Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Anticancer Res ; 44(10): 4147-4153, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39348982

RESUMEN

Epithelioid hemangioendothelioma (EHE) is a rare malignant vascular tumor arising from vascular endothelial cells. This study delves into the molecular mechanisms underlying EHE, with a specific focus on the Hippo-YAP/TAZ pathway. EHE is characterized molecularly by transcriptional co-activator with a PDZ-motif (TAZ)-calmodulin binding transcription activator 1 (CAMTA1) or Yes-associated protein (YAP)-transcription factor E3 (TFE3) fusions. YAP/TAZ, a transcription co-activator, binds to transcription factors and regulates gene expression. The YAP/TAZ and its upstream Hippo pathway are involved in cell proliferation and cell contact inhibition, regulating organ size and carcinogenesis. In addition to oncogenic effects, dysfunction or gene duplication of the Hippo pathway results in a poor prognosis due to epithelial-mesenchymal transformation of epithelial cells, stem cell transformation, and increased drug resistance. Notably, the TAZ-CAMTA1 fusion is specific to EHE, and genetic alterations in the Hippo pathway other than this fusion gene are absent in EHE. The TAZ-CAMTA1 fusion is a promising therapeutic target. This review summarizes recent advances in EHE, focusing on the role of the Hippo-YAP/TAZ pathway in EHE and its potential as a therapeutic target for drug development.


Asunto(s)
Hemangioendotelioma Epitelioide , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Humanos , Hemangioendotelioma Epitelioide/metabolismo , Hemangioendotelioma Epitelioide/patología , Hemangioendotelioma Epitelioide/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Señalizadoras YAP/metabolismo , Terapia Molecular Dirigida , Animales
2.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39337493

RESUMEN

Hippo-YAP/TAZ and Wnt/ß-catenin signaling pathways, by controlling proliferation, migration, cell fate, stemness, and apoptosis, are crucial regulators of development and tissue homeostasis. We employed zebrafish embryos as a model system to elucidate in living reporter organisms the crosstalk between the two signaling pathways. Co-expression analysis between the Wnt/ß-catenin Tg(7xTCF-Xla.Siam:GFP)ia4 and the Hippo-Yap/Taz Tg(Hsa.CTGF:nlsmCherry)ia49 zebrafish reporter lines revealed shared spatiotemporal expression profiles. These patterns were particularly evident in key developmental regions such as the midbrain-hindbrain boundary (MHB), epidermis, muscles, neural tube, notochord, floorplate, and otic vesicle. To investigate the relationship between the Wnt/ß-catenin pathway and Hippo-Yap/Taz signaling in vivo, we conducted a series of experiments employing both pharmacological and genetic strategies. Modulation of the Wnt/ß-catenin pathway with IWR-1, XAV939, or BIO resulted in a significant regulation of the Yap/Taz reporter signal, highlighting a clear correlation between ß-catenin and Yap/Taz activities. Furthermore, genetic perturbation of the Wnt/ß-catenin pathway, by APC inhibition or DKK1 upregulation, elicited evident and robust alteration of Yap/Taz activity. These findings revealed the intricate regulatory mechanisms underlying the crosstalk between the Wnt/ß-catenin and Hippo-Yap/Taz signaling, shedding light on their roles in orchestrating developmental processes in vivo.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Vía de Señalización Wnt , Proteínas Señalizadoras YAP , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Desarrollo Embrionario/genética , Proteínas Señalizadoras YAP/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
3.
Dev Cell ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39232563

RESUMEN

Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In Phf16-/Y mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of Phf16-/Y intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.

4.
FEBS Open Bio ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256894

RESUMEN

To improve the translation of preclinical cancer research data to successful clinical effect, there is an increasing focus on the use of primary patient-derived cancer cells with limited growth in culture to reduce genetic and phenotype drift. However, these primary lines are less amenable to standardly used methods of exogenous DNA introduction. Adeno-associated viral (AAV) vectors display tropism for a wide range of human tissues, avidly infect primary cells and have a good safety profile. In the present study, we therefore used a next-generation sequencing (NGS) barcoded AAV screening method to assess transduction capability of a panel of 36 AAVs in primary cell lines representing high-grade glioma (HGG) brain tumours including glioblastoma (GBM) and diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). As proof of principle, we created a reporter construct to analyse activity of the transcriptional co-activators yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). Transcriptional activation was monitored by promoter-driven expression of the Timer fluorescent tag, a protein that fluoresces green immediately after transcription and transitions to red fluorescence over time. As expected, attempts to express the reporter in primary HGG cells from plasmid expression vectors were unsuccessful. Using the top candidate from the AAV screen, we demonstrate successful AAV-mediated transduction of HGG cells with the YAP/TAZ dynamic activity reporter. In summary, the NGS-screening approach facilitated screening of many potential AAVs, identifying vectors that can be used to study the biology of primary HGG cells.

