Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182703

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicación Viral , Animales , Ratones , Células RAW 264.7 , Replicación Viral/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/virología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Ratones Transgénicos , Pogostemon/química , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/virología , Pulmón/patología , Glucósidos/farmacología , Glucósidos/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Enzima Convertidora de Angiotensina 2/metabolismo , Antiinflamatorios/farmacología , Masculino , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Humanos
2.
Cell Signal ; : 111440, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357613

RESUMEN

AIM: Our study aimed to investigate whether BMSCs-derived exosomal miR-381 promotes Treg cell differentiation in lung ischemia-reperfusion injury (LIRI), and the underlying mechanism. METHODS: The in vitro and in vivo models of LIRI were established by hypoxia/reoxygenation (H/R) treatment and lung ischemia/reperfusion (I/R) surgery, respectively. BMSCs-derived exosomes were isolated and identified by western blot, nanoparticle tracking analysis, and transmission electron microscopy. Cell viability, proliferation, and apoptosis were assessed by CCK-8, EdU, and flow cytometry assay, respectively. IL-18 secretion level in lung microvascular endothelial cells (LMECs) and lung tissue homogenate was examined by ELISA. Treg cell differentiation was determined using flow cytometry. The relationships between miR-381, YTHDF1, and IL-18 were investigated using dual-luciferase reporter gene, RIP, and/or RNA pull-down assays. MeRIP assay was employed to determine m6A modification of IL-18 mRNA in LMECs. The ubiquitination level of Foxp3 protein in CD4+ T cells was analyzed by Co-IP assay. RESULTS: BMSCs-derived exosomes reduced LMECs injury and increased Treg cell differentiation in LIRI, whereas miR-381 inhibition in BMSCs weakened these impacts. Mechanistically, miR-381 inhibited IL-18 translation in LMECs by inhibiting YTHDF1 expression via binding to its 3'-UTR. As expected, YTHDF1 overexpression in LMECs abolished the effects of miR-381-overexpressed exosomes on LMECs injury and Treg cell differentiation. Moreover, LMECs-secreted IL-18 inhibited Treg cell differentiation by promoting the ubiquitination degradation of Foxp3 protein. CONCLUSION: BMSCs-derived exosomal miR-381 suppressed IL-18 translation in LMECs through binding to YTHDF1 3'-UTR, thus suppressing the ubiquitination degradation of Foxp3 in CD4+ T cells, which promoted Treg cell differentiation and mitigated LIRI development.

3.
BMC Med ; 22(1): 406, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304892

RESUMEN

BACKGROUND: Physical symptoms and aversion induced by opioid withdrawal strongly affect the management of opioid addiction. YTH N6-methyladenosine (m6A) RNA binding protein 1 (YTHDF1), an m6A-binding protein, from the periaqueductal gray (PAG) reportedly contributes to morphine tolerance and hyperalgesia. However, the role of YTHDF1 in morphine withdrawal remains unclear. METHODS: A naloxone-precipitated morphine withdrawal model was established in C57/BL6 mice or transgenic mice. YTHDF1 was knocked down via adeno-associated virus transfection. Combined with the results of the single-cell RNA sequencing analysis, the changes in morphine withdrawal somatic signs and conditioned place aversion (CPA) scores were compared when YTHDF1 originating from different neurons in the ventrolateral periaqueductal gray (vlPAG) was knocked down. We further explored the role of inflammatory factors and transcription factors related to inflammatory response in morphine withdrawal. RESULTS: Our results revealed that YTHDF1 expression was upregulated in the vlPAG of mice with morphine withdrawal and that the knockdown of vlPAG YTHDF1 attenuated morphine withdrawal-related somatic signs and aversion. The levels of NF-κB and p-NF-κB were reduced after the inhibition of YTHDF1 in the vlPAG. YTHDF1 from vlPAG inhibitory neurons, rather than excitatory neurons, facilitated morphine withdrawal responses. The inhibition of YTHDF1 in vlPAG somatostatin (Sst)-expressing neurons relieved somatic signs of morphine withdrawal and aversion, whereas the knockdown of YTHDF1 in cholecystokinin (Cck)-expressing or parvalbumin (PV)-expressing neurons did not change morphine withdrawal-induced responses. The activity of c-fos + neurons, the intensity of the calcium signal, the density of dendritic spines, and the frequency of mIPSCs in the vlPAG, which were increased in mice with morphine withdrawal, were decreased with the inhibition of YTHDF1 from vlPAG inhibitory neurons or Sst-expressing neurons. Knockdown of NF-κB in Sst-expressing neurons also alleviated morphine withdrawal-induced responses. CONCLUSIONS: YTHDF1 originating from Sst-expressing neurons in the vlPAG is crucial for the modulation of morphine withdrawal responses, and the underlying mechanism might be related to the regulation of the expression and phosphorylation of NF-κB.


Asunto(s)
Ratones Endogámicos C57BL , Morfina , Neuronas , Sustancia Gris Periacueductal , Proteínas de Unión al ARN , Síndrome de Abstinencia a Sustancias , Animales , Síndrome de Abstinencia a Sustancias/metabolismo , Sustancia Gris Periacueductal/metabolismo , Ratones , Morfina/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neuronas/metabolismo , Masculino , Ratones Transgénicos , Modelos Animales de Enfermedad
4.
Cell Mol Life Sci ; 81(1): 387, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249529

RESUMEN

BACKGROUND: Dysregulated lipid oxidation occurs in several pathological processes characterized by cell proliferation and migration. Nonetheless, the molecular mechanism of lipid oxidation is not well appreciated in liver fibrosis, which is accompanied by enhanced fibroblast proliferation and migration. METHODS: We investigated the causes and consequences of lipid oxidation in liver fibrosis using cultured cells, animal models, and clinical samples. RESULTS: Increased ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1) expression caused increased lipid oxidation, resulting in the proliferation and migration of hepatic stellate cells (HSCs) that lead to liver fibrosis, whereas fibroblast-specific ENPP1 knockout reversing these results. Elevated ENPP1 and N6-methyladenosine (m6A) levels were associated with high expression of Wilms tumor 1 associated protein (WTAP). Mechanistically, WTAP-mediated m6A methylation of the 3'UTR of ENPP1 mRNA and induces its translation dependent of YTH domain family proteins 1 (YTHDF1). Additionally, ENPP1 could interact with hypoxia inducible lipid droplet associated (HILPDA) directly; overexpression of ENPP1 further recruits HILPDA-mediated lipid oxidation, thereby promotes HSCs proliferation and migration, while inhibition of ENPP1 expression produced the opposite effect. Clinically, increased expression of WTAP, YTHDF1, ENPP1, and HILPDA, and increased m6A mRNA content, enhanced lipid oxidation, and increased collagen deposition in human liver fibrosis tissues. CONCLUSIONS: We describe a novel mechanism in which WTAP catalyzes m6A methylation of ENPP1 in a YTHDF1-dependent manner to enhance lipid oxidation, promoting HSCs proliferation and migration and liver fibrosis.


Asunto(s)
Adenosina , Proliferación Celular , Metabolismo de los Lípidos , Cirrosis Hepática , Oxidación-Reducción , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , ARN Mensajero , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proliferación Celular/genética , Metabolismo de los Lípidos/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Movimiento Celular/genética , Ratones Endogámicos C57BL , Masculino , Epigénesis Genética , Fibroblastos/metabolismo , Fibroblastos/patología , Metilación , Factores de Empalme de ARN , Proteínas de Ciclo Celular
5.
Int J Biol Sci ; 20(12): 4750-4766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309428

RESUMEN

Patients with non-small cell lung cancer (NSCLC) are easily resistant to first-line chemotherapy with paclitaxel (PTX) or carboplatin (CBP). N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) has crucial functions in m6A modification and tumorigenesis. However, its role in chemoresistance of NSCLC is still elusive. Here, we demonstrated that METTL3 inhibitor STM2457 significantly reduced the IC50 values of PTX or CBP in NSCLC cells, and they showed a synergistic effect. Comparing with monotherapy, a combination of STM2457 and PTX or CBP exhibited more potent in vitro and in vivo anti-tumor efficacy. In addition, we found that ATP binding cassette subfamily C member 2 (ABCC2) was responsively elevated in cytomembrane after PTX or CBP treatment, and targeting METTL3 could reverse this effect. Mechanistically, targeting METTL3 decreased the m6A modification of ABCC2 mRNA and accelerated its mRNA degradation. Further studies revealed that YTHDF1 could bind and stabilize the m6A-modified mRNA of ABCC2, while YTHDF1 knockdown promoted it mRNA degradation. These results, taken together, demonstrate that targeting METTL3 enhances the sensitivity of NSCLC cells to PTX or CBP by decreasing the cytomembrane-localized ABCC2 in an m6A-YTHDF1-dependent manner, and suggest that METTL3 may be a potential therapeutic target for acquired resistance to PTX or CBP in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metiltransferasas , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Proteínas de Unión al ARN , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/metabolismo , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Ratones Desnudos , Carboplatino/farmacología , Carboplatino/uso terapéutico , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacología
6.
Phytomedicine ; 133: 155906, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089089

RESUMEN

BACKGROUND: Colorectal cancer (CRC) and its chemoresistance pose significant threats to human health. Gegen Qinlian Decoction (GQD) is frequently employed alongside chemotherapy drugs for the treatment of CRC and various intestinal disorders. Despite its widespread use, there is limited research investigating the mechanisms through which GQD reverses chemoresistance. PURPOSE: This study investigated the mechanism by which GQD reverses oxaliplatin (OXA) resistance in CRC. METHODS: A YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-knockdown OXA-resistant cell line was constructed by lentivirus to clarify YTHDF1-mediated chemoresistance through the regulation of glutaminase 1 (GLS1). The efficacy of GQD in reversing OXA resistance in CRC in vitro was evaluated by Cell Counting Kit-8, western blotting, quantitative real-time polymerase chain reaction, and glutaminase activity assays. In vivo validation was performed by constructing tumor xenografts in nude mice with OXA-resistant cells. In addition, mouse feces were collected and a 16S rDNA assay was performed to assess the regulation of intestinal flora by GQD. RESULTS: Overexpression of YTHDF1 upregulated GLS1 expression and induced OXA-resistance in CRC. GQD induced apoptosis in LoVo/OXAR, increased OXA accumulation in LoVo/OXAR, inhibited expression of YTHDF1 and GLS1 when administered alone and in combination with OXA, and suppressed GLS1 activity to reverse drug resistance with good synergistic effects. GQD and OXA combination or GLS1 inhibitor alleviated OXA toxicity, reduced the volume of tumor xenografts in nude mice, inhibited YTHDF1 and GLS1 protein expression and GLS1 activity, adjusted the intestinal flora, and significantly reversed the increased Firmicutes/Bacteroidetes ratio. CONCLUSION: GQD has shown superior efficacy in reversing OXA-resistance and increasing sensitivity. These findings indicate that the therapy combined with GQD has potential utility in the treatment of OXA-resistant CRC.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Medicamentos Herbarios Chinos , Glutaminasa , Ratones Desnudos , Oxaliplatino , Proteínas de Unión al ARN , Oxaliplatino/farmacología , Animales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glutaminasa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Adenosina/análogos & derivados
7.
Cancer Lett ; 601: 217186, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39151722

RESUMEN

Dysregulation of epigenetics is a hallmark of cancer development, and YTHDF1 stands out as a crucial epigenetic regulator with the highest DNA copy number variation among all N6-methyladenosine (m6A) regulators in colorectal cancer (CRC) patients. Here, we aimed to investigate the specific contribution of YTHDF1 overexpression to CRC progression and its consequences. Through multiple bioinformatic analyses of human cancer databases and clinical CRC samples, we identified GID8/Twa1 as a crucial downstream target of YTHDF1. YTHDF1 manipulates GID8 translation efficiency in an m6A-dependent manner, and high expression of GID8 is associated with more aggressive tumor progression and poor overall survival. Mechanistically, GID8 is intimately associated with glutamine metabolic demands by maintaining active glutamine uptake and metabolism through the regulation of excitatory amino acid transporter 1 (SLC1A3) and glutaminase (GLS), thereby facilitating the malignant progression of CRC. Inhibition of GID8 attenuated CRC proliferation and metastasis both in vitro and in vivo. In summary, we identified a previously unknown target pertaining to glutamine uptake and metabolism in tumor cells, underscoring the potential of GID8 in the treatment of CRC.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glutamina , Proteínas Nucleares , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/metabolismo
8.
Cell Biol Toxicol ; 40(1): 65, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110292

RESUMEN

The primary aim of this research was to explore the functions of Wtap and Ythdf1 in regulating neuronal Lipocalin-2 (Lcn2) through m6A modification in traumatic brain injury (TBI). By employing transcriptome sequencing and enrichment analysis, we identified the Wtap/Ythdf1-mediated Lcn2 m6A modification pathway as crucial in TBI. In our in vitro experiments using primary cortical neurons, knockout of Wtap and Ythdf1 led to the inhibition of Lcn2 m6A modification, resulting in reduced neuronal death and inflammation. Furthermore, overexpression of Lcn2 in cortical neurons induced the activation of reactive astrocytes and M1-like microglial cells, causing neuronal apoptosis. In vivo experiments confirmed the activation of reactive astrocytes and microglial cells in TBI and importantly demonstrated that Wtap knockdown improved neuroinflammation and functional impairment. These findings underscore the significance of Wtap/Ythdf1-mediated Lcn2 regulation in TBI secondary injury and suggest potential therapeutic implications for combating TBI-induced neuroinflammation and neuronal damage.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lipocalina 2 , Neuronas , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lipocalina 2/metabolismo , Lipocalina 2/genética , Animales , Neuronas/metabolismo , Neuronas/patología , Ratones , Microglía/metabolismo , Microglía/patología , Astrocitos/metabolismo , Astrocitos/patología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Masculino , Ratones Endogámicos C57BL , Apoptosis , Ratones Noqueados , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología
9.
Cell Signal ; 122: 111332, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098703

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal RNA modification and plays a critical role in carcinogenesis and tumor progression. As a powerful m6A reader, YTHDF1 is implicated in multiple malignancies. However, the functions and underlying mechanisms of YTHDF1 in esophageal cancer (ESCA) are elusive. Here, we revealed that YTHDF1 expression was remarkably up-regulated in ESCA and linked with poor prognosis. Functionally, YTHDF1 promoted ESCA cell proliferation, migration, and metastasis in vitro and in vivo. Mechanistically, we demonstrated that TINAGL1 might be a potential target of YTHDF1. We revealed that YTHDF1 recognized and bound to m6A-modified sites of TINAGL1 mRNA, resulting in enhanced translation of TINAGL1. Furthermore, TINAGL1 knockdown partially rescued tumor-promoting effects of YTHDF1 overexpression. Therefore, we unveil that YTHDF1 facilitates ESCA progression by promoting TINAGL1 translation in an m6A-dependent manner, which offers an attractive therapeutic target for ESCA.


Asunto(s)
Adenosina , Proliferación Celular , Neoplasias Esofágicas , Proteínas de Unión al ARN , Animales , Femenino , Humanos , Masculino , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Biosíntesis de Proteínas , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
10.
Toxicology ; 507: 153886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002880

RESUMEN

Benzo[a]pyrene (BaP) is associated with the development of lung cancer, but the underlying mechanism has not been completely clarified. Here, we used 10 µM BaP to induce malignant transformation of human bronchial epithelial BEAS-2B cells, named BEAS-2B-T. Results indicated that BaP (6.25, 12.5 and 25 µM) treatment significantly promoted the migration and invasion of BEAS-2B-T cells. Meanwhile, BaP exposure inhibited ferroptosis in BEAS-2B-T, ferroptosis-related indexes Fe2+, malondialdehyde (MDA), lipid peroxidation (LPO) and reactive oxygen species (ROS) decreased significantly. The protein level of ferroptosis-related molecule transferrin receptor (TFRC) decreased significantly, while solute carrier family 7 membrane 11 (SLC7A11), ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) increased significantly. The intervention of ferroptosis dramatically effected the migration and invasion of BEAS-2B-T induced by BaP. Furthermore, the expression of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) was markedly increased after BaP exposure. YTHDF1 knockdown inhibited BEAS-2B-T migration and invasion by promoting ferroptosis. In the meantime, the contents of Fe2+, MDA, LPO and ROS increased significantly, TFRC was markedly increased, and SLC7A11, FTH1, and GPX4 were markedly decreased. Moreover, overexpression of YTHDF1 promoted BEAS-2B-T migration and invasion by inhibiting ferroptosis. Importantly, knockdown of YTHDF1 promoted ferroptosis and reduced BEAS-2B-T migration and invasion during BaP exposure, and overexpression of YTHDF1 increased migration and invasion of BEAS-2B-T by inhibiting ferroptosis during BaP exposure. RNA immunoprecipitation assays indicated that the binding of YTHDF1 to SLC7A11 and FTH1 markedly increased after YTHDF1 overexpression. Therefore, we concluded that BaP promotes the malignant progression of BEAS-2B-T cells through YTHDF1 upregulating SLC7A11 and FTH1 to inhibit ferroptosis. This study reveals new epigenetic and ferroptosis markers for preventing and treating lung cancer induced by environmental carcinogens.


Asunto(s)
Benzo(a)pireno , Movimiento Celular , Ferroptosis , Ferroptosis/efectos de los fármacos , Humanos , Benzo(a)pireno/toxicidad , Movimiento Celular/efectos de los fármacos , Línea Celular , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Peroxidación de Lípido/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ferritinas , Oxidorreductasas , Antígenos CD
11.
Toxicol Res (Camb) ; 13(4): tfae100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966092

RESUMEN

Background: Postoperative cognitive dysfunction (POCD) is a generally recognized complication experienced by patients who receive anesthesia during surgery. Sevoflurane, the most commonly used inhaled anesthetic, has been shown to trigger neuroinflammation that promotes to POCD. Objective: This study examined the pathological mechanism by which sevoflurane causes neuroinflammation, participating in POCD. Methods: To establish a neurocyte injury model, the human neuroblastoma cell lines SH-SY5Y and SK-N-SH were treated with sevoflurane. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays. The reactive oxygen species (ROS) level was evaluated by DCFH-DA assays. A lactate dehydrogenase (LDH) Cytotoxicity Assay Kit was used to measure LDH levels. Inflammatory cytokine levels were measured using enzyme-linked immunosorbent assay assays. Gene expression densities and protein abundance were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. The interaction between YTHDF1 and dual specific phosphatase 6 (DUSP6) was validated using RNA immunoprecipitation (RIP)-qPCR and methylated RIP (MeRIP)-qPCR assays. Flow cytometry was performed to determine apoptosis. Results: Sevoflurane promoted apoptosis, oxidative stress, and neuroinflammation and repressed the expression levels of YTHDF1 and DUSP6. Furthermore, YTHDF1 overexpression reversed sevoflurane-induced neuroinflammation in neurocytes. DUSP6 overexpression could alleviate the neuroinflammation induced by sevoflurane via regulating the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Moreover, YTHDF1 enhanced DUSP6 expression. Conclusion: Sevoflurane-stimulated neuroinflammation by regulating DUSP6 via YTHDF1. Sevoflurane promoted neuroinflammation by regulating DUSP6 via YTHDF1 in an in vitro model of POCD.

12.
Cell Biol Toxicol ; 40(1): 58, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060874

RESUMEN

OBJECTIVE: Multiple myeloma (MM) is a deadly plasma cell malignancy with elusive pathogenesis. N6-methyladenosine (m6A) is critically engaged in hematological malignancies. The function of KIAA1429, the largest component of methyltransferases, is unknown. This study delved into the mechanism of KIAA1429 in MM, hoping to offer novel targets for MM therapy. METHODS: Bone marrow samples were attained from 55 MM patients and 15 controls. KIAA1429, YTHDF1, and FOXM1 mRNA levels were detected and their correlation was analyzed. Cell viability, proliferation, cell cycle, and apoptosis were testified. Glycolysis-enhancing genes (HK2, ENO1, and LDHA), lactate production, and glucose uptake were evaluated. The interaction between FOXM1 mRNA and YTHDF1, m6A-modified FOXM1 level, and FOXM1 stability were assayed. A transplantation tumor model was built to confirm the mechanism of KIAA1429. RESULTS: KIAA1429 was at high levels in MM patients and MM cells and linked to poor prognoses. KIAA1429 knockdown restrained MM cell viability, and proliferation, arrested G0/G1 phase, and increased apoptosis. KIAA1429 mRNA in plasma cells from MM patients was positively linked with to glycolysis-enhancing genes. The levels of glycolysis-enhancing genes, glucose uptake, and lactate production were repressed after KIAA1429 knockdown, along with reduced FOXM1 levels and stability. YTHDF1 recognized KIAA1429-methylated FOXM1 mRNA and raised FOXM1 stability. Knockdown of YTHDF1 curbed aerobic glycolysis and malignant behaviors in MM cells, which was nullified by FOXM1 overexpression. KIAA1429 knockdown also inhibited tumor growth in animal experiments. CONCLUSION: KIAA1429 knockdown reduces FOXM1 expression through YTHDF1-mediated m6A modification, thus inhibiting MM aerobic glycolysis and tumorigenesis.


Asunto(s)
Carcinogénesis , Proliferación Celular , Proteína Forkhead Box M1 , Glucólisis , Mieloma Múltiple , Proteínas de Unión al ARN , Humanos , Glucólisis/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Línea Celular Tumoral , Animales , Proliferación Celular/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Masculino , Femenino , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Ratones Desnudos , Ratones Endogámicos BALB C
13.
Biochem Genet ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951355

RESUMEN

The modification of N6-methyladenosine (m6A), primarily orchestrated by the reader protein YTHDF1, is a pivotal element in the post-transcriptional regulation of genes. While its role in various biological processes is well-documented, the specific impact of m6A-YTHDF1 on the regulation of GRIN2D, a gene implicated in cancer biology, particularly in the context of bladder cancer, is not thoroughly understood. Utilizing a series of bioinformatics analyses and experimental approaches, including cell culture, transfection, RT-qPCR, and western blotting, we investigated the m6A modification landscape in bladder cancer cells. The relationship between m6A-YTHDF1 and GRIN2D expression was examined, followed by functional assays to assess their roles in cancer progression and glycolytic activity. Our analysis identified a significant upregulation of m6A modification in bladder cancer tissues. YTHDF1 was found to regulate GRIN2D expression positively. Functionally, GRIN2D was implicated in promoting bladder cancer cell proliferation and enhancing aerobic glycolysis. Inhibition of the m6A-YTHDF1-GRIN2D axis resulted in the suppression of cancer progression and metabolic alterations. Through this research, we have elucidated the significant influence of the m6A-YTHDF1 axis on the modulation of GRIN2D expression, which in turn markedly impacts the progression of bladder cancer and its metabolic pathways, particularly aerobic glycolysis. Our findings uncover critical molecular dynamics within bladder cancer cells, offering a deeper understanding of its pathophysiology. Furthermore, the insights gained from this study underscore the potential of targeting the m6A-YTHDF1-GRIN2D pathway for the development of innovative therapeutic strategies in the treatment of bladder cancer.

14.
Neurol Res ; : 1-9, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39081030

RESUMEN

Objective: To determine whether YTHDF1 and YTHDF3 play the same role in brain and gut damage after traumatic brain injury (TBI).Methods: We generated YTHDF1-/- and YTHDF3-/- mice using CRISPR/Cas9 technology, established a mouse brain injury model through severe controlled cortical impact (CCI), and finally observed the different types of damage between YTHDF1-/- and YTHDF3-/- mice by analysing the levels of oedema proteins in cortical tissue and inflammatory proteins and histopathological lesions in brain and gut tissues in mice at 3 days after CCI.Result: Compared with WT mice, YTHDF1-/- mice had decreased levels of oedema in cortical tissue and inflammation and histopathological lesions in brain and gut tissues at 3 days post-CCI, but YTHDF3-/- mice did not.Conclusion: Our results suggest that deletion of YTHDF1, but not YTHDF3, could reduce damage to the brain and gut following TBI.

15.
Cancer Cell Int ; 24(1): 195, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835070

RESUMEN

BACKGROUND: Investigating the unexplored territory of lncRNA m6A modification in colorectal cancer (CRC) vasculature, this study focuses on LINC01106 and YTHDF1. METHODS: Clinical assessments reveal upregulated LINC01106 promoting vascular generation via the miR-449b-5p-VEGFA pathway. RESULTS: YTHDF1, elevated in CRC tissues, emerges as an adverse prognostic factor. Functional experiments showcase YTHDF1's inhibitory effects on CRC cell dynamics. Mechanistically, Me-CLIP identifies m6A-modified LINC01106, validated as a YTHDF1 target through Me-RIP. CONCLUSIONS: This study sheds light on the YTHDF1-mediated m6A modification of LINC01106, presenting it as a key player in suppressing CRC vascular generation.

16.
Transl Stroke Res ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869772

RESUMEN

N6-Methyladenosine (m6A) is a neuronal-enriched, reversible post-transcriptional modification that regulates RNA metabolism. The m6A-modified RNAs recruit various m6A-binding proteins that act as readers. Differential m6A methylation patterns are implicated in ischemic brain damage, yet the precise role of m6A readers in propagating post-stroke m6A signaling remains unclear. We presently evaluated the functional significance of the brain-enriched m6A reader YTHDF1, in post-stroke pathophysiology. Focal cerebral ischemia significantly increased YTHDF1 mRNA and protein expression in adult mice of both sexes. YTHDF1-/- male, but not female, mice subjected to transient middle cerebral artery occlusion (MCAO) showed worsened motor function recovery and increased infarction compared to sex-matched YTHDF1+/+ mice. YTHDF1-/- male, but not female, mice subjected to transient MCAO also showed significantly perturbed expression of genes related to inflammation, and increased infiltration of peripheral immune cells into the peri-infarct cortex, compared with sex-matched YTHDF1+/+ mice. Thus, this study demonstrates a sexual dimorphism of YTHDF1 in regulating post-ischemic inflammation and pathophysiology. Hence, post-stroke epitranscriptomic regulation might be sex-dependent.

17.
Cancer Cell Int ; 24(1): 208, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872157

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) patients have a dismal survival rate because of cancer metastasis and drug resistance. The study aims to identify the genes that concurrently modulate EMT, metastasis and EGFR-TKI resistance, and to investigate the underlying regulatory mechanisms. METHODS: Cox regression and Kaplan-Meier analyses were applied to identify prognostic oncogenes in LUAD. Gene set enrichment analysis (GSEA) was used to indicate the biological functions of the gene. Wound-healing and Transwell assays were used to detect migratory and invasive ability. EGFR-TKI sensitivity was evaluated by assessing the proliferation, clonogenic survival and metastatic capability of cancer cells with treatment with gefitinib. Methylated RNA immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP) analyses established the level of m6A modification present on the target gene and the protein's capability to interact with RNA, respectively. Single-sample gene set enrichment (ssGSEA) algorithm used to investigate levels of immune cell infiltration. RESULTS: Our study identified dual-specificity phosphatase 5 (DUSP5) as a novel and powerful predictor of adverse outcomes for LUAD by using public datasets. Functional enrichment analysis found that DUSP5 was positively enriched in EMT and transforming growth factor-beta (TGF-ß) signaling pathway, a prevailing pathway involved in the induction of EMT. As expected, DUSP5 knockdown suppressed EMT via inhibiting the canonical TGF-ß/Smad signaling pathway in in vitro experiments. Consistently, knockdown of DUSP5 was first found to inhibit migratory ability and invasiveness of LUAD cells in in vitro and prevent lung metastasis in in vivo. DUSP5 knockdown re-sensitized gefitinib-resistant LUAD cells to gefitinib, accompanying reversion of EMT progress. In LUAD tissue samples, we found 14 cytosine-phosphate-guanine (CpG) sites of DUSP5 that were negatively associated with DUSP5 gene expression. Importantly, 5'Azacytidine (AZA), an FDA-approved DNA methyltransferase inhibitor, restored DUSP5 expression. Moreover, RIP experiments confirmed that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a m6A reader protein, could bind DUSP5 mRNA. YTHDF1 promoted DUSP5 expression and the malignant phenotype of LUAD cells. In addition, the DUSP5-derived genomic model revealed the two clusters with distinguishable immune features and tumor mutational burden (TMB). CONCLUSIONS: Briefly, our study discovered DUSP5 which was regulated by epigenetic modification, might be a potential therapeutic target, especially in LUAD patients with acquired EGFR-TKI resistance.

18.
J Nanobiotechnology ; 22(1): 348, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898486

RESUMEN

Tumor-associated macrophages (TAMs) are a promising target for cancer immunotherapy, but delivering therapeutic agents to TAMs within the tumor microenvironment (TME) is challenging. In this study, a photosensitive, dual-targeting nanoparticle system (M.RGD@Cr-CTS-siYTHDF1 NPs) was developed. The structure includes a shell of DSPE-modified RGD peptides targeting integrin receptors on tumor cells and carboxymethyl mannose targeting CD206 receptors on macrophages, with a core of chitosan adsorbing m6A reading protein YTHDF1 siRNA and chromium nanoparticles (Cr NPs). The approach is specifically designed to target TAM and cancer cells, utilizing the photothermal effect of Cr NPs to disrupt the TME and deliver siYTHDF1 to TAM. In experiments with tumor-bearing mice, M.RGD@Cr-CTS-siYTHDF1 NPs, when exposed to laser irradiation, effectively killed tumor cells, disrupted the TME, delivered siYTHDF1 to TAMs, silenced the YTHDF1 gene, and shifted the STAT3-STAT1 equilibrium by reducing STAT3 and enhancing STAT1 expression. This reprogramming of TAMs towards an anti-tumor phenotype led to a pro-immunogenic TME state. The strategy also suppressed immunosuppressive IL-10 production, increased expression of immunostimulatory factors (IL-12 and IFN-γ), boosted CD8 + T cell infiltration and M1-type TAMs, and reduced Tregs and M2-type TAMs within the TME. In conclusion, the dual-targeting M.RGD@Cr-CTS-siYTHDF1 NPs, integrating dual-targeting capabilities with photothermal therapy (PTT) and RNA interference, offer a promising approach for molecular targeted cancer immunotherapy with potential for clinical application.


Asunto(s)
Inmunoterapia , Neoplasias Hepáticas , ARN Interferente Pequeño , Animales , Ratones , Inmunoterapia/métodos , Humanos , Neoplasias Hepáticas/terapia , Línea Celular Tumoral , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Proteínas de Unión al ARN/metabolismo , Nanopartículas/química , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
19.
Cancer Lett ; 597: 217047, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38871245

RESUMEN

Bone metastasis is common in breast cancer and more effective therapies are required, however, its molecular mechanism is poorly understood. Additionally, the role of the m6A reader YTHDF1 in bone metastasis of breast cancer has not been reported. Here, we reveal that the increased expression of YTHDF1 is clinically correlated with breast cancer bone metastases. YTHDF1 promotes migration, invasion, and osteoblast adhesion and induces osteoclast differentiation of cancer cells in vitro and vivo. Mechanically, RNA-seq, MeRIP-seq and RIP-seq analysis, and molecular biology experiments demonstrate that YTHDF1 translationally enhances EZH2 and CDH11 expression by reading m6A-enriched sites of their transcripts. Moreover, adeno-associated virus (AAV) was used to deliver shYTHDF1 (shYTHDF1-AAV) in intratibial injection models, eliciting a significant suppressive effect on breast cancer bone metastatic formation and osteolytic destruction. Overall, we uncovered that YTHDF1 promotes osteolytic bone metastases of breast cancer by inducing EZH2 and CDH11 translation.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Cadherinas , Proteína Potenciadora del Homólogo Zeste 2 , Osteólisis , Proteínas de Unión al ARN , Animales , Femenino , Humanos , Ratones , Neoplasias Óseas/secundario , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica , Osteoclastos/metabolismo , Osteoclastos/patología , Osteólisis/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
20.
Cell Biosci ; 14(1): 79, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877576

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) methylation is a prevalent RNA modification implicated in various diseases. However, its role in intervertebral disc degeneration (IDD), a common cause of low back pain, remains unclear. RESULTS: In this investigation, we explored the involvement of m6A demethylation in the pathogenesis of IDD. Our findings revealed that ALKBH5 (alkylated DNA repair protein AlkB homolog 5), an m6A demethylase, exhibited upregulation in degenerative discs upon mild inflammatory stimulation. ALKBH5 facilitated m6A demethylation within the three prime untranslated region (3'-UTR) of Runx2 mRNA, consequently enhancing its mRNA stability in a YTHDF1 (YTH N6-methyladenosine RNA binding protein F1)-dependent manner. The subsequent elevation in Runx2 expression instigated the upregulation of ADAMTSs and MMPs, pivotal proteases implicated in extracellular matrix (ECM) degradation and IDD progression. In murine models, subcutaneous administration of recombinant Runx2 protein proximal to the lumbar disc in mice elicited complete degradation of intervertebral discs (IVDs). Injection of recombinant MMP1a and ADAMTS10 proteins individually induced mild to moderate degeneration of the IVDs, while co-administration of MMP1a and ADAMTS10 resulted in moderate to severe degeneration. Notably, concurrent injection of the Runx2 inhibitor CADD522 with recombinant Runx2 protein did not result in IVD degeneration in mice. Furthermore, genetic knockout of ALKBH5 and overexpression of YTHDF1 in mice, along with lipopolysaccharide (LPS) treatment to induce inflammation, did not alter the expression of Runx2, MMPs, and ADAMTSs, and no degeneration of the IVDs was observed. CONCLUSION: Our study elucidates the role of ALKBH5-mediated m6A demethylation of Runx2 mRNA in activating MMPs and ADAMTSs, thereby facilitating ECM degradation and promoting the occurrence of IDD. Our findings suggest that targeting the ALKBH5/Runx2/MMPs/ADAMTSs axis may represent a promising therapeutic strategy for preventing IDD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA