RESUMEN
Background: The Recife Metropolitan Region (RMR), north-eastern Brazil, was the epicentre of the 2015 Zika virus (ZIKV) epidemic, which was followed by a 2016 chikungunya virus (CHIKV) epidemic. It historically has amongst the highest incidence of dengue virus (DENV) infections and is the only remaining focus of lymphatic filariasis (LF) in Brazil. In early 2015, a molecular xenomonitoring surveillance project focused on Culex (Cx.) quinquefasciatus commenced to inform LF elimination activities. Aedes (Ae.) aegypti mosquitoes were also collected, concurrent with the first microcephaly cases detected in the RMR. In terms of the 2015 ZIKV epidemic, these are the earliest known field-collected mosquitoes, preserved for potential RNA virus detection, when ZIKV was known to be circulating locally. Methods: Adult mosquitoes were collected in two sites (0.4 km 2) of Sítio Novo, Olinda, RMR, from July 22 to August 21, 2015. Mosquitoes were morphologically identified, sorted by physiological status, and pooled (up to 10 mosquitoes per house per day or week). RNA was extracted, reverse transcribed and the cDNA tested by real-time PCR. Results: A total of 10,139 adult female Cx. quinquefasciatus and 939 adult female Ae. aegypti were captured. All female Ae. aegypti specimens were included within 156 pools and screened for ZIKV, DENV and CHIKV. In addition, a sub-set of 1,556 Cx. quinquefasciatus adult females in 182 pools were screened for ZIKV. No evidence of infection with any of the three arboviruses was found. Conclusions: The absence of arbovirus detection may have been expected given the extremely restricted geographic area and collection of mosquitoes during a very short time period of peak mosquito abundance (July-September), but low arbovirus circulation (November-March). However, this study demonstrates the potential to retrospectively screen for additional unexpected pathogens in situations of rapid emergence, such as occurred during the outbreak of ZIKV in the RMR.
RESUMEN
A progressive increase in the circulation of arboviruses in tropical countries has been observed, accounting for 700,000 yearly deaths in the world. The main objective of this article was to identify the presence of Zika (ZIKV), dengue (DENV), and Chikungunya (CHIKV) viruses in immature stages of Aedes aegypti and Ae. albopictus. Household collections of immature phases of the vectors were carried out in the years 2015 and 2016. A total of 2902 dwellings were visited and the rate of infestation with larvae and pupae of Aedes mosquitoes was 283/1462 (19.4%) in March 2015 and 55/1440 (3.8%) in June 2015. In March 2015, 907 larvae/pupae were collected (583 or 64.3% of Ae. aegypti and 324 or 35.7% of Ae. albopictus) while in June 2015 there was a reduction in the number of immature forms found: 197 larvae/pupae (121 or 61.4% of Ae. aegypti and 76 or 38.6% of Ae. albopictus). This reduction was accompanied by a decrease in suspected human ZIKV cases from March to June 2015. The RT-qPCR performed in 18 pools identified that three (two of Ae. aegypti and one of Ae. albopictus) were positive for ZIKV, and none were positive for DENV or CHIKV. Our findings demonstrated that ZIKV was present in immature stages of insect vectors in the study region at least five months prior to the peak of ZIKV associated cases. Xenomonitoring of immature phases of the vectors may prove useful for predicting outbreaks.
Asunto(s)
Humanos , Animales , Virus Chikungunya/aislamiento & purificación , Aedes/virología , Virus del Dengue/aislamiento & purificación , Virus Zika/aislamiento & purificación , Mosquitos Vectores/virología , Estaciones del Año , ARN Viral/análisis , Aedes/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Infección por el Virus Zika/transmisión , Mosquitos Vectores/clasificaciónRESUMEN
OBJECTIVE: To study the distribution of vertical transmission of dengue viruses in field-collected Aedes aegypti larvae in the municipality of Arroyo Naranjo in Havana, Cuba. METHODS: Aedes aegypti larvae and pupae were collected monthly between September 2013 and July 2014 in the seven Municipal Health Areas of Arroyo Naranjo. Pools formed of 30-55 larvae were examined through PCR and sequencing to detect the presence of each serotype. RESULTS: We analysed 111 pools of larvae and pupae (4102 individuals) of which 37 tested positive for at least one DENV. More than one DENV type was observed in 10 of the 37 positive pools. Infected pools were detected every month, except in January, suggesting a sustained circulation of DENV in the vector populations. DENV-1 and DENV-3 were the most frequent and dispersed, though all four DENV types were detected. Nucleotide sequencing from positive pools confirmed RT-PCR results for DENV-1 (genotype V), DENV-3 (genotype III) and DENV-4 (genotype II). DENV-2 was detected by RT-PCR but could not be confirmed by nucleotide sequencing. CONCLUSION: Our study of the distribution of natural vertical transmission of dengue virus types highlights extrinsic virus activity patterns in the area and could be used as a new surveillance tool.