6.
ACS Biomater Sci Eng ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283699

RESUMEN

Without intervention, the natural wound healing process can often result in scarring, which can have detrimental effects on both the physical and mental well-being of patients. Therefore, it is crucial to develop biomaterials that can promote healing without scarring. Regulating the Yes-associated protein-1/PDZ-binding motif (YAP/TAZ) signaling pathway is possible to reduce excessive fibrosis of fibroblasts and proliferation of vascular endothelial cells, ultimately impacting scar formation. Arsenic trioxide (ATO), an ancient drug with medicinal and toxic properties, has shown promise in regulating this pathway. An ATO-loaded hydrogel dressing (ATO@CS/SA) was created to facilitate scarless wound healing, utilizing chitosan (CS) and sodium alginate (SA) to prevent direct contact of ATO with the wound tissue and minimize potential side effects. In vitro studies demonstrated that low concentrations of ATO did not impact cell viability and even promoted proliferation and migration. Co-culturing the hydrogel with fibroblasts and vascular endothelial cells led to decreased expression levels of YAP and TAZ. Animal studies over a 90-day period revealed significant inhibition of scar formation with this system. Histological experiments further confirmed that the decreased expression of YAP and TAZ was responsible for this outcome. In conclusion, when administered at the appropriate dose, ATO can be repurposed from a traditional poison to a therapeutic agent, effectively suppressing excessive cell fibrosis and blood vessel proliferation and offering a novel approach to scar-free treatment.

8.
Mechanobiol Med ; 2(4)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39281415

RESUMEN

Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.

9.
J Cell Mol Med ; 28(16): e70023, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39158533

RESUMEN

Astragalus polysaccharide-containing 3D-printed scaffold shows great potential in traumatic skin repair. This study aimed to investigate its repairing effect and to combine it with proteomic technology to deeply resolve the related protein expression changes. Thirty SD rats were divided randomly into three groups (n = 10 per group): the sham-operated group, the model group and the scaffold group. Subsequently, we conducted a comparative analysis on trauma blood perfusion, trauma healing rate, histological changes, the expression of the YAP/TAZ signalling pathway and angiogenesis-related factors. Additionally, neonatal skin tissues were collected for proteomic analysis. The blood perfusion volume and wound healing recovery in the scaffold group were better than that in the model group (p < 0.05). The protein expression of STAT3, YAP, TAZ and expression of vascular-related factor A (VEGFA) in the scaffold group was higher than that in the model group (p < 0.05). Proteomic analysis showed that there were 207 differential proteins common to the three groups. Mitochondrial function, immune response, redox response, extracellular gap and ATP metabolic process were the main groups of differential protein changes. Oxidative phosphorylation, metabolic pathway, carbon metabolism, calcium signalling pathway, etc. were the main differential metabolic pathway change groups. Astragalus polysaccharide-containing 3D-printed scaffold had certain reversals of protein disorder. The Astragalus polysaccharide-containing 3D-printed scaffold may promote the VEGFs by activating the YAP/TAZ signalling pathway with the help of STAT3 into the nucleus, accelerating early angiogenesis of the trauma, correcting the protein disorder of the trauma and ultimately realizing the repair of the wound.


Asunto(s)
Planta del Astrágalo , Polisacáridos , Impresión Tridimensional , Proteómica , Ratas Sprague-Dawley , Piel , Andamios del Tejido , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Proteómica/métodos , Polisacáridos/química , Planta del Astrágalo/química , Andamios del Tejido/química , Piel/metabolismo , Ratas , Transducción de Señal , Masculino
10.
R Soc Open Sci ; 11(8): 240284, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39144495

RESUMEN

Advanced in vitro culture systems have emerged as alternatives to animal testing and traditional cell culture methods in biomedical research. Polydimethylsiloxane (PDMS) is frequently used in creating sophisticated culture devices owing to its elastomeric properties, which allow mechanical stretching to simulate physiological movements in cell experiments. We introduce a straightforward method that uses three types of commercial tape-generic, magic and masking-to fabricate PDMS membranes with microscale thicknesses (47.2 µm for generic, 58.1 µm for magic and 89.37 µm for masking) in these devices. These membranes are shaped as the bases of culture wells and can perform cyclic radial movements controlled via a vacuum system. In experiments with A549 cells under three mechanical stimulation conditions, we analysed transcriptional regulators responsive to external mechanical stimuli. Results indicated increased nuclear yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) activity in both confluent and densely packed cells under cyclically mechanical strains (Pearson's coefficient (PC) of 0.59 in confluent and 0.24 in dense cells) compared with static (PC = 0.47 in confluent and 0.13 in dense) and stretched conditions (PC = 0.55 in confluent and 0.20 in dense). This technique offers laboratories without microfabrication capabilities a viable option for exploring cellular behaviour under dynamic mechanical stimulation using PDMS membrane-equipped devices.

11.
Cancers (Basel) ; 16(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39123485

RESUMEN

Although Hippo-YAP/TAZ pathway involvement has been extensively studied in the development of certain cancers, the involvement of this cascade in kidney cancer progression is not well-established and, therefore, will be the focus of this review. Renal cell carcinoma (RCC), the most prevalent kidney tumor subtype, has a poor prognosis and a high mortality rate. Core Hippo signaling inactivation (e.g., LATS kinases) leads to the nuclear translocation of YAP/TAZ where they bind to co-transcriptional factors such as TEAD promoting transcription of genes which initiates various fibrotic and neoplastic diseases. Loss of expression of LATS1/2 kinase and activation of YAP/TAZ correlates with poor survival in RCC patients. Renal-specific ablation of LATS1 in mice leads to the spontaneous development of several subtypes of RCC in a YAP/TAZ-dependent manner. Genetic and pharmacological inactivation of YAP/TAZ reverses the oncogenic potential in LATS1-deficient mice, highlighting the therapeutic benefit of network targeting in RCC. Here, we explore the unique upstream controls and downstream consequences of the Hippo-YAP/TAZ pathway deregulation in renal cancer. This review critically evaluates the current literature on the role of the Hippo pathway in RCC progression and highlights the recent scientific evidence designating YAP/TAZ as novel therapeutic targets against kidney cancer.

12.
ACS Appl Mater Interfaces ; 16(36): 47075-47088, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39196896

RESUMEN

The tumor-vascular interface is a critical component of the tumor microenvironment that regulates all of the dynamic interactions between a growing tumor and the endothelial lining of the surrounding vasculature. In this paper, we report the design and development of a custom-engineered tumor-vascular interface system for investigating the early stage tumor-mediated pro-angiogenic dysfunctional behavior of the endothelium. Using representative endothelial cells and triple negative breast cancer cell lines, we established a biomimetic interface between a three-dimensional tumor tissue across a mature, functional endothelial barrier using a magnetically hybrid-integrated tumor-vascular interface system, wherein vasculature-like features containing a monolayer of endothelial cell culture on porous microfluidic channel surfaces were magnetically attached to tumor spheroids generated on a composite polymer-hydrogel microwell plate and embedded in a collagen matrix. Tumor-mediated endothelial microdynamics were characterized by their hallmark behavior such as loss of endothelial adherens junctions, increased cell density, proliferation, and changes in cell spreading and corroborated with endothelial YAP/TAZ nuclear translocation. We further confirm the feasibility of drug-mediated reversal of this pro-angiogenic endothelial organization through two different signaling mechanisms, namely, inhibition of the vascular endothelial growth factor pathway and the Notch signaling pathway, thereby demonstrating the utility of the tumor-vascular interface platform for rapid, early stage prediction of antiangiogenic drug efficacy. Overall, our work emphasizes the importance of our strategic engineering approach for identifying some unique, physiologically relevant aspects of the tumor-vascular interface, which are otherwise difficult to implement using standard in vitro approaches.


Asunto(s)
Dispositivos Laboratorio en un Chip , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Microambiente Tumoral/efectos de los fármacos
13.
J Ethnopharmacol ; 337(Pt 1): 118755, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209002

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary fibrosis (PF) is progressive and terminal lung disease, which is also the most common sequelae of Corona Virus Disease (2019) (COVID-19) survivors. Unfortunately, there is currently no cure for PF. ShaShen-MaiDong decoction (SMT), a traditional Chinese medicine, has been employed in treating various lung diseases, which may offer potential therapeutic benefits for PF. AIM OF THE STUDY: To investigate the antifibrotic efficacy of SMT and its major active ingredients as well as the underlying mechanisms for treating PF. MATERIALS AND METHODS: Fist, we build the UPLC-MS based qualitative and quantitative profiling for the quality control of SMT. Then, the antifibrotic efficacy of SMT was investigated in bleomycin (BLM)-induced PF mice model. Network pharmacology was used to predict the mechanism and active components of SMT for the treatment of PF, which was further verified in vitro and in vivo. RESULTS: SMT improved the weight loss and attenuated hydroxyproline, inflammatory cytokines, and collagen deposition in BLM-induced PF mice model in a dose-dependent manner. Mechanistically, as predicted by network pharmacology analysis, SMT and its active compounds (kaempferol, quercetin, and isorhamnetin) regulated the mitogen-activated protein kinase (MAPK) signaling pathways, TGF-ß/Smad signaling pathway, and YAP/TAZ signaling pathway, which was further verified in the PF mice and TGF-ß-induced A549 cell model. Moreover, SMT balanced the proportions of increased CD4+ and decreased CD8+ T cells in the peripheral blood of PF mice model. CONCLUSIONS: Considering the high mortality and complex pathogenesis of fibrotic diseases, our results provide novel evidence that SMT would be beneficial for pulmonary fibrosis therapy by modulating MAPK, TGF-ß/Smad, and YAP/TAZ signaling pathways at same time.

14.
J Cell Sci ; 137(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140137

RESUMEN

Mechanotransduction, which is the integration of mechanical signals from the external environment of a cell to changes in intracellular signaling, governs many cellular functions. Recent studies have shown that the mechanical state of the cell is also coupled to the cellular circadian clock. To investigate possible interactions between circadian rhythms and cellular mechanotransduction, we have developed a computational model that integrates the two pathways. We postulated that translocation of the transcriptional regulators MRTF (herein referring to both MRTF-A and MRTF-B), YAP and TAZ (also known as YAP1 and WWTR1, respectively; collectively denoted YAP/TAZ) into the nucleus leads to altered expression of circadian proteins. Simulations from our model predict that lower levels of cytoskeletal activity are associated with longer circadian oscillation periods and higher oscillation amplitudes, which is consistent with recent experimental observations. Furthermore, accumulation of YAP/TAZ and MRTF in the nucleus causes circadian oscillations to decay in our model. These effects hold both at the single-cell level and within a population-level framework. Finally, we investigated the effects of mutations in YAP or lamin A, the latter of which result in a class of diseases known as laminopathies. In silico, oscillations in circadian proteins are substantially weaker in populations of cells with mutations in YAP or lamin A, suggesting that defects in mechanotransduction can disrupt the circadian clock in certain disease states; however, reducing substrate stiffness in the model restores normal oscillatory behavior, suggesting a possible compensatory mechanism. Thus, our study identifies that mechanotransduction could be a potent modulatory cue for cellular clocks and that this crosstalk can be leveraged to rescue the circadian clock in disease states.


Asunto(s)
Relojes Circadianos , Mecanotransducción Celular , Proteínas Señalizadoras YAP , Humanos , Animales , Proteínas Señalizadoras YAP/metabolismo , Simulación por Computador , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transactivadores/metabolismo , Transactivadores/genética , Modelos Biológicos , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
15.
Stem Cells Transl Med ; 13(9): 912-926, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39077914

RESUMEN

Pulmonary fibrosis is a kind of fibrotic interstitial pneumonia with poor prognosis. Aging, environmental pollution, and coronavirus disease 2019 are considered as independent risk factors for pulmonary fibrogenesis. Consequently, the morbidity and mortality striking continues to rise in recent years. However, the clinical therapeutic efficacy is very limited and unsatisfactory. So it is necessary to develop a new effective therapeutic approach for pulmonary fibrosis. Human umbilical cord mesenchymal stem cells (hucMSCs) are considered as a promising treatment for various diseases because of their multiple differentiation and immunomodulatory function. The key bottleneck in the clinical application of hucMSCs therapy is the high-quality and large-scale production. This study used FloTrix miniSpin bioreactor, a three-dimensional (3D) cell culture system, for large-scale expansion of hucMSCs in vitro, and proved 3D cultured hucMSCs inhibited the differentiation of fibroblasts into myofibroblasts and myofibroblasts proliferation and migration, leading to slow down the development of pulmonary fibrosis. Further mechanistic studies clarified that hucMSCs reduced the amount of binding between circELP2 and miR-630, resulting in blocking YAP/TAZ translocation from cytoplasm to nucleus. This condition inhibited mitochondrial fusion and promoted mitochondrial fission, and ultimately improved fusion/fission balance and cellular homeostasis. To sum up, this work clarified the anti-fibrosis and mechanism of hucMSCs cultured from the 3D FloTrix miniSpin bioreactor. We hope to provide new ideas and new methods for the clinical transformation and industrialization of hucMSCs therapy.


Asunto(s)
Células Madre Mesenquimatosas , Dinámicas Mitocondriales , Fibrosis Pulmonar , Cordón Umbilical , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Cordón Umbilical/citología , Fibrosis Pulmonar/terapia , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Animales , Diferenciación Celular , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Proliferación Celular
16.
Genes Dis ; 11(5): 101061, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39071110

RESUMEN

Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.

17.
Chem Biol Interact ; 400: 111176, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084502

RESUMEN

Epithelial ovarian cancer is one of the most lethal gynecologic malignancies and poses a considerable threat to women's health. Although the progression-free survival of patients has been prolonged with the application of anti-angiogenesis drugs and Poly (ADP-ribose) polymerases (PARP) inhibitors, overall survival has not substantially improved. Thus, new therapeutic strategies are essential for the treatment of ovarian cancer. Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, has garnered attention for its potential anti-cancer activity. However, the anti-tumor effects and possible underlying mechanisms of NTZ on ovarian cancer remain unclear. In this study, we investigated the anti-tumor effects and the mechanism of NTZ on ovarian cancer in vitro and in vivo. We found that NTZ inhibited the proliferation of A2780 and SKOV3 epithelial ovarian cancer cells in a time- and concentration-dependent manner; Furthermore, NTZ suppressed the metastasis and invasion of A2780 and SKOV3 cells in vitro, correlating with the inhibition of epithelial-mesenchymal transition; Additionally, NTZ suppressed the Hippo/YAP/TAZ signaling pathway both in vitro and in vivo and demonstrated a good binding activity with core genes of Hippo pathway, including Hippo, YAP, TAZ, LATS1, and LATS2. Oral administration of NTZ inhibited tumor growth in xenograft ovarian cancer mice models without causing considerable damage to major organs. Overall, these data suggest that NTZ has therapeutic potential for treating epithelial ovarian cancer.


Asunto(s)
Antineoplásicos , Carcinoma Epitelial de Ovario , Proliferación Celular , Transición Epitelial-Mesenquimal , Ratones Desnudos , Nitrocompuestos , Neoplasias Ováricas , Tiazoles , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Nitrocompuestos/farmacología , Animales , Humanos , Tiazoles/farmacología , Tiazoles/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Elife ; 122024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046443

RESUMEN

The role of processing bodies (P-bodies) in tumorigenesis and tumor progression is not well understood. Here, we showed that the oncogenes YAP/TAZ promote P-body formation in a series of cancer cell lines. Mechanistically, both transcriptional activation of the P-body-related genes SAMD4A, AJUBA, and WTIP and transcriptional suppression of the tumor suppressor gene PNRC1 are involved in enhancing the effects of YAP/TAZ on P-body formation in colorectal cancer (CRC) cells. By reexpression of PNRC1 or knockdown of P-body core genes (DDX6, DCP1A, and LSM14A), we determined that disruption of P-bodies attenuates cell proliferation, cell migration, and tumor growth induced by overexpression of YAP5SA in CRC. Analysis of a pancancer CRISPR screen database (DepMap) revealed co-dependencies between YAP/TEAD and the P-body core genes and correlations between the mRNA levels of SAMD4A, AJUBA, WTIP, PNRC1, and YAP target genes. Our study suggests that the P-body is a new downstream effector of YAP/TAZ, which implies that reexpression of PNRC1 or disruption of P-bodies is a potential therapeutic strategy for tumors with active YAP.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinogénesis , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Humanos , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Carcinogénesis/genética , Línea Celular Tumoral , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Animales , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ratones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas con Dominio LIM
19.
Acta Pharmacol Sin ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886550

RESUMEN

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

20.
J Clin Med ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38929890

RESUMEN

Tissue fibrosis represents a complex pathological condition characterized by the excessive accumulation of collagenous extracellular matrix (ECM) components, resulting in impaired organ function. Fibroblasts are central to the fibrotic process and crucially involved in producing and depositing collagen-rich ECM. Apart from their primary function in ECM synthesis, fibroblasts engage in diverse activities such as inflammation and shaping the tissue microenvironment, which significantly influence cellular and tissue functions. This review explores the role of Yes-associated protein (Yap) and Transcriptional co-activator with PDZ-binding motif (Taz) in fibroblast signaling and their impact on tissue fibrosis. Gaining a comprehensive understanding of the intricate molecular mechanisms of Yap/Taz signaling in fibroblasts may reveal novel therapeutic targets for fibrotic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA