Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(6): e14781, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887195

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE: This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS: We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS: This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS: The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Quimiocinas C , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Animales , Quimiocinas C/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Neuroinflamatorias/inmunología
2.
Int J Cancer ; 154(12): 2176-2188, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346928

RESUMEN

Conventional type 1 dendritic cells (cDC1s) play a crucial role in antitumor immunity through the induction and activation of tumor-specific CD8+ cytotoxic T cells (CTLs). The chemokine XCL1 is a major chemotactic factor for cDC1s and its receptor XCR1 is selectively expressed on cDC1s. Here, we investigated the effect of intratumoral delivery of a highly active form of murine XCL1 (mXCL1-V21C/A59C) on cDC1-mediated antitumor immunity using a hydrophilic gel patch. The hydrophilic gel patch containing mXCL1-V21C/A59C increased cDC1 accumulation in the tumor masses and promoted their migration to the regional lymph nodes, resulting in enhanced induction of tumor-specific CTLs. Tumor-infiltrating cDC1s not only expressed XCR1 but also produced CXCL9, a ligand for CXCR3 which is highly expressed on CTLs and NK cells. Consequently, CTLs and NK cells were increased in the tumor masses of mice treated with mXCL1-V21C/A59C, while immunosuppressive cells such as monocyte-derived suppressive cells and regulatory T cells were decreased. We also confirmed that anti-CXCL9 treatment decreased the tumor infiltration of CTLs. The intratumoral delivery of mXCL1-V21C/A59C significantly decreased tumor growth and prolonged survival in E.G7-OVA and B16-F10 tumor-bearing mice. Furthermore, the antitumor effect of mXCL1-V21CA59C was enhanced in combination with anti-programmed cell death protein 1 treatment. Finally, using The Cancer Genome Atlas database, we found that XCL1 expression was positively correlated with tumor-infiltrating cDC1s and a better prognosis in melanoma patients. Collectively, our findings provide a novel therapeutic approach to enhance tumor-specific CTL responses through the selective recruitment of CXCL9-expressing cDC1s into the tumor masses.


Asunto(s)
Quimiocinas C , Melanoma , Humanos , Ratones , Animales , Linfocitos T Citotóxicos , Células Asesinas Naturales , Melanoma/metabolismo , Células Dendríticas , Linfocitos T CD8-positivos , Quimiocina CXCL9/metabolismo , Quimiocinas C/genética
3.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339158

RESUMEN

With the advent of cancer immunotherapy, there is a growing interest in vaccine development as a means to activate the cellular immune system against cancer. Despite the promise of DNA vaccines in this regard, their effectiveness is hindered by poor immunogenicity, leading to modest therapeutic outcomes across various cancers. The role of Type 1 conventional dendritic cells (cDC1), capable of cross-presenting vaccine antigens to activate CD8+T cells, emerges as crucial for the antitumor function of DNA vaccines. To address the limitations of DNA vaccines, a promising approach involves targeting antigens to cDC1 through the fusion of XCL1, a ligand specific to the receptor XCR1 on the surface of cDC1. Here, female C57BL/6 mice were selected for tumor inoculation and immunotherapy. Additionally, recognizing the complexity of cancer, this study explored the use of combination therapies, particularly the combination of cDC1-targeted DNA vaccine with the chemotherapy drug Gemcitabine (Gem) and the anti-PD1 antibody in a mouse lung cancer model. The study's findings indicate that fusion antigens with XCL1 effectively enhance both the immunogenicity and antitumor effects of DNA vaccines. Moreover, the combination of the cDC1-targeted DNA vaccine with Gemcitabine and anti-PD1 antibody in the mouse lung cancer model demonstrates an improved antitumor effect, leading to the prolonged survival of mice. In conclusion, this research provides important support for the clinical investigation of cDC1-targeting DNA vaccines in combination with other therapies.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Pulmonares , Vacunas de ADN , Animales , Femenino , Ratones , Linfocitos T CD8-positivos , Células Dendríticas , Gemcitabina , Neoplasias Pulmonares/terapia , Ratones Endogámicos C57BL , Vacunas de ADN/inmunología , Vacunas de ADN/uso terapéutico , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico
4.
Front Immunol ; 14: 1192057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077365

RESUMEN

Dendritic cells (DC) play a crucial role in generating and maintaining antiviral immunity. While DC are implicated in the antiviral defense by inducing T cell responses, they can also become infected by Cytomegalovirus (CMV). CMV is not only highly species-specific but also specialized in evading immune protection, and this specialization is in part due to characteristic genes encoded by a given virus. Here, we investigated whether rat CMV can infect XCR1+ DC and if infection of DC alters expression of cell surface markers and migration behavior. We demonstrate that wild-type RCMV and a mutant virus lacking the γ-chemokine ligand xcl1 (Δvxcl1 RCMV) infect splenic rat DC ex vivo and identify viral assembly compartments. Replication-competent RCMV reduced XCR1 and MHCII surface expression. Further, gene expression of infected DC was analyzed by bulk RNA-sequencing (RNA-Seq). RCMV infection reverted a state of DC activation that was induced by DC cultivation. On the functional level, we observed impaired chemotactic activity of infected XCR1+ DC compared to mock-treated cells. We therefore speculate that as a result of RCMV infection, DC exhibit diminished XCR1 expression and are thereby blocked from the lymphocyte crosstalk.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Ratas , Animales , Citomegalovirus/genética , Linfocitos T/metabolismo , Infecciones por Citomegalovirus/metabolismo , Células Dendríticas
5.
J Nanobiotechnology ; 21(1): 424, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964304

RESUMEN

The African swine fever (ASF) pandemics pose a significant threat to the global swine industry, and the development of safe and effective vaccines is a daunting but necessary challenge. The level and persistence of immunity are very important for the effectiveness of the vaccine. Targeting antigens to antigen presenting cells (APCs) can greatly enhance immunogenicity. In this study, we developed a self-assembled nano-ASFV vaccine candidate (NanoFVax) targeting DCs, by covalently coupling the self-assembled 24-mer ferritin with the dominant B and T cell epitopes of the highly immunogenic ASFV antigen (p72, CD2v, pB602L and p30) and fused with the chemokine receptor XCL1 (a DC targeting molecule) through the SpyTag/SpyCatcher protein ligase system. Compared to monomeric protein, the nanoparticle vaccines can induce a more robust T-cell response, and the high-level antibody response against ASFV can last for more than 231 days. Therefore, the NanoFVax is a novel and promising vaccine candidate for ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Fiebre Porcina Africana/prevención & control , Nanovacunas , Epítopos de Linfocito T , Inmunidad
6.
Front Vet Sci ; 10: 1225764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026637

RESUMEN

Cutaneous T-cell lymphoma (CTCL) is an uncommon type of lymphoma involving malignant skin-resident or skin-homing T cells. Canine epitheliotropic lymphoma (EL) is the most common form of CTCL in dogs, and it also spontaneously arises from T lymphocytes in the mucosa and skin. Clinically, it can be difficult to distinguish early-stage CTCLs apart from other forms of benign interface dermatitis (ID) in both dogs and people. Our objective was to identify novel biomarkers that can distinguish EL from other forms of ID, and perform comparative transcriptomics of human CTCL and canine EL. Here, we present a retrospective gene expression study that employed archival tissue from biorepositories. We analyzed a discovery cohort of 6 canines and a validation cohort of 8 canines with EL which occurred spontaneously in client-owned companion dogs. We performed comparative targeted transcriptomics studies using NanoString to assess 160 genes from lesional skin biopsies from the discovery cohort and 800 genes from the validation cohort to identify any significant differences that may reflect oncogenesis and immunopathogenesis. We further sought to determine if gene expression in EL and CTCL are conserved across humans and canines by comparing our data to previously published human datasets. Similar chemokine profiles were observed in dog EL and human CTCL, and analyses were performed to validate potential biomarkers and drivers of disease. In dogs, we found enrichment of T cell gene signatures, with upregulation of IFNG, TNF, PRF1, IL15, CD244, CXCL10, and CCL5 in EL in dogs compared to healthy controls. Importantly, CTSW, TRAT1 and KLRK1 distinguished EL from all other forms of interface dermatitis we studied, providing much-needed biomarkers for the veterinary field. XCL1/XCL2 were also highly specific of EL in our validation cohort. Future studies exploring the oncogenesis of spontaneous lymphomas in companion animals will expand our understanding of these disorders. Biomarkers may be useful for predicting disease prognosis and treatment responses. We plan to use our data to inform future development of targeted therapies, as well as for repurposing drugs for both veterinary and human medicine.

7.
Cell Rep ; 42(11): 113294, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37883230

RESUMEN

Bordetella spp. are respiratory pathogens equipped with immune evasion mechanisms. We previously characterized a Bordetella bronchiseptica mutant (RB50ΔbtrS) that fails to suppress host responses, leading to rapid clearance and long-lasting immunity against reinfection. This work revealed eosinophils as an exclusive requirement for RB50ΔbtrS clearance. We also show that RB50ΔbtrS promotes eosinophil-mediated B/T cell recruitment and inducible bronchus-associated lymphoid tissue (iBALT) formation, with eosinophils being present throughout iBALT for Th17 and immunoglobulin A (IgA) responses. Finally, we provide evidence that XCL1 is critical for iBALT formation but not maintenance, proposing a novel role for eosinophils as facilitators of adaptive immunity against B. bronchiseptica. RB50ΔbtrS being incapable of suppressing eosinophil effector functions illuminates active, bacterial targeting of eosinophils to achieve successful persistence and reinfection. Overall, our discoveries contribute to understanding cellular mechanisms for use in future vaccines and therapies against Bordetella spp. and extension to other mucosal pathogens.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Bordetella , Humanos , Eosinófilos , Infecciones por Bordetella/microbiología , Infecciones por Bordetella/prevención & control , Reinfección
8.
Microb Pathog ; 174: 105962, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36572194

RESUMEN

The XCL1-XCR1 axis has a potential role in the recruitment of immune cells to the site of inflammation. The present study aimed to examine the relation of XCL1 serum levels with Multiple sclerosis (MS) and HTLV-1-associated myelopathy (HAM), as chronic inflammatory diseases of the central nervous system (CNS). DNA was extracted to evaluate HTLV-1 proviral load (PVL) using real-time PCR. Serum levels of XCL1 was determined by using an ELISA assay. The serum level of XCL1 was significantly higher in patients with HAM than that of asymptomatic carriers (ACs) and healthy controls (HCs) (p < 0.001 and p < 0.0001, respectively) and was also higher in MS patients compared to HCs (p < 0.0001). Moreover, the concentration of XCL1 serum level was significantly different between the ACs and HCs group (p < 0.0001). In conclusion, increased expression of XCL1 might contribute to the migration of autoreactive T cells to the central nervous system and play a critical role in the development and pathogenesis of inflammatory neurological diseases including HAM and MS.


Asunto(s)
Quimiocinas C , Virus Linfotrópico T Tipo 1 Humano , Esclerosis Múltiple , Paraparesia Espástica Tropical , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Biomarcadores , Sistema Nervioso Central , Carga Viral
9.
Transl Cancer Res ; 11(8): 2501-2522, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36093524

RESUMEN

Background: The interplay between tumor-infiltrating immune cells and cancer cells affects cancer initiation, progression, and treatment. C chemokines are critically involved in immune cell chemotaxis, self-tolerance formation, antigen cross-presentation, and cytotoxic immune response. However, their roles in cancer development are still largely unknown. Methods: We comprehensively analyzed the expression, prognostic value, functions, and immune implication of C chemokines in clear cell renal cell carcinoma (ccRCC) using multiple databases. Besides, we detected the expression of C chemokines in RCC cell lines using quantitative real-time polymerase chain reaction (qPCR). Results: Through analyzing The Cancer Genome Atlas (TCGA), Oncomine and Gene Expression Omnibus (GEO) ccRCC datasets, we found that C chemokines were significantly upregulated in ccRCC tumor tissues and associated with tumor progression. Besides, qPCR revealed the overexpression of C chemokines in RCC cell lines. Promoter hypomethylation was a potential factor causing the upregulation of C chemokines. ccRCC patients with higher levels of C chemokines had significantly poorer overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS). C chemokines and related genes were involved mainly in cytokine-cytokine receptor interactions and the chemokine signaling and Toll-like receptor signaling pathways. Correlation analysis revealed a positive correlation between C chemokines and the infiltration of 25 immune cell subtypes, many of which affected the prognosis of ccRCC. Moreover, C chemokines were positively correlated with the expression of genes associated with M2 macrophage polarization and T-cell exhaustion, and the expression of several immune checkpoints in ccRCC. Conclusions: Our research provides preliminary insights into the prognostic value and immune implication of C chemokines in ccRCC, which is conducive to the prediction of survival and immunotherapy response, and the development of novel therapeutic targets for ccRCC.

10.
Biosci Rep ; 42(7)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35792753

RESUMEN

Atherosclerosis, which is the fundamental basis for cardiovascular diseases in the global world, is driven by multiple roles of the immune system in the circulation and vascular plaque. Recent studies demonstrated that T-cell infiltrates into aorta plaque and plays an important role in recruiting macrophages to the vascular wall. Here, using single-cell sequencing, we found T cells in patients' plaques and differentially expressed genes (DEGs) of T cells in atherosclerosis mice. T cells and macrophages were continuously activated in atherosclerotic plaque in patients. Besides, other immune cells also take part in atherogenesis, such as natural killer (NK) cells, granulocytes. Interferon (IFN)/NFκB signaling, the AKT signaling pathway was highly activated in mouse (in vivo) and cell line (in vitro). TCF7 and XCL1 were regulated by AKT and NFκB, respectively through protein-protein network analysis. Therefore, we attempt to clarify and discover potential genes and new mechanisms associated with atherosclerosis for drug development.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Factor Nuclear 1-alfa del Hepatocito , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Placa Aterosclerótica/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
11.
Vaccines (Basel) ; 10(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335039

RESUMEN

SARS-CoV-2 spike (S) variants that may evade antibody-mediated immunity are emerging. Evidence shows that vaccines with a stronger immune response are still effective against mutant strains. Here, we report a targeted type 1 conventional dendritic (cDC1) cell strategy for improved COVID-19 vaccine design. cDC1 cells specifically express X-C motif chemokine receptor 1 (Xcr1), the only receptor for chemokine Xcl1. We fused the S gene sequence with the Xcl1 gene to deliver the expressed S protein to cDC1 cells. Immunization with a plasmid encoding the S protein fused to Xcl1 showed stronger induction of antibody and antigen-specific T cell immune responses than immunization with the S plasmid alone in mice. The fusion gene-induced antibody also displayed more powerful SARS-CoV-2 wild-type virus and pseudovirus neutralizing activity. Xcl1 also increased long-lived antibody-secreting plasma cells in bone marrow. These preliminary results indicate that Xcl1 serves as a molecular adjuvant for the SARS-CoV-2 vaccine and that our Xcl1-S fusion DNA vaccine is a potential COVID-19 vaccine candidate for use in further translational studies.

12.
Front Immunol ; 13: 1058204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618360

RESUMEN

Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.


Asunto(s)
Buprenorfina , Quimiocinas C , Neuralgia , Traumatismos de los Nervios Periféricos , Ratones , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Neuralgia/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/uso terapéutico , Morfina/farmacología , Morfina/uso terapéutico , Buprenorfina/uso terapéutico , Animales de Laboratorio , Receptores de Quimiocina/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Integrinas/uso terapéutico , Quimiocinas C/genética
13.
Scand J Immunol ; 95(3): e13128, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34923667

RESUMEN

Targeting antigens to dendritic cells represent a promising method for enhancing immune responses against specific antigens. However, many studies have focused on systemic delivery (intravenous or intraperitoneally) of targeted antigen, approaches that are not easily transferable to humans. Here we evaluate the efficacy of an influenza vaccine targeting Xcr1+ cDC1 administered by intranasal immunization. Intranasal delivery of antigen fused to the chemokine Xcl1, the ligand of Xcr1, resulted in specific uptake by lung CD103+ cDC1. Interestingly, intranasal immunization with influenza A/PR/8/34 haemagglutinin (HA) fused to Xcl1, formulated with poly(I:C), resulted in enhanced induction of antigen-specific IFNγ+ CD4+ and IFNγ+ CD8+ T cell responses in lung compared non-targeted anti-NIP-HA (αNIP-HA). Induction of antibody responses was, however, similar in Xcl1-HA and αNIP-HA immunized mice, but significantly higher than in mice immunized with monomeric HA. Both Xcl1-HA and αNIP-HA vaccines induced full protection when mice were challenged with a lethal dose of influenza PR8 virus, reflecting the strong induction of HA-specific antibodies. Our results demonstrate that i.n. delivery of Xcl1-HA is a promising vaccine strategy for enhancing T cell responses in addition to inducing strong antibody responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiocinas C/metabolismo , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Poli I-C/inmunología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Antígenos/inmunología , Antígenos CD/inmunología , Línea Celular , Células Dendríticas/inmunología , Perros , Femenino , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Cadenas alfa de Integrinas/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C
14.
Medicina (Kaunas) ; 57(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34833360

RESUMEN

Both clinical-pathological and experimental studies have shown that chemokines play a key role in activating the immune checkpoint modulator in cervical cancer progression and are associated with prognosis in tumor cell proliferation, invasion, angiogenesis, chemoresistance, and immunosuppression. Therefore, a clear understanding of chemokines and immune checkpoint modulators is essential for the treatment of this disease. This review discusses the origins and categories of chemokines and the mechanisms that are responsible for activating immune checkpoints in cervical dysplasia and cancer, chemokines as biomarkers, and therapy development that targets immune checkpoints in cervical cancer research.


Asunto(s)
Neoplasias del Cuello Uterino , Quimiocinas , Femenino , Humanos , Pronóstico
15.
Cancers (Basel) ; 13(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34359727

RESUMEN

Pembrolizumab has been approved as first-line treatment for advanced Non-small cell lung cancer (NSCLC) patients with tumors expressing PD-L1 and in the absence of other targetable alterations. However, not all patients that meet these criteria have a durable benefit. In this monocentric study, we aimed at refining the selection of patients based on the expression of immune genes. Forty-six consecutive advanced NSCLC patients treated with pembrolizumab in first-line setting were enrolled. The expression levels of 770 genes involved in the regulation of the immune system was analysed by the nanoString system. PD-L1 expression was evaluated by immunohistochemistry. Patients with durable clinical benefit had a greater infiltration of cytotoxic cells, exhausted CD8, B-cells, CD45, T-cells, CD8 T-cells and NK cells. Immune cell scores such as CD8 T-cell and NK cell were good predictors of durable response with an AUC of 0.82. Among the immune cell markers, XCL1/2 showed the better performance in predicting durable benefit to pembrolizumab, with an AUC of 0.85. Additionally, CD8A, CD8B and EOMES showed a high specificity (>0.86) in identifying patients with a good response to treatment. In the same series, PD-L1 expression levels had an AUC of 0.61. The characterization of tumor microenvironment, even with the use of single markers, can improve patients' selection for pembrolizumab treatment.

16.
Pathogens ; 10(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204234

RESUMEN

Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α-ß monomer) and an alternate fold (an all-ß dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associated with fungal membrane disruption and could allow XCL1 to overcome candidal resistance by switching folds. This work provides inspiration for the future design of switchable, multifunctional antifungal therapeutics.

17.
Cancers (Basel) ; 13(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065346

RESUMEN

Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.

18.
Trends Biochem Sci ; 46(6): 433-434, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33752957

RESUMEN

In a recent study, Dishman et al. resurrected ancestors of the metamorphic chemokine, XCL1, inferred through phylogenetics, and found that metamorphism arose in the XCL1 lineage ~150 million years ago. A zigzagging evolutionary path suggests that the metamorphic properties are adaptive and reveals three design principles that could be used for technological applications.


Asunto(s)
Quimiocinas C
19.
Biopolymers ; 112(10): e23402, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32986858

RESUMEN

The metamorphic protein XCL1 switches between two distinct native structures with different functions in the human immune system. This structural interconversion requires complete rearrangement of all hydrogen bonding networks, yet fold-switching occurs spontaneously and reversibly in solution. One structure occupies the canonical α-ß chemokine fold and binds XCL1's cognate G-protein coupled receptor, while the other structure occupies a dimeric, all-ß fold that binds glycosaminoglycans and has antimicrobial activity. Both of these functions are important for the biologic role of XCL1 in the immune system, and each structure is approximately equally populated under near-physiologic conditions. Recent work has begun to illuminate XCL1's role in combatting infection and cancer. However, without a way to control XCL1's dynamic structural interconversion, it is difficult to study the role of XCL1 fold-switching in human health and disease. Thus, a molecular tool that can regulate the fractional population of the two XCL1 structures is needed. Here, we find by heparin affinity chromatography and NMR that an engineered XCL1 variant called CC5 can trigger a dose-dependent shift in XCL1's metamorphic equilibrium such that the receptor binding structure is depleted, and the antimicrobial structure is more heavily populated. This shift likely occurs due to formation of XCL1-CC5 heterodimers in which both protomers occupy the ß-sheet structure. These findings lay the groundwork for future studies seeking to understand the functional role of XCL1 metamorphosis, as well as studies screening for a drug-like molecule that can therapeutically target XCL1 by tuning its metamorphic equilibrium. Moreover, the proof of concept presented here suggests that protein metamorphosis is druggable, opening numerous avenues for controlling biological function of metamorphic proteins by altering the population of their multiple native states.


Asunto(s)
Quimiocinas C , Quimiocinas C/metabolismo , Glicosaminoglicanos , Heparina , Humanos , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo
20.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374849

RESUMEN

Chemokine-receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial-mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in ß-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1-XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular , Quimiocinas C/metabolismo , Transducción de Señal , Células A549 , Transición Epitelial-Mesenquimal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA