effects on pain relief. Here, we tested the analgesic effects of XAT in serious acute pain and chronic pain models. For acute pain, we used hot-, capsaicin- and formalin-induced paw licking. Nociceptive threshold was measured by mechanical stimuli with von Frey filaments. For chronic pain, we injected complete Freund's adjuvant (CFA) into the mice's plantar surface of the hind paw to induce inflammatory pain. Heat and mechanical hyperalgesia were evaluated by radiant heat and von Frey filament tests, respectively. To investigate the mechanisms underlying the analgesic effect of XAT, we used calcium imaging and western blot to assess transient receptor potential vanilloid 1 (TRPV1) activity and expression in isolated L4-L6 dorsal root ganglion (DRG) neurons. Haematoxylin and eosin (HE) staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine immune cell recruitment and proinflammatory factor release from skin tissue from paw injection sites. Our results demonstrated that XAT not only reduced acute pain behaviors generated by hot, capsaicin, and formalin but also attenuated CFA-induced heat and mechanical hyperalgesia. The analgesic activity of XAT may be achieved by controlling peripheral inflammation, lowering immune cell infiltration at the site of inflammatory tissue, reducing inflammatory factor production, and therefore inhibiting TRPV1 channel sensitization and expression.


Asunto(s)
Dolor Agudo , Dolor Crónico , Ratones , Animales , Hiperalgesia/metabolismo , Metoxaleno/efectos adversos , Capsaicina/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Antiinflamatorios/efectos adversos , Inflamación/metabolismo , Formaldehído/efectos adversos , Ganglios Espinales/metabolismo
7.
Biomed Pharmacother ; 163: 114811, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37156117

RESUMEN

BACKGROUND: Thrombocytopenia is a common hematological disease caused by many factors. It usually complicates critical diseases and increases morbidity and mortality. The treatment of thrombocytopenia remains a great challenge in clinical practice, however, its treatment options are limited. In this study, the active monomer xanthotoxin (XAT) was screened out to explore its medicinal value and provide novel therapeutic strategies for the clinical treatment of thrombocytopenia. METHODS: The effects of XAT on megakaryocyte differentiation and maturation were detected by flow cytometry, Giemsa and phalloidin staining. RNA-seq identified differentially expressed genes and enriched pathways. The signaling pathway and transcription factors were verified through WB and immunofluorescence staining. Tg (cd41: eGFP) transgenic zebrafish and mice with thrombocytopenia were used to evaluate the biological activity of XAT on platelet formation and the related hematopoietic organ index in vivo. RESULTS: XAT promoted the differentiation and maturation of Meg-01 cells in vitro. Meanwhile, XAT could stimulate platelet formation in transgenic zebrafish and recover platelet production and function in irradiation-induced thrombocytopenia mice. Further RNA-seq prediction and WB verification revealed that XAT activates the IL-1R1 target and MEK/ERK signaling pathway, and upregulates the expression of transcription factors related to the hematopoietic lineage to promote megakaryocyte differentiation and platelet formation. CONCLUSION: XAT accelerates megakaryocyte differentiation and maturation to promote platelet production and recovery through triggering IL-1R1 and activating the MEK/ERK signaling pathway, providing a new pharmacotherapy strategy for thrombocytopenia.


Asunto(s)
Trombocitopenia , Trombopoyesis , Ratones , Animales , Plaquetas , Megacariocitos , Metoxaleno/farmacología , Pez Cebra/metabolismo , Trombocitopenia/tratamiento farmacológico , Factores de Transcripción/metabolismo , Transducción de Señal , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
8.
Life Sci ; 310: 121129, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306871

RESUMEN

AIMS: Parkinson's disease (PD) is characterized by motor disabilities precipitated by α-synuclein aggregation and dopaminergic neurodegeneration. The roles of oxidative stress, neuroinflammation, dysfunction of the mitogen-activated protein kinase (MAPK) pathway, and apoptosis in dopaminergic neurodegeneration have been established. We investigated the potential neuroprotective effect of xanthotoxin, a furanocoumarin extracted from family Apiaceae, in a rotenone-induced PD model in rats since it has not yet been elucidated. MAIN METHODS: For 21 days, rats received 11 rotenone injections (1.5 mg/kg, s.c.) on the corresponding days to induce a PD model and xanthotoxin (15 mg/kg, i.p.) daily. KEY FINDINGS: Xanthotoxin preserved dopaminergic neurons and restored tyrosine hydroxylase positive cells, with suppression of α-synuclein accumulation and restoration of striatal levels of dopamine and its metabolites resulting in amelioration of motor deficits. Furthermore, xanthotoxin impeded rotenone-stimulated neurodegeneration by reducing oxidative stress, which was confirmed by malondialdehyde suppression and glutathione antioxidant enzyme augmentation. It also suppressed neurotoxic inflammatory mediators including tumor necrosis factor-α, interleukin-1ß, and inducible nitric oxide synthase. Additionally, xanthotoxin attenuated the rotenone-mediated activation of MAPK kinases, C-Jun N-terminal kinase, p38 MAPK, and extracellular signal-regulated kinases 1/2, with consequent ablation of apoptotic mediators including Bax, cytochrome c, and caspase-3. SIGNIFICANCE: This study revealed the neuroprotective effect of xanthotoxin in a rotenone-induced PD model in rats, an action that could be attributed to its antioxidant, anti-inflammatory activities as well as to its ability to maintain the function of the MAPK signaling pathway and attenuate apoptosis. Therefore, it could be a valuable therapy for PD.


Asunto(s)
Metoxaleno , Fármacos Neuroprotectores , Enfermedad de Parkinson Secundaria , Animales , Ratas , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas , Inflamación/patología , Metoxaleno/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Ratas Wistar , Rotenona/efectos adversos , Transducción de Señal , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/metabolismo
9.
Phytother Res ; 36(10): 3805-3832, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35913174

RESUMEN

Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.


Asunto(s)
Furocumarinas , Metoxaleno , Antibacterianos , Furocumarinas/farmacología , Metoxaleno/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno , Serina-Treonina Quinasas TOR
10.
Insect Biochem Mol Biol ; 146: 103796, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636594

RESUMEN

Divergence of gene function is a hallmark of evolution, but assessing such divergence in one species or between species requires information on functional alterations of the alleles and homologs. Here, we explore the functional divergence of two paralogs, CYP6AE19 and CYP6AE20, from Helicoverpa armigera, and two close orthologs, CYP6B8 and CYP6B7, from two related species (Helicoverpa zea and H. armigera); although there is high sequence identity within each pair of enzymes, the latter P450 of each pair has lost metabolic competence towards the plant allelochemical xanthotoxin. Multiple chimeric and single/double site mutants were created by exchanging the diverse substrate recognition sites (SRSs) and amino acids within each pair of P450s. Heterologous expression in Sf9 cells and in vitro metabolism studies showed that the exchange of SRS4 swapped the activity of CYP6AE19 and CYP6AE20, and subsequent site-directed mutagenesis demonstrated that the CYP6AE20 V318M substitution causes a gain-of-function towards xanthotoxin. Meanwhile, a single amino acid substitution (L489P) in SRS6 was found to swap activity between the CYP6B orthologs. Sequence alignments of CYP6AE paralogs and all reported insect xanthotoxin-metabolizing P450s suggest M318 and P489 are essential for the catalytic activities of CYP6AE paralogs and CYP6B orthologs, respectively, but P450s in different subfamilies may have different mechanisms towards the same substrate. Our findings demonstrate that a single amino acid substitution can suffice to alter substrate metabolism and this functional divergence resulting from natural mutations will help to further our understanding of the process of natural selection of P450 genes and their role in insect-host plant interactions.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Aminoácidos , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Insectos/metabolismo , Insecticidas/metabolismo , Metoxaleno/química , Metoxaleno/metabolismo , Mariposas Nocturnas/metabolismo
11.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164207

RESUMEN

Ammi majus L., an indigenous plant in Egypt, is widely used in traditional medicine due to its various pharmacological properties. We aimed to evaluate the anticancer properties of Ammi majus fruit methanol extract (AME) against liver cancer and to elucidate the active compound(s) and their mechanisms of action. Three fractions from AME (Hexane, CH2Cl2, and EtOAc) were tested for their anticancer activities against HepG2 cell line in vitro (cytotoxicity assay, cell cycle analysis, annexin V-FITC apoptosis assay, and autophagy efflux assay) and in silico (molecular docking). Among the AME fractions, CH2Cl2 fraction revealed the most potent cytotoxic activity. The structures of compounds isolated from the CH2Cl2 fraction were elucidated using 1H- and 13C-NMR and found that Compound 1 (xanthotoxin) has the strongest cytotoxic activity against HepG2 cells (IC50 6.9 ± 1.07 µg/mL). Treating HepG2 cells with 6.9 µg/mL of xanthotoxin induced significant changes in the DNA-cell cycle (increases in apoptotic pre-G1 and G2/M phases and a decrease in the S-phase). Xanthotoxin induced significant increase in Annexin-V-positive HepG2 cells both at the early and late stages of apoptosis, as well as a significant decrease in autophagic flux in cancer compared with control cells. In silico analysis of xanthotoxin against the DNA-relaxing enzyme topoisomease II (PDB code: 3QX3) revealed strong interaction with the key amino acid Asp479 in a similar fashion to that of the co-crystallized inhibitor (etoposide), implying that xanthotoxin has a potential of a broad-spectrum anticancer activity. Our results indicate that xanthotoxin exhibits anticancer effects with good biocompatibility toward normal human cells. Further studies are needed to optimize its antitumor efficacy, toxicity, solubility, and pharmacokinetics.


Asunto(s)
Ammi/química , Furocumarinas/farmacología , Metoxaleno/farmacología , Simulación por Computador , Técnicas In Vitro
12.
Fundam Clin Pharmacol ; 36(1): 133-142, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34216038

RESUMEN

Xanthotoxin (8-methoxypsoralen; XANT) is a furanocoumarin that has many biological properties, including antiepileptic activity. This study evaluated the effect of XANT on the ability of classical and novel antiepileptic drugs to prevent seizures evoked by the 6-Hz corneal stimulation-induced seizure model, which is thought to be an experimental model of psychomotor (limbic) seizures in humans. XANT (50 mg/kg, administered i.p.) significantly potentiated the anticonvulsant activity of levetiracetam and valproate, decreasing their median effective dose (ED50 ) values from 19.37 to 2.83 mg/kg (P < 0.01) for levetiracetam and from 92.89 to 44.44 mg/kg (P < 0.05) for valproate. Neither XANT (50 mg/kg) alone nor its combination with the anticonvulsant drugs (at their ED50 values from the 6-Hz test) affected motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; and grip strength and passive avoidance tests, respectively. Measurement of total brain antiepileptic drug concentrations revealed that XANT (50 mg/kg) had no impact on levetiracetam total brain concentrations, indicating the pharmacodynamic nature of interaction between these antiepileptic drugs in the mouse 6-Hz model. However, XANT (50 mg/kg, i.p.) significantly increased total brain concentrations of valproate (P < 0.01), indicating the pharmacokinetic nature of interactions between drugs. XANT in combination with levetiracetam exerts beneficial anticonvulsant pharmacodynamic interactions in the 6-Hz mouse psychomotor seizure model.


Asunto(s)
Anticonvulsivantes , Ácido Valproico , Animales , Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Electrochoque , Levetiracetam , Metoxaleno , Ratones , Ácido Valproico/farmacología
13.
Artículo en Inglés | MEDLINE | ID: mdl-34673249

RESUMEN

Xanthotoxin (XAT) is widely present in many kinds of plants. Caenorhabditis elegans, a typical model organism, was used to study the effects of XAT on C. elegans developmental toxicity, neurotoxicity, reproductive toxicity induced under ultraviolet A (UVA), oxidative stress and apoptosis in C. elegans. The results showed that after XAT exposure treatment, the hatchability of C. elegans decreased significantly as the concentration increased; the body length and width increased markedly, the external morphology was swollen; the brood sizes had been decreased; and the frequencies of head thrashes and body bend decreased significantly. At 80 and 100 mg/L, XAT reduced the activities of mitochondrial complex enzymes I and III, resulting in the excessive production of ROS, and inhibited SOD and CAT so that the ROS could not be eliminated over time. ROS accumulation in the bodies further caused the contents of MDA, protein carbonyl and lipofuscin to increase significantly, the mitochondrial membrane potential to be severely damaged, apoptosis to occur, and the apoptosis genes ced-3 and ced-4 to be significantly upregulated. Thus, XAT showed photoactivated toxicity to C. elegans under UVA, which will help people to make full and rational use of plants containing XAT.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Metoxaleno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Reproducción/efectos de los fármacos , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Food Chem X ; 12: 100162, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34825171

RESUMEN

Angelica dahurica is a famous functional food and herb. To guarantee quality of A. dahurica, a strategy "Q-markers targeted screening" was successfully developed by sufficient extraction of compounds and the targeted screening of qualitative and quantitative markers calculated through chemometric methods based fingerprints. Accelerated solvent extraction was selected due to its prominent advantages exhibiting the maximum extraction yields and varieties of compounds and especially excellent reproducibility (RSD < 1). After extraction, the fingerprints of A. dahuricae samples were established. For the preliminary herb authenticity, the targeted screening of 23 quantitative markers were performed by similarity analysis and hierarchical cluster analysis based on the fingerprints, which were identified by liquid chromatography tandem mass spectrometry (LC-MS). Subsequently, for further quality control, the targeted screening of nine quantitative markers were done by similarity analysis & linear discriminant analysis, which were determined by LC. Lastly, the strategy was successfully applied to quality assessment of A. dahurica samples.

15.
Exp Ther Med ; 20(4): 3846-3852, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32855735

RESUMEN

Xanthotoxin, abundantly occurring in fruits, vegetables, grapefruit juice and oils, is widely used in medicine for the treatment of psoriasis and vitiligo. Xanthotoxin possesses the ability to inhibit mechanism-based cytochrome P450 (CYP450)-mediated activities in rats and mice. Furthermore, it time-dependently obstructs a number of CYP450-mediated functions in humans. CYP450 enzymes are most abundant in the liver and induce metabolic activation of numerous xenobiotic compounds. The present study aimed to identify the similarities and differences in xanthotoxin metabolism in liver microsomes of 7 mammalian species, including human liver microsomes (HLM), Rhesus monkey liver microsomes (RMLM), Cynomolgus monkey liver microsomes (CMLM), Sprague Dawley rat liver microsomes (RLM), mouse liver microsomes (MLM), Dunkin Hartley guinea pig liver microsomes (PLM) and Beagle dog liver microsomes (DLM). Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometric analysis was used to determine the metabolites. A total of 3 metabolites were detected in RMLM, CMLM and RLM. Furthermore, two metabolites were observed in MLM, HLM, PLM and DLM. By analyzing the type and quantity of metabolites, the metabolism of xanthotoxin in MLM was indicated to be most similar to that in HLM. The metabolic transformations of xanthotoxin in the liver microsomes of the 7 species were analyzed in further detail. On the whole, the results of the present study provide a deeper understanding of the metabolic patterns of xanthotoxin in liver microsomes of different species, which may prove to be advantageous regarding the metabolic mechanisms of action of xanthotoxin. Further insight into drug metabolism with respect to different species will also aid in the selection of appropriate animal models for further research.

16.
J Vasc Res ; 57(6): 313-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726786

RESUMEN

OBJECTIVE: Xanthotoxin (XAT) is a linear furanocoumarin mainly extracted from the plants Ammi majus L. XAT has been reported the apoptosis of tumor cells, anti-convulsant, neuroprotective effect, antioxidative activity, and vasorelaxant effects. This study aimed to investigate the vascular protective effects and underlying molecular mechanisms of XAT. METHODS: XAT's activity was studied in rat thoracic aortas, isolated with aortic rings, and human umbilical vein endothelial cells (HUVECs). RESULTS: XAT induced endothelium-dependent vasodilation in a concentration-dependent manner in the isolated rat thoracic aortas. Removal of endothelium or pretreatment of aortic rings with L-NAME, 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, and wortmannin significantly inhibited XAT-induced relaxation. In addition, treatment with thapsigargin, 2-aminoethyl diphenylborinate, Gd3+, and 4-aminopyridine markedly attenuated the XAT-induced vasorelaxation. XAT increased nitric oxide production and Akt- endothelial NOS (eNOS) phosphorylation in HUVECs. Moreover, XAT attenuated the expression of TNF-α-induced cell adhesion molecules such as intercellular adhesion molecule, vascular cell adhesion molecule-1, and E-selectin. However, this effect was attenuated by the eNOS inhibitors L-NAME and asymmetric dimethylarginine. CONCLUSIONS: This study suggests that XAT induces vasorelaxation through the Akt-eNOS-cGMP pathway by activating the KV channel and inhibiting the L-type Ca2+ channel. Furthermore, XAT exerts an inhibitory effect on vascular inflammation, which is correlated with the observed vascular protective effects.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Metoxaleno/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta Torácica/metabolismo , Canales de Calcio Tipo L/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal
17.
Plants (Basel) ; 9(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722223

RESUMEN

BACKGROUND: Conium maculatum is known as highly toxic plant, due to piperidine alkaloids present in the aerial parts. In a first attempt, in various tap root samples, however, alkaloids could not be detected. The present study describes active compounds in the tap roots from 16 populations harvested at maturity. The compounds were extracted with dichloromethane from root pieces of single plants and analyzed by gas chromatography-mass spectrometry. Ten bioactive compounds were evaluated: five furocoumarins, two prenylated coumarins, two aliphatic C17-polyacetylenes and the phenylpropanoid elemicin. A high variability could be observed, the highest concentrations were measured for falcarindiol, xanthotoxin and isopimpinellin, the lowest for elemicin. In sum C. maculatum roots contained comparable amounts of compounds that are characteristic for Apiaceae, and also occur in vegetables as carrots, parsnip, parsley or celeriac.

18.
Phytother Res ; 34(9): 2351-2365, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32250498

RESUMEN

The aim of the present study was to assess the neuroprotective effects of xanthotoxin and umbelliferone in streptozotocin (STZ)-induced cognitive dysfunction in rats. Animals were injected intracerebroventricularly (ICV) with STZ (3 mg/kg) once to induce a sporadic Alzheimer's disease (SAD)-like condition. Xanthotoxin or umbelliferone (15 mg/kg, i.p.) were administered 5 hr after ICV-STZ and daily for 20 consecutive days. Xanthotoxin or umbelliferone prevented cognitive deficits in the Morris water maze and object recognition tests. In parallel, xanthotoxin or umbelliferone reduced hippocampal acetylcholinestrase activity and malondialdehyde level. Moreover, xanthotoxin or umbelliferone increased glutathione content. These coumarins also modulated neuronal cell death by reducing the level of proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-6), inhibiting the overexpression of inflammatory markers (nuclear factor κB [NF-κB] and cyclooxygenase II), and upregulating the expression of NF-κB inhibitor (IκB-α). Interestingly, xanthotoxin diminished phosphorylated JAK2 and phosphorylated STAT3 protein expression, while umbelliferone markedly replenished nuclear factor erythroid-derived 2-like 2 (Nrf2) and haem oxygenase-1 (HO-1) levels. The current study provides evidence for the protective effect of xanthotoxin and umbelliferone in STZ-induced cognitive dysfunction in rats. This effect may be attributed, at least in part, to inhibiting acetylcholinestrase and attenuating oxidative stress, neuroinflammation and neuronal loss.


Asunto(s)
Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Metoxaleno/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Factor de Transcripción STAT3/metabolismo , Estreptozocina/efectos adversos , Umbeliferonas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Masculino , Metoxaleno/farmacología , Ratas , Ratas Wistar , Transducción de Señal , Umbeliferonas/farmacología
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-846524

RESUMEN

Objective: To establish an HPLC fingerprint of Cnidii Fructus formula granule analysis method for simultaneous determination of six main coumarin components, including osthol, xanthotoxin, xanthotol, bergapten, imperatorin and isopimpinellin, in order to provide reference for the study of the material basis of Cnidii Fructus formula granule. Methods: The method was performed by high performance liquid chromatography with a Waters XBridge C18 (250 mm × 4.6 mm, 5 μm) column and methanol (A)-0.1% acetic acid (B) as the mobile phase for gradient elution. The flow rate was 0.5 mL/min, the injection volume was 10 μL and the column temperature was 40 ℃. The detection wavelength was set at 320 nm. The chromatographic fingerprint evaluation system published by the State Pharmacopoeia Commission (2012 Edition) was used to establish the fingerprint of Cnidii Fructus formula granule, and the content of six main coumarin components was simultaneously determined. Results: The research on the 18 batches of Cnidii Fructus formula granule showed that the fingerprint similarity was greater than 0.992 and 19 common peaks were calibrated with satisfied peak resolution. The content determination results showed that the content of both xanthotoxin and osthol were the main coumarin components in Cnidii Fructus formula granule. According to the methodological investigation, the precision RSD values were all less than 1.6%. The sample was stable within 48 h and this method had good repeatability. The average recovery rates of xanthotol, xanthotoxin, imperatorin, isopimpinellin, bergapten and osthol were 100.69%, 101.03%, 99.48%, 100.88%, 101.27% and 100.35%, respectively. All of these coumarin components’ RSD were less than 2.5%. The six components showed a good linear relationship within a certain concentration range. The results of the content determination of xanthotol, xanthotoxin, isopimpinellin, bergapten, imperatorin and osthol respectively were 8.01-8.29, 2.37-2.63, 4.30-4.61, 4.04-4.40, 3.45-3.90 and 6.02-6.80 mg/g among the 18 batches of the Cnidii Fructus formula granule. Conclusion: The fingerprint method and the determination method of six main coumarin components in the Cnidii Fructus formula granule established in this study are simple, stable, accurate and reliable. This method can be used for the quality control of the Cnidii Fructus formula granule.

20.
Int J Pharm ; 572: 118776, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31678374

RESUMEN

A comprehensive cocrystal study for the insoluble natural pharmaceutical compound xanthotoxin (XT) was conducted, in which xanthotoxin-para aminobenzoic acid (XT-PABA) and xanthotoxin-oxalic acid (XT-OA) cocrystals were obtained. The xanthotoxin cocrystals were characterized by powder X-ray diffraction, thermal analysis, and FT-IR spectra, and the crystal structures were determined by single-crystal X-ray diffraction. Crystal structures and thermal analysis showed that XT-OA was more stable than XT-PABA. Energy framework calculation indicated that H-bond and π···π interactions generated in XT-OA were stronger than that in XT-PABA and xanthotoxin. The powder dissolution experiments of xanthotoxin and its cocrystals suggested the XT-OA cocrystal might be applied as an alternative formulation of API, on account of its enhanced solubility and stability in the hydrochloric acid buffer solution (pH 1.2). The cocrystallization engineering can prolong the enhanced apparent solubility via modulating the stability.


Asunto(s)
Metoxaleno/química , Solubilidad/efectos de los fármacos , Ácido 4-Aminobenzoico/química , Cristalización/métodos , Cristalografía por Rayos X/métodos , Estabilidad de Medicamentos , Enlace de Hidrógeno , Ácido Oxálico/química , Difracción de Polvo/métodos , Polvos/química , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